Scalable influence maximization in social networks

Influence maximization is the problem of selecting a subset of individuals in a social network such that they maximize the spread of an influence. It is desirable to generate an idea diffusion cascade by making these initial influencers adopt it first. In other words, using the word-of-mouth "p...

Full description

Autores:
Campo Martínez, Carlos Andrés
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/12495
Acceso en línea:
http://hdl.handle.net/1992/12495
Palabra clave:
Redes sociales - Escalabilidad
Comunidades virtuales - Investigaciones
Algoritmos (Computadores) - Investigaciones
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_d87778e0dbf1b48611136e4822ce75f4
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/12495
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Villamil Giraldo, María del Pilarcf1999ac-21c4-41af-86a2-31c8aebbbe11600Campo Martínez, Carlos Andrés7be66cdd-18f5-43a8-80e7-33113a7cb234600Jiménez Guarín, Claudia LucíaGarcía Díaz, César Enrique2018-09-28T09:02:08Z2018-09-28T09:02:08Z2012http://hdl.handle.net/1992/12495u685977.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Influence maximization is the problem of selecting a subset of individuals in a social network such that they maximize the spread of an influence. It is desirable to generate an idea diffusion cascade by making these initial influencers adopt it first. In other words, using the word-of-mouth "power" of these initial individuals should allow us to maximize the spread of an idea over the network. The problem of finding the most influential nodes in a network is NP-hard. Kempe, Kleinberg, and Tardos (2003) has proved that a Greedy algorithm strategy obtains a solution that is provably within 63% of optimal for several cases; However it is computationally prohibitive to run this algorithm in large social networks. Finding scalable solutions for this problem is critical for enabling applications in viral social marketing among other topics like detection sensor location or trend monitoring. In this thesis, a new heuristic algorithm is presented for mining top-K influencers based on a local influence region probability spread score. The proposed algorithm is composed of: 1) a bounded variation of breadth-first search traversal algorithm for calculating the mentioned score of each individual; and 2) an iterative greedy select-and-update algorithm for choosing top influencers. Experiment results show that this new algorithm can in several cases perform better (in influence spread and computational efficiency) than previous Works.Magíster en Ingeniería de Sistemas y ComputaciónMaestría38 hojasapplication/pdfenginstname:Universidad de los Andesreponame:Repositorio Institucional SénecaScalable influence maximization in social networksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMMaestría en Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónRedes sociales - EscalabilidadComunidades virtuales - InvestigacionesAlgoritmos (Computadores) - InvestigacionesIngenieríaPublicationORIGINALu685977.pdfapplication/pdf630533https://repositorio.uniandes.edu.co/bitstreams/f3ac16c0-d145-4703-9494-546d4a71b308/download2c0a161f0d0834c047e79503a49f440eMD51THUMBNAILu685977.pdf.jpgu685977.pdf.jpgIM Thumbnailimage/jpeg5368https://repositorio.uniandes.edu.co/bitstreams/ab8f985b-7ce2-48ed-8f5f-37c3a2b476d4/downloadd7d6ac7c913e41462733a0863de59f33MD55TEXTu685977.pdf.txtu685977.pdf.txtExtracted texttext/plain54053https://repositorio.uniandes.edu.co/bitstreams/a027d5c1-ea7a-4b25-9e4d-2702da31ce45/downloada84ab37a08a76f649e24f001cb64abf6MD541992/12495oai:repositorio.uniandes.edu.co:1992/124952023-10-10 16:22:11.358http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Scalable influence maximization in social networks
title Scalable influence maximization in social networks
spellingShingle Scalable influence maximization in social networks
Redes sociales - Escalabilidad
Comunidades virtuales - Investigaciones
Algoritmos (Computadores) - Investigaciones
Ingeniería
title_short Scalable influence maximization in social networks
title_full Scalable influence maximization in social networks
title_fullStr Scalable influence maximization in social networks
title_full_unstemmed Scalable influence maximization in social networks
title_sort Scalable influence maximization in social networks
dc.creator.fl_str_mv Campo Martínez, Carlos Andrés
dc.contributor.advisor.none.fl_str_mv Villamil Giraldo, María del Pilar
dc.contributor.author.none.fl_str_mv Campo Martínez, Carlos Andrés
dc.contributor.jury.none.fl_str_mv Jiménez Guarín, Claudia Lucía
García Díaz, César Enrique
dc.subject.keyword.es_CO.fl_str_mv Redes sociales - Escalabilidad
Comunidades virtuales - Investigaciones
Algoritmos (Computadores) - Investigaciones
topic Redes sociales - Escalabilidad
Comunidades virtuales - Investigaciones
Algoritmos (Computadores) - Investigaciones
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Influence maximization is the problem of selecting a subset of individuals in a social network such that they maximize the spread of an influence. It is desirable to generate an idea diffusion cascade by making these initial influencers adopt it first. In other words, using the word-of-mouth "power" of these initial individuals should allow us to maximize the spread of an idea over the network. The problem of finding the most influential nodes in a network is NP-hard. Kempe, Kleinberg, and Tardos (2003) has proved that a Greedy algorithm strategy obtains a solution that is provably within 63% of optimal for several cases; However it is computationally prohibitive to run this algorithm in large social networks. Finding scalable solutions for this problem is critical for enabling applications in viral social marketing among other topics like detection sensor location or trend monitoring. In this thesis, a new heuristic algorithm is presented for mining top-K influencers based on a local influence region probability spread score. The proposed algorithm is composed of: 1) a bounded variation of breadth-first search traversal algorithm for calculating the mentioned score of each individual; and 2) an iterative greedy select-and-update algorithm for choosing top influencers. Experiment results show that this new algorithm can in several cases perform better (in influence spread and computational efficiency) than previous Works.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2018-09-28T09:02:08Z
dc.date.available.none.fl_str_mv 2018-09-28T09:02:08Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/12495
dc.identifier.pdf.none.fl_str_mv u685977.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/12495
identifier_str_mv u685977.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 38 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.program.es_CO.fl_str_mv Maestría en Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/f3ac16c0-d145-4703-9494-546d4a71b308/download
https://repositorio.uniandes.edu.co/bitstreams/ab8f985b-7ce2-48ed-8f5f-37c3a2b476d4/download
https://repositorio.uniandes.edu.co/bitstreams/a027d5c1-ea7a-4b25-9e4d-2702da31ce45/download
bitstream.checksum.fl_str_mv 2c0a161f0d0834c047e79503a49f440e
d7d6ac7c913e41462733a0863de59f33
a84ab37a08a76f649e24f001cb64abf6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111762770165760