Scalable influence maximization in social networks
Influence maximization is the problem of selecting a subset of individuals in a social network such that they maximize the spread of an influence. It is desirable to generate an idea diffusion cascade by making these initial influencers adopt it first. In other words, using the word-of-mouth "p...
- Autores:
-
Campo Martínez, Carlos Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/12495
- Acceso en línea:
- http://hdl.handle.net/1992/12495
- Palabra clave:
- Redes sociales - Escalabilidad
Comunidades virtuales - Investigaciones
Algoritmos (Computadores) - Investigaciones
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_d87778e0dbf1b48611136e4822ce75f4 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/12495 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Villamil Giraldo, María del Pilarcf1999ac-21c4-41af-86a2-31c8aebbbe11600Campo Martínez, Carlos Andrés7be66cdd-18f5-43a8-80e7-33113a7cb234600Jiménez Guarín, Claudia LucíaGarcía Díaz, César Enrique2018-09-28T09:02:08Z2018-09-28T09:02:08Z2012http://hdl.handle.net/1992/12495u685977.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Influence maximization is the problem of selecting a subset of individuals in a social network such that they maximize the spread of an influence. It is desirable to generate an idea diffusion cascade by making these initial influencers adopt it first. In other words, using the word-of-mouth "power" of these initial individuals should allow us to maximize the spread of an idea over the network. The problem of finding the most influential nodes in a network is NP-hard. Kempe, Kleinberg, and Tardos (2003) has proved that a Greedy algorithm strategy obtains a solution that is provably within 63% of optimal for several cases; However it is computationally prohibitive to run this algorithm in large social networks. Finding scalable solutions for this problem is critical for enabling applications in viral social marketing among other topics like detection sensor location or trend monitoring. In this thesis, a new heuristic algorithm is presented for mining top-K influencers based on a local influence region probability spread score. The proposed algorithm is composed of: 1) a bounded variation of breadth-first search traversal algorithm for calculating the mentioned score of each individual; and 2) an iterative greedy select-and-update algorithm for choosing top influencers. Experiment results show that this new algorithm can in several cases perform better (in influence spread and computational efficiency) than previous Works.Magíster en Ingeniería de Sistemas y ComputaciónMaestría38 hojasapplication/pdfenginstname:Universidad de los Andesreponame:Repositorio Institucional SénecaScalable influence maximization in social networksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMMaestría en Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónRedes sociales - EscalabilidadComunidades virtuales - InvestigacionesAlgoritmos (Computadores) - InvestigacionesIngenieríaPublicationORIGINALu685977.pdfapplication/pdf630533https://repositorio.uniandes.edu.co/bitstreams/f3ac16c0-d145-4703-9494-546d4a71b308/download2c0a161f0d0834c047e79503a49f440eMD51THUMBNAILu685977.pdf.jpgu685977.pdf.jpgIM Thumbnailimage/jpeg5368https://repositorio.uniandes.edu.co/bitstreams/ab8f985b-7ce2-48ed-8f5f-37c3a2b476d4/downloadd7d6ac7c913e41462733a0863de59f33MD55TEXTu685977.pdf.txtu685977.pdf.txtExtracted texttext/plain54053https://repositorio.uniandes.edu.co/bitstreams/a027d5c1-ea7a-4b25-9e4d-2702da31ce45/downloada84ab37a08a76f649e24f001cb64abf6MD541992/12495oai:repositorio.uniandes.edu.co:1992/124952023-10-10 16:22:11.358http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Scalable influence maximization in social networks |
title |
Scalable influence maximization in social networks |
spellingShingle |
Scalable influence maximization in social networks Redes sociales - Escalabilidad Comunidades virtuales - Investigaciones Algoritmos (Computadores) - Investigaciones Ingeniería |
title_short |
Scalable influence maximization in social networks |
title_full |
Scalable influence maximization in social networks |
title_fullStr |
Scalable influence maximization in social networks |
title_full_unstemmed |
Scalable influence maximization in social networks |
title_sort |
Scalable influence maximization in social networks |
dc.creator.fl_str_mv |
Campo Martínez, Carlos Andrés |
dc.contributor.advisor.none.fl_str_mv |
Villamil Giraldo, María del Pilar |
dc.contributor.author.none.fl_str_mv |
Campo Martínez, Carlos Andrés |
dc.contributor.jury.none.fl_str_mv |
Jiménez Guarín, Claudia Lucía García Díaz, César Enrique |
dc.subject.keyword.es_CO.fl_str_mv |
Redes sociales - Escalabilidad Comunidades virtuales - Investigaciones Algoritmos (Computadores) - Investigaciones |
topic |
Redes sociales - Escalabilidad Comunidades virtuales - Investigaciones Algoritmos (Computadores) - Investigaciones Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Influence maximization is the problem of selecting a subset of individuals in a social network such that they maximize the spread of an influence. It is desirable to generate an idea diffusion cascade by making these initial influencers adopt it first. In other words, using the word-of-mouth "power" of these initial individuals should allow us to maximize the spread of an idea over the network. The problem of finding the most influential nodes in a network is NP-hard. Kempe, Kleinberg, and Tardos (2003) has proved that a Greedy algorithm strategy obtains a solution that is provably within 63% of optimal for several cases; However it is computationally prohibitive to run this algorithm in large social networks. Finding scalable solutions for this problem is critical for enabling applications in viral social marketing among other topics like detection sensor location or trend monitoring. In this thesis, a new heuristic algorithm is presented for mining top-K influencers based on a local influence region probability spread score. The proposed algorithm is composed of: 1) a bounded variation of breadth-first search traversal algorithm for calculating the mentioned score of each individual; and 2) an iterative greedy select-and-update algorithm for choosing top influencers. Experiment results show that this new algorithm can in several cases perform better (in influence spread and computational efficiency) than previous Works. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2018-09-28T09:02:08Z |
dc.date.available.none.fl_str_mv |
2018-09-28T09:02:08Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/12495 |
dc.identifier.pdf.none.fl_str_mv |
u685977.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/12495 |
identifier_str_mv |
u685977.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
38 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Ingeniería de Sistemas y Computación |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/f3ac16c0-d145-4703-9494-546d4a71b308/download https://repositorio.uniandes.edu.co/bitstreams/ab8f985b-7ce2-48ed-8f5f-37c3a2b476d4/download https://repositorio.uniandes.edu.co/bitstreams/a027d5c1-ea7a-4b25-9e4d-2702da31ce45/download |
bitstream.checksum.fl_str_mv |
2c0a161f0d0834c047e79503a49f440e d7d6ac7c913e41462733a0863de59f33 a84ab37a08a76f649e24f001cb64abf6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111762770165760 |