Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run
Esta investigación desarrolla una herramienta para clasificar ondas gravitacionales (GWs) de ruido de detector para informar la aceptación/retractación de eventos de GWs para la colaboración LIGO-Virgo-KAGRA.
- Autores:
-
Álvarez López, María Sofía
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/68738
- Acceso en línea:
- http://hdl.handle.net/1992/68738
- Palabra clave:
- LIGO
Ondas gravitacionales
Gravitational-waves
Gravitational-wave detector characterization
Machine Learning
Ground-based gravitational-wave interferometers
Física
- Rights
- openAccess
- License
- Attribution-NoDerivatives 4.0 Internacional
id |
UNIANDES2_d6b68351eb749cd7835152b7f4e52606 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/68738 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
title |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
spellingShingle |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run LIGO Ondas gravitacionales Gravitational-waves Gravitational-wave detector characterization Machine Learning Ground-based gravitational-wave interferometers Física |
title_short |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
title_full |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
title_fullStr |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
title_full_unstemmed |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
title_sort |
Improving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing run |
dc.creator.fl_str_mv |
Álvarez López, María Sofía |
dc.contributor.advisor.none.fl_str_mv |
McIver, Jess García Varela, José Alejandro |
dc.contributor.author.none.fl_str_mv |
Álvarez López, María Sofía |
dc.contributor.jury.none.fl_str_mv |
Chan, Man Leong (Mervyn) |
dc.contributor.researchgroup.es_CO.fl_str_mv |
Astronomía y astrofísica |
dc.subject.keyword.none.fl_str_mv |
LIGO Ondas gravitacionales Gravitational-waves Gravitational-wave detector characterization Machine Learning Ground-based gravitational-wave interferometers |
topic |
LIGO Ondas gravitacionales Gravitational-waves Gravitational-wave detector characterization Machine Learning Ground-based gravitational-wave interferometers Física |
dc.subject.themes.es_CO.fl_str_mv |
Física |
description |
Esta investigación desarrolla una herramienta para clasificar ondas gravitacionales (GWs) de ruido de detector para informar la aceptación/retractación de eventos de GWs para la colaboración LIGO-Virgo-KAGRA. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-25T18:20:57Z |
dc.date.available.none.fl_str_mv |
2023-07-25T18:20:57Z |
dc.date.issued.none.fl_str_mv |
2023-07-12 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/68738 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/68738 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Observation of Gravitational Waves from a Binary Black Hole Merger», Phys. Rev. Lett. 116, 061102 (2016). J. McIver and D. H. Shoemaker, «Discovering gravitational waves with advanced ligo», Contemporary Physics 61, 229-255 (2020). M. Zevin et al., «Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science», Classical and Quantum Gravity 34, arXiv:1611.04596 [astro-ph, physics:gr-qc, physics:physics], 064003 (2017). B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Gw150914: the advanced ligo detectors in the era of first discoveries», Phys. Rev. Lett. 116, 131103 (2016). B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914», Physical Review D 95, arXiv:1602.03845 [astro-ph, physics:gr-qc, physics:physics], 062003 (2017). B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs», en, 10.1103/PhysRevX.9. 031040. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run», en, 10.1103/PhysRevX.11.021053. B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration and KAGRA Collaboration), «GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run», en, 10.48550/arXiv.2111.03606. J. Harms, «Terrestrial Gravity Fluctuations», Living Reviews in Relativity 22, arXiv:1507.05850 [gr-qc], 6 (2019). The LIGO Scientific Collaboration and the Virgo Collaboration, «Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914», Classical and Quantum Gravity 33, arXiv:1602.03844 [astro-ph, physics:gr-qc, physics:physics], 134001 (2016). B. Berger, «Identification and mitigation of advanced ligo noise sources», Journal of Physics: Conference Series 957, 012004 (2018). D. Davis et al., «LIGO Detector Characterization in the Second and Third Observing Runs», Classical and Quantum Gravity 38, arXiv:2101.11673 [astro-ph, physics:gr-qc], 135014 (2021) Jarov, S. et al., «A new method to distinguish gravitational-wave signals from detector glitches with Gravity Spy». S. Alvarez-Lopez et al., GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave event candidates, 2023. C. Szegedy et al., «Rethinking the inception architecture for computer vision», in 2016 ieee conference on computer vision and pattern recognition (cvpr) (2016), pp. 2818-2826. The LIGO Scientific Collaboration and The Virgo Collaboration, «Data Quality Report user documentation», https : / / docs . ligo . org / detchar / data - quality - report/ (2018). The LIGO Scientific Collaboration and The Virgo Collaboration, «Data Quality Report (DQR) tasks documentation», https://detchar.docs.ligo.org/dqrtasks/index.html (2023). P. R. Saulson, Fundamentals of interferometric gravitational wave detectors (World Scientific, 1994). P. R. Saulson, «Gravitational wave detection: principles and practice», Comptes Rendus Physique 14, 288-305 (2013). M. Maggiore, Gravitational waves: volume 1: theory and experiments (OUP Oxford, 2007). E. E. Flanagan and S. A. Hughes, «The basics of gravitational wave theory», New Journal of Physics 7, 204 (2005). K. S. Thorne, J. A. Wheeler, and C. W. Misner, Gravitation (Freeman San Francisco, CA, 2000). B. S. Sathyaprakash and B. F. Schutz, «Physics, astrophysics and cosmology with gravitational waves», Living reviews in relativity 12, 1-141 (2009). D. J. Griffiths, Introduction to Electrodynamics (Pearson, 2013) S. Carroll, Spacetime and geometry: an introduction to general relativity (Benjamin Cummings, 2003). J. H. Taylor, «Pulsar timing and relativistic gravity», Classical and Quantum Gravity 10, S167 (1993). J. M. Weisberg, D. J. Nice, and J. H. Taylor, «Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16», Astrophys. J. 722, 1030-1034 (2010). S. Vitale, «The first 5 years of gravitational-wave astrophysics», Science 372, eabc7397 (2021) L. S. Finn and D. F. Chernoff, «Observing binary inspiral in gravitational radiation: One interferometer», Phys. Rev. D 47, 2198-2219 (1993). L. Blanchet, «Gravitational radiation from post-newtonian sources and inspiralling compact binaries», Living Reviews in Relativity 17, 10.12942/lrr-2014-2 (2014). J. G. Baker et al., «Gravitational-wave extraction from an inspiraling configuration of merging black holes», Phys. Rev. Lett. 96, 111102 (2006). A. Heger et al., «How Massive Single Stars End Their Life», The Astrophysical Journal 591, 288 (2003). B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model», Phys. Rev. X 6, 041014 (2016). R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Gw190521: a binary black hole merger with a total mass of 150 MJ», Phys. Rev. Lett. 125, 101102 (2020). S. A. Hughes, Trust but verify: the case for astrophysical black holes, 2005 R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, «The Australia Telescope National Facility Pulsar Catalogue», The Astronomical Journal 129, 1993-2006 (2005). L. Rezzolla, E. R. Most, and L. R. Weih, «Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars», The Astrophysical Journal 852, L25, L25 (2018). B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral», Phys. Rev. Lett. 119, 161101 (2017). B. P. Abbott et al., «Multi-messenger Observations of a Binary Neutron Star Merger», The Astrophysical Journal 848, L12 (2017). H.-Y. Chen et al., «Distance measures in gravitational-wave astrophysics and cosmology», Classical and Quantum Gravity 38, 055010 (2021). T. M. Tauris et al., «Formation of Double Neutron Star Systems», The Astrophysical Journal 846, 170 (2017). B. P. Abbott et al., «Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A», The Astrophysical Journal 848, L13 (2017). R. Abbott et al., «Observation of Gravitational Waves from Two Neutron Star Black Hole Coalescences», The Astrophysical Journal Letters 915, L5 (2021). F. Foucart, «A brief overview of black hole-neutron star mergers», Frontiers in Astronomy and Space Sciences 7, 10.3389/fspas.2020.00046 (2020). H. Bethe, G. Brown, and C.-H. Lee, «Formation And Evolution Of Black Holes In The Galaxy», 10.1142/5142 (2003) T. R. Marsh et al., «A radio-pulsing white dwarf binary star», Nature 537, 374-377 (2016). B. Anguiano et al., «White dwarf binaries across the h-r diagram», The Astronomical Journal 164, 126 (2022). P. Amaro-Seoane et al., Laser Interferometer Space Antenna, 2017. G. Ushomirsky, C. Cutler, and L. Bildsten, «Deformations of accreting neutron star crusts and gravitational wave emission», Monthly Notices of the Royal Astronomical Society 319, 902-932 (2002). LIGO Scientific Collaboration (LIGO Scientific Collaboration), Introduction to LIGO and gravitational-waves. V. Morozova, D. Radice, A. Burrows, and D. Vartanyan, «The Gravitational Wave Signal from Core-collapse Supernovae», The Astrophysical Journal 861, 10 (2018). B. P. Abbott et al., «Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run», The Astrophysical Journal 874, 163 (2019). B. Kocsis, M. E. Gáspár, and S. Márka, «Detection Rate Estimates of Gravity Waves Emitted during Parabolic Encounters of Stellar Black Holes in Globular Clusters», The Astrophysical Journal 648, 411-429 (2006). D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, 2019. M. Maggiore et al., «Science case for the Einstein telescope», Journal of Cosmology and Astroparticle Physics 2020, 050-050 (2020). V. Srivastava et al., «Detection prospects of core-collapse supernovae with supernova-optimized third-generation gravitational-wave detectors», Physical Review D 100, 10. 1103/physrevd.100.043026 (2019). N. Christensen, «Stochastic gravitational wave backgrounds», Reports on Progress in Physics 82, 016903 (2018). A. Einstein, «Naherungsweise integration der feldgleichungen der gravitation. sitzungsberichte der koniglich preussischen akademie der wissenschaften (berlin)», Translated as Approximative Integration of the Field Equations of Gravitation, in Alfred Engel (translator) and Engelbert Schucking (consultant), The Collected Papers of Albert Einstein 6,1914-1917 (1916). A. Einstein, «On Gravitational Waves», Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 154 (1918). D. Kennefick, «Controversies in the history of the radiation reaction problem in general relativity», arXiv preprint gr-qc/9704002 (1997). J. Weber, «Gravitational-wave-detector events», Physical Review Letters 20, 1307 (1968). G. Pizzella, «Birth and initial developments of experiments with resonant detectors searching for gravitational waves», The European Physical Journal H 41, 267-302 (2016). M. Gertsenshtein, «Wave resonance of light and gravitional waves», Sov Phys JETP 14, 84-85 (1962). G. Moss, L. Miller, and R. Forward, «Photon-noise-limited laser transducer for gravitational antenna», Applied Optics 10, 2495-2498 (1971). R. Weiss and D. Muehlner, Electronically coupled broadband gravitational antenna (Citeseer, 1972). B. F. Schutz, «Networks of gravitational wave detectors and three figures of merit», Classical and Quantum Gravity 28, 125023 (2011). J. Abadie et al., «Calibration of the LIGO gravitational wave detectors in the fifth science run», Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 624, 223-240 (2010). P. Brady, G. Losurdo, and H. Shinkai, «LIGO, VIRGO, and KAGRA as the International Gravitational Wave Network», in Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer Singapore, Singapore, 2020), pp. 1-21. J. Aasi et al., «Advanced LIGO», Classical and Quantum Gravity 32, 074001 (2015). C. L. Mueller et al., «The advanced LIGO input optics», Review of Scientific Instruments 87, 014502, 10.1063/1.4936974 (2016). LIGO Scientific Collaboration (LIGO Scientific Collaboration), LIGO Optics. D. Davis, «Improving the Sensitivity of Advanced LIGO Through Detector Characterization», PhD thesis (Syracuse University, 2019). B. P. Abbott et al., «Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA», Living Reviews in Relativity 23, 10.1007/s41114-020-00026-9 (2020). C. Cahillane and G. Mansell, «Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four», Galaxies 10, 10.3390/galaxies10010036 (2022). D. Davis, L. V. White, and P. R. Saulson, «Utilizing aLIGO glitch classifications to validate gravitational-wave candidates», Classical and Quantum Gravity 37, 145001 (2020). J. G. Rollins, E. Hall, C. Wipf, and L. McCuller, pygwinc: Gravitational Wave Interferometer Noise Calculator, Astrophysics Source Code Library, record ascl:2007.020, July 2020. R. Poggiani, «Gravitational Wave Detectors», in Encyclopedia of Physical Science and Technology (Third Edition), edited by R. A. Meyers, Third Edition (Academic Press, New York, 2003), pp. 49-65. LIGO Scientific Collaboration (LIGO Scientific Collaboration), Vibration isolation in LIGO. C. Moore, R. Cole, and C. Berry, Gravitational Wave Sensitivity plotter: Gravitational Wave Detectors and Sources. B. P. Abbott et al., «Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run», Classical and Quantum Gravity 35, 065010, 065010 (2018). D. Davis et al., «Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run», Classical and Quantum Gravity 39, 245013 (2022). R. Macas et al., «Impact of noise transients on low latency gravitational-wave event localization», Phys. Rev. D 105, 103021 (2022). J. Powell, «Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches», Classical and Quantum Gravity 35, 155017 (2018). E. Payne et al., «Curious case of GW200129: Interplay between spin-precession inference and data-quality issues», Phys. Rev. D 106, 104017 (2022). B. Allen, «Chi-squared Time-frequency discriminator for gravitational wave detection», Phys. Rev. D 71, 062001 (2005). C. M. Biwer et al., «PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals», Publications of the Astronomical Society of the Pacific 131, 024503 (2019). M. Cabero et al., «Blip glitches in Advanced LIGO data», Classical and Quantum Gravity 36, 155010 (2019). S. Soni et al., «Discovering features in gravitational-wave data through detector characterization, citizen science, and machine learning», Classical and Quantum Gravity 38, 195016 (2021). D. V. Martynov et al., «Sensitivity of the advanced ligo detectors at the beginning of gravitational wave astronomy», Phys. Rev. D 93, 112004 (2016). J. Glanzer et al., Noise in the LIGO Livingston Gravitational Wave Observatory due to Trains, 2023. N. J. Cornish and T. B. Littenberg, «Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches», Classical and Quantum Gravity 32, 135012 (2015). D. Davis et al., «Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run», Classical and Quantum Gravity 39, 245013 (2022). D. Davis et al., «Improving the sensitivity of Advanced LIGO using noise subtraction», Classical and Quantum Gravity 36, 055011 (2019). D. Macleod et al., GWpy: Python package for studying data from gravitational-wave detectors, Astrophysics Source Code Library, record ascl:1912.016, Dec. 2019. S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, «Multiresolution techniques for the detection of gravitational-wave bursts», Classical and Quantum Gravity 21, S1809-S1818 (2004). J. S. Areeda et al., LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO Scientific Collaboration, arXiv:1611.01089 [astro-ph, physics:gr-qc], Nov. 2016. The LIGO Scientific Collaboration and The Virgo Collaboration, «LIGO/Virgo Alert System (LVAlert)» Pace A, Prestegard T, Moe B and Stephens B, «GraceDB Gravitational-Wave Candidate Event Database», https://gracedb.ligo.org/ (2020). S. Barthelmy et al., «Introducing new GCN Kafka broker and web site for transient alerts, https://gcn.nasa.gov», GRB Coordinates Network 32419, 1 (2022). A. Geron, Hands-on machine learning with scikit-learn, keras, and tensorflow : 2nd ed., https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ (O'Reilly Media, Inc., Mumbai, 2020). A. C. Wilson et al., The marginal value of adaptive gradient methods in machine learning, 2018. D. Masters and C. Luschi, Revisiting small batch training for deep neural networks, 2018. IBM, What are convolutional neural networks? C. Szegedy et al., «Going deeper with convolutions», in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 1-9. S. Bahaadini et al., «Machine learning for Gravity Spy: Glitch classification and dataset», Information Sciences 444, 172-186 (2018). C. Biwer et al., «Validating gravitational-wave detections: the advanced LIGO hardware injection system», Physical Review D 95, 10.1103/physrevd.95.062002 (2017). C. Luo et al., «How Does the Data set Affect CNN-based Image Classification Performance?», in 2018 5th International Conference on Systems and Informatics (ICSAI) (2018), pp. 361-366. LIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL), 2018. S. Husa et al., «Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal», Phys. Rev. D 93, 044006 (2016). S. Khan et al., «Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era», Phys. Rev. D 93, 044007 (2016). K. O'Shea and R. Nash, An Introduction to Convolutional Neural Networks, arXiv:1511.08458 [cs], Dec. 2015. LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration, «GWTC3 Data Release», https://www.gw-openscience.org/GWTC-3/ (2021). D. George, H. Shen, and E. Huerta, «Glitch Classification and Clustering for LIGO with Deep Transfer Learning», in NiPS Summer School 2017 (Nov. 2017). L. Van der Maaten and G. Hinton, «Visualizing data using t-SNE.», Journal of machine learning research 9 (2008). D. Thain, T. Tannenbaum, and M. Livny, «Distributed computing in practice: the condor experience.», Concurrency - Practice and Experience 17, 323-356 (2005). |
dc.rights.license.spa.fl_str_mv |
Attribution-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
138 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/836d160d-195f-446e-ae86-4a42697f7cd4/download https://repositorio.uniandes.edu.co/bitstreams/ae066aba-b5e1-42de-a20b-84bd4cf810b0/download https://repositorio.uniandes.edu.co/bitstreams/6c4a26e5-13a7-4991-adac-6a9e905c9718/download https://repositorio.uniandes.edu.co/bitstreams/3e746659-3b7a-49bd-9b9d-4126c961f5d8/download https://repositorio.uniandes.edu.co/bitstreams/302e5747-83a7-4ec8-b19e-81277b331782/download https://repositorio.uniandes.edu.co/bitstreams/2e0d3a9d-618f-4bdb-9a95-baf2913eb1c8/download https://repositorio.uniandes.edu.co/bitstreams/a5aa2010-36cb-4334-854c-f947333b94d5/download https://repositorio.uniandes.edu.co/bitstreams/035e0f5b-14a8-4ba1-83b7-deec43e11b86/download |
bitstream.checksum.fl_str_mv |
10905ac22b669a9e0c8d8b0a4c84993d 624513f1a982d26714a4b817be5affcb 19066e9311a8e5e7083438b5515eab42 ecc29d2c99760a1d924f2ae327646f55 f7d494f61e544413a13e6ba1da2089cd 1466dc512712b0681acaba8e2dba10a0 08b106dfeb12472e88207a069e15ba30 5aa5c691a1ffe97abd12c2966efcb8d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133954004713472 |
spelling |
Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2McIver, Jessbcf5afdb-1fd2-49b1-88a0-5ac985000ee3600García Varela, José Alejandrovirtual::9830-1Álvarez López, María Sofía689609b1-ed8f-494f-b3c1-83538435b87e600Chan, Man Leong (Mervyn)Astronomía y astrofísica2023-07-25T18:20:57Z2023-07-25T18:20:57Z2023-07-12http://hdl.handle.net/1992/68738instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Esta investigación desarrolla una herramienta para clasificar ondas gravitacionales (GWs) de ruido de detector para informar la aceptación/retractación de eventos de GWs para la colaboración LIGO-Virgo-KAGRA.A pesar de haber alcanzado sensibilidades capaces de detectar la amplitud extremadamente pequeña de las ondas gravitacionales (GWs), los datos de los detectores LIGO y Virgo contienen frecuentes ráfagas de ruido transitorio no Gaussiano, comúnmente conocidas como "glitches". Los "glitches" se presentan en diversas morfologías de tiempo-frecuencia, y resultan especialmente problemáticos cuando imitan la forma de las GWs reales. Dada la mayor tasa de eventos esperada en el actual periodo de observación de LIGO-Virgo (O4), la validación de los candidatos de eventos de GWs requiere mayores niveles de automatización. Gravity Spy, una herramienta de aprendizaje automático que clasificó con éxito tipos comunes de "glitches" de LIGO y Virgo en observaciones anteriores, tiene el potencial de ser reestructurada como un clasificador de señales de GWs-vs-ruido de detector para distinguir entre "glitches" y señales de GW con precisión. Un clasificador de señales de GWs-vs-"glitches" utilizado para la automatización debe ser robusto y compatible con una amplia gama de ruido de fondo, nuevas fuentes de "glitches" y la probable aparición de "glitches" y GWs solapados en la misma ventana de tiempo. Presentamos GSpyNetTree, el Gravity Spy Convolutional Neural Network Decision Tree: un clasificador multi-etiqueta multi-CNN que utiliza CNNs en un árbol de decisión ordenado a través de la masa total de un evento candidato de onda gravitacional. Integrado en el Informe de Calidad de Datos de LIGO-Virgo (DQR, por sus siglas en inglés), GSpyNetTree es una de las herramientas esenciales en la evaluación de la necesidad de mitigación de "glitches" en O4. Esta tesis presenta el desarrollo de GSpyNetTree, su construcción y resultados, desde su origen como un clasificador multi-clase a su estado actual como clasificador multi-etiqueta. Por último, se evalúa su desempeño en candidatos de ondas gravitacionales del actual periodo de observación, O4, y se proponen técnicas para mejorar su desempeño en futuras iteraciones.Despite achieving sensitivities capable of detecting the extremely small amplitude of gravitational waves (GWs), LIGO and Virgo detector data contain frequent bursts of non-Gaussian transient noise, commonly known as 'glitches'. Glitches come in various time-frequency morphologies, and they are particularly challenging when they mimic the form of real GWs. Given the higher expected event rate in the current observing run (O4), LIGO-Virgo GW event candidate validation requires increased levels of automation. Gravity Spy, a machine learning tool that successfully classified common types of LIGO and Virgo glitches in previous observing runs, has the potential to be restructured as a signal-vs-glitch classifier to distinguish between glitches and GW signals accurately. A signal-vs-glitch classifier used for automation must be robust and compatible with a broad array of background noise, new sources of glitches, and the likely occurrence of overlapping glitches and GWs. This dissertation presents GSpyNetTree, the Gravity Spy Convolutional Neural Network Decision Tree: a multi-CNN multi-label classifier using CNNs in a decision tree sorted via total GW candidate mass. Integrated into the LIGO-Virgo Data Quality Report, GSpyNetTree is one of the essential tools in assessing the necessity of glitch mitigation in O4. This thesis presents the development, building process, and results of GSpyNetTree: from its origin as a multi-class classifier based on Gravity Spy, to its current O4 status as a multi-label classifier. Finally, the performance of GSpyNetTree identifying data quality issues in the public O4 GW candidates published in GraceDB is evaluated, and new ways to improve the tool's classifications are suggested.This material is based upon work supported by NSF's LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The author is grateful for computational resources provided by the LIGO Laboratory and supported by National Science Foundation Grants PHY-0757058 and PHY-0823459.FísicoPregradoOndas gravitacionales138 páginasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaImproving our ability to distinguish gravitational-wave signals from detector transient noise for the fourth LIGO-Virgo-KAGRA observing runTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLIGOOndas gravitacionalesGravitational-wavesGravitational-wave detector characterizationMachine LearningGround-based gravitational-wave interferometersFísicaB. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Observation of Gravitational Waves from a Binary Black Hole Merger», Phys. Rev. Lett. 116, 061102 (2016).J. McIver and D. H. Shoemaker, «Discovering gravitational waves with advanced ligo», Contemporary Physics 61, 229-255 (2020).M. Zevin et al., «Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science», Classical and Quantum Gravity 34, arXiv:1611.04596 [astro-ph, physics:gr-qc, physics:physics], 064003 (2017).B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Gw150914: the advanced ligo detectors in the era of first discoveries», Phys. Rev. Lett. 116, 131103 (2016).B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914», Physical Review D 95, arXiv:1602.03845 [astro-ph, physics:gr-qc, physics:physics], 062003 (2017).B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs», en, 10.1103/PhysRevX.9. 031040.B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run», en, 10.1103/PhysRevX.11.021053.B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration and KAGRA Collaboration), «GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run», en, 10.48550/arXiv.2111.03606.J. Harms, «Terrestrial Gravity Fluctuations», Living Reviews in Relativity 22, arXiv:1507.05850 [gr-qc], 6 (2019).The LIGO Scientific Collaboration and the Virgo Collaboration, «Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914», Classical and Quantum Gravity 33, arXiv:1602.03844 [astro-ph, physics:gr-qc, physics:physics], 134001 (2016).B. Berger, «Identification and mitigation of advanced ligo noise sources», Journal of Physics: Conference Series 957, 012004 (2018).D. Davis et al., «LIGO Detector Characterization in the Second and Third Observing Runs», Classical and Quantum Gravity 38, arXiv:2101.11673 [astro-ph, physics:gr-qc], 135014 (2021)Jarov, S. et al., «A new method to distinguish gravitational-wave signals from detector glitches with Gravity Spy».S. Alvarez-Lopez et al., GSpyNetTree: A signal-vs-glitch classifier for gravitational-wave event candidates, 2023.C. Szegedy et al., «Rethinking the inception architecture for computer vision», in 2016 ieee conference on computer vision and pattern recognition (cvpr) (2016), pp. 2818-2826.The LIGO Scientific Collaboration and The Virgo Collaboration, «Data Quality Report user documentation», https : / / docs . ligo . org / detchar / data - quality - report/ (2018).The LIGO Scientific Collaboration and The Virgo Collaboration, «Data Quality Report (DQR) tasks documentation», https://detchar.docs.ligo.org/dqrtasks/index.html (2023).P. R. Saulson, Fundamentals of interferometric gravitational wave detectors (World Scientific, 1994).P. R. Saulson, «Gravitational wave detection: principles and practice», Comptes Rendus Physique 14, 288-305 (2013).M. Maggiore, Gravitational waves: volume 1: theory and experiments (OUP Oxford, 2007).E. E. Flanagan and S. A. Hughes, «The basics of gravitational wave theory», New Journal of Physics 7, 204 (2005).K. S. Thorne, J. A. Wheeler, and C. W. Misner, Gravitation (Freeman San Francisco, CA, 2000).B. S. Sathyaprakash and B. F. Schutz, «Physics, astrophysics and cosmology with gravitational waves», Living reviews in relativity 12, 1-141 (2009).D. J. Griffiths, Introduction to Electrodynamics (Pearson, 2013)S. Carroll, Spacetime and geometry: an introduction to general relativity (Benjamin Cummings, 2003).J. H. Taylor, «Pulsar timing and relativistic gravity», Classical and Quantum Gravity 10, S167 (1993).J. M. Weisberg, D. J. Nice, and J. H. Taylor, «Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16», Astrophys. J. 722, 1030-1034 (2010).S. Vitale, «The first 5 years of gravitational-wave astrophysics», Science 372, eabc7397 (2021)L. S. Finn and D. F. Chernoff, «Observing binary inspiral in gravitational radiation: One interferometer», Phys. Rev. D 47, 2198-2219 (1993).L. Blanchet, «Gravitational radiation from post-newtonian sources and inspiralling compact binaries», Living Reviews in Relativity 17, 10.12942/lrr-2014-2 (2014).J. G. Baker et al., «Gravitational-wave extraction from an inspiraling configuration of merging black holes», Phys. Rev. Lett. 96, 111102 (2006).A. Heger et al., «How Massive Single Stars End Their Life», The Astrophysical Journal 591, 288 (2003).B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model», Phys. Rev. X 6, 041014 (2016).R. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «Gw190521: a binary black hole merger with a total mass of 150 MJ», Phys. Rev. Lett. 125, 101102 (2020).S. A. Hughes, Trust but verify: the case for astrophysical black holes, 2005R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, «The Australia Telescope National Facility Pulsar Catalogue», The Astronomical Journal 129, 1993-2006 (2005).L. Rezzolla, E. R. Most, and L. R. Weih, «Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars», The Astrophysical Journal 852, L25, L25 (2018).B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), «GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral», Phys. Rev. Lett. 119, 161101 (2017).B. P. Abbott et al., «Multi-messenger Observations of a Binary Neutron Star Merger», The Astrophysical Journal 848, L12 (2017).H.-Y. Chen et al., «Distance measures in gravitational-wave astrophysics and cosmology», Classical and Quantum Gravity 38, 055010 (2021).T. M. Tauris et al., «Formation of Double Neutron Star Systems», The Astrophysical Journal 846, 170 (2017).B. P. Abbott et al., «Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A», The Astrophysical Journal 848, L13 (2017).R. Abbott et al., «Observation of Gravitational Waves from Two Neutron Star Black Hole Coalescences», The Astrophysical Journal Letters 915, L5 (2021).F. Foucart, «A brief overview of black hole-neutron star mergers», Frontiers in Astronomy and Space Sciences 7, 10.3389/fspas.2020.00046 (2020).H. Bethe, G. Brown, and C.-H. Lee, «Formation And Evolution Of Black Holes In The Galaxy», 10.1142/5142 (2003)T. R. Marsh et al., «A radio-pulsing white dwarf binary star», Nature 537, 374-377 (2016).B. Anguiano et al., «White dwarf binaries across the h-r diagram», The Astronomical Journal 164, 126 (2022).P. Amaro-Seoane et al., Laser Interferometer Space Antenna, 2017.G. Ushomirsky, C. Cutler, and L. Bildsten, «Deformations of accreting neutron star crusts and gravitational wave emission», Monthly Notices of the Royal Astronomical Society 319, 902-932 (2002).LIGO Scientific Collaboration (LIGO Scientific Collaboration), Introduction to LIGO and gravitational-waves.V. Morozova, D. Radice, A. Burrows, and D. Vartanyan, «The Gravitational Wave Signal from Core-collapse Supernovae», The Astrophysical Journal 861, 10 (2018).B. P. Abbott et al., «Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run», The Astrophysical Journal 874, 163 (2019).B. Kocsis, M. E. Gáspár, and S. Márka, «Detection Rate Estimates of Gravity Waves Emitted during Parabolic Encounters of Stellar Black Holes in Globular Clusters», The Astrophysical Journal 648, 411-429 (2006).D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, 2019.M. Maggiore et al., «Science case for the Einstein telescope», Journal of Cosmology and Astroparticle Physics 2020, 050-050 (2020).V. Srivastava et al., «Detection prospects of core-collapse supernovae with supernova-optimized third-generation gravitational-wave detectors», Physical Review D 100, 10. 1103/physrevd.100.043026 (2019).N. Christensen, «Stochastic gravitational wave backgrounds», Reports on Progress in Physics 82, 016903 (2018).A. Einstein, «Naherungsweise integration der feldgleichungen der gravitation. sitzungsberichte der koniglich preussischen akademie der wissenschaften (berlin)», Translated as Approximative Integration of the Field Equations of Gravitation, in Alfred Engel (translator) and Engelbert Schucking (consultant), The Collected Papers of Albert Einstein 6,1914-1917 (1916).A. Einstein, «On Gravitational Waves», Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 154 (1918).D. Kennefick, «Controversies in the history of the radiation reaction problem in general relativity», arXiv preprint gr-qc/9704002 (1997).J. Weber, «Gravitational-wave-detector events», Physical Review Letters 20, 1307 (1968).G. Pizzella, «Birth and initial developments of experiments with resonant detectors searching for gravitational waves», The European Physical Journal H 41, 267-302 (2016).M. Gertsenshtein, «Wave resonance of light and gravitional waves», Sov Phys JETP 14, 84-85 (1962).G. Moss, L. Miller, and R. Forward, «Photon-noise-limited laser transducer for gravitational antenna», Applied Optics 10, 2495-2498 (1971).R. Weiss and D. Muehlner, Electronically coupled broadband gravitational antenna (Citeseer, 1972).B. F. Schutz, «Networks of gravitational wave detectors and three figures of merit», Classical and Quantum Gravity 28, 125023 (2011).J. Abadie et al., «Calibration of the LIGO gravitational wave detectors in the fifth science run», Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 624, 223-240 (2010).P. Brady, G. Losurdo, and H. Shinkai, «LIGO, VIRGO, and KAGRA as the International Gravitational Wave Network», in Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer Singapore, Singapore, 2020), pp. 1-21.J. Aasi et al., «Advanced LIGO», Classical and Quantum Gravity 32, 074001 (2015).C. L. Mueller et al., «The advanced LIGO input optics», Review of Scientific Instruments 87, 014502, 10.1063/1.4936974 (2016).LIGO Scientific Collaboration (LIGO Scientific Collaboration), LIGO Optics.D. Davis, «Improving the Sensitivity of Advanced LIGO Through Detector Characterization», PhD thesis (Syracuse University, 2019).B. P. Abbott et al., «Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA», Living Reviews in Relativity 23, 10.1007/s41114-020-00026-9 (2020).C. Cahillane and G. Mansell, «Review of the Advanced LIGO Gravitational Wave Observatories Leading to Observing Run Four», Galaxies 10, 10.3390/galaxies10010036 (2022).D. Davis, L. V. White, and P. R. Saulson, «Utilizing aLIGO glitch classifications to validate gravitational-wave candidates», Classical and Quantum Gravity 37, 145001 (2020).J. G. Rollins, E. Hall, C. Wipf, and L. McCuller, pygwinc: Gravitational Wave Interferometer Noise Calculator, Astrophysics Source Code Library, record ascl:2007.020, July 2020.R. Poggiani, «Gravitational Wave Detectors», in Encyclopedia of Physical Science and Technology (Third Edition), edited by R. A. Meyers, Third Edition (Academic Press, New York, 2003), pp. 49-65.LIGO Scientific Collaboration (LIGO Scientific Collaboration), Vibration isolation in LIGO.C. Moore, R. Cole, and C. Berry, Gravitational Wave Sensitivity plotter: Gravitational Wave Detectors and Sources.B. P. Abbott et al., «Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run», Classical and Quantum Gravity 35, 065010, 065010 (2018).D. Davis et al., «Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run», Classical and Quantum Gravity 39, 245013 (2022).R. Macas et al., «Impact of noise transients on low latency gravitational-wave event localization», Phys. Rev. D 105, 103021 (2022).J. Powell, «Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches», Classical and Quantum Gravity 35, 155017 (2018).E. Payne et al., «Curious case of GW200129: Interplay between spin-precession inference and data-quality issues», Phys. Rev. D 106, 104017 (2022).B. Allen, «Chi-squared Time-frequency discriminator for gravitational wave detection», Phys. Rev. D 71, 062001 (2005).C. M. Biwer et al., «PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals», Publications of the Astronomical Society of the Pacific 131, 024503 (2019).M. Cabero et al., «Blip glitches in Advanced LIGO data», Classical and Quantum Gravity 36, 155010 (2019).S. Soni et al., «Discovering features in gravitational-wave data through detector characterization, citizen science, and machine learning», Classical and Quantum Gravity 38, 195016 (2021).D. V. Martynov et al., «Sensitivity of the advanced ligo detectors at the beginning of gravitational wave astronomy», Phys. Rev. D 93, 112004 (2016).J. Glanzer et al., Noise in the LIGO Livingston Gravitational Wave Observatory due to Trains, 2023.N. J. Cornish and T. B. Littenberg, «Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches», Classical and Quantum Gravity 32, 135012 (2015).D. Davis et al., «Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run», Classical and Quantum Gravity 39, 245013 (2022).D. Davis et al., «Improving the sensitivity of Advanced LIGO using noise subtraction», Classical and Quantum Gravity 36, 055011 (2019).D. Macleod et al., GWpy: Python package for studying data from gravitational-wave detectors, Astrophysics Source Code Library, record ascl:1912.016, Dec. 2019.S. Chatterji, L. Blackburn, G. Martin, and E. Katsavounidis, «Multiresolution techniques for the detection of gravitational-wave bursts», Classical and Quantum Gravity 21, S1809-S1818 (2004).J. S. Areeda et al., LigoDV-web: Providing easy, secure and universal access to a large distributed scientific data store for the LIGO Scientific Collaboration, arXiv:1611.01089 [astro-ph, physics:gr-qc], Nov. 2016.The LIGO Scientific Collaboration and The Virgo Collaboration, «LIGO/Virgo Alert System (LVAlert)»Pace A, Prestegard T, Moe B and Stephens B, «GraceDB Gravitational-Wave Candidate Event Database», https://gracedb.ligo.org/ (2020).S. Barthelmy et al., «Introducing new GCN Kafka broker and web site for transient alerts, https://gcn.nasa.gov», GRB Coordinates Network 32419, 1 (2022).A. Geron, Hands-on machine learning with scikit-learn, keras, and tensorflow : 2nd ed., https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ (O'Reilly Media, Inc., Mumbai, 2020).A. C. Wilson et al., The marginal value of adaptive gradient methods in machine learning, 2018.D. Masters and C. Luschi, Revisiting small batch training for deep neural networks, 2018.IBM, What are convolutional neural networks?C. Szegedy et al., «Going deeper with convolutions», in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 1-9.S. Bahaadini et al., «Machine learning for Gravity Spy: Glitch classification and dataset», Information Sciences 444, 172-186 (2018).C. Biwer et al., «Validating gravitational-wave detections: the advanced LIGO hardware injection system», Physical Review D 95, 10.1103/physrevd.95.062002 (2017).C. Luo et al., «How Does the Data set Affect CNN-based Image Classification Performance?», in 2018 5th International Conference on Systems and Informatics (ICSAI) (2018), pp. 361-366.LIGO Scientific Collaboration, LIGO Algorithm Library - LALSuite, free software (GPL), 2018.S. Husa et al., «Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal», Phys. Rev. D 93, 044006 (2016).S. Khan et al., «Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era», Phys. Rev. D 93, 044007 (2016).K. O'Shea and R. Nash, An Introduction to Convolutional Neural Networks, arXiv:1511.08458 [cs], Dec. 2015.LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration, «GWTC3 Data Release», https://www.gw-openscience.org/GWTC-3/ (2021).D. George, H. Shen, and E. Huerta, «Glitch Classification and Clustering for LIGO with Deep Transfer Learning», in NiPS Summer School 2017 (Nov. 2017).L. Van der Maaten and G. Hinton, «Visualizing data using t-SNE.», Journal of machine learning research 9 (2008).D. Thain, T. Tannenbaum, and M. Livny, «Distributed computing in practice: the condor experience.», Concurrency - Practice and Experience 17, 323-356 (2005).201729031Publication88a1271b-7c5b-4cba-a02a-87878aba01e4virtual::9830-188a1271b-7c5b-4cba-a02a-87878aba01e4virtual::9830-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000382418virtual::9830-1ORIGINALPhysics Thesis GSpyNetTree Maria Sofia Alvarez Lopez.pdfPhysics Thesis GSpyNetTree Maria Sofia Alvarez Lopez.pdfTrabajo de grado final aprobadoapplication/pdf69922589https://repositorio.uniandes.edu.co/bitstreams/836d160d-195f-446e-ae86-4a42697f7cd4/download10905ac22b669a9e0c8d8b0a4c84993dMD54Autorizacion tesis Fisica Maria Sofia Alvarez Lopez 201729031.pdfAutorizacion tesis Fisica Maria Sofia Alvarez Lopez 201729031.pdfHIDEapplication/pdf342884https://repositorio.uniandes.edu.co/bitstreams/ae066aba-b5e1-42de-a20b-84bd4cf810b0/download624513f1a982d26714a4b817be5affcbMD53THUMBNAILPhysics Thesis GSpyNetTree Maria Sofia Alvarez Lopez.pdf.jpgPhysics Thesis GSpyNetTree Maria Sofia Alvarez Lopez.pdf.jpgIM Thumbnailimage/jpeg7402https://repositorio.uniandes.edu.co/bitstreams/6c4a26e5-13a7-4991-adac-6a9e905c9718/download19066e9311a8e5e7083438b5515eab42MD56Autorizacion tesis Fisica Maria Sofia Alvarez Lopez 201729031.pdf.jpgAutorizacion tesis Fisica Maria Sofia Alvarez Lopez 201729031.pdf.jpgIM Thumbnailimage/jpeg15583https://repositorio.uniandes.edu.co/bitstreams/3e746659-3b7a-49bd-9b9d-4126c961f5d8/downloadecc29d2c99760a1d924f2ae327646f55MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/302e5747-83a7-4ec8-b19e-81277b331782/downloadf7d494f61e544413a13e6ba1da2089cdMD52TEXTPhysics Thesis GSpyNetTree Maria Sofia Alvarez Lopez.pdf.txtPhysics Thesis GSpyNetTree Maria Sofia Alvarez Lopez.pdf.txtExtracted texttext/plain298382https://repositorio.uniandes.edu.co/bitstreams/2e0d3a9d-618f-4bdb-9a95-baf2913eb1c8/download1466dc512712b0681acaba8e2dba10a0MD55Autorizacion tesis Fisica Maria Sofia Alvarez Lopez 201729031.pdf.txtAutorizacion tesis Fisica Maria Sofia Alvarez Lopez 201729031.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/a5aa2010-36cb-4334-854c-f947333b94d5/download08b106dfeb12472e88207a069e15ba30MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/035e0f5b-14a8-4ba1-83b7-deec43e11b86/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/68738oai:repositorio.uniandes.edu.co:1992/687382024-03-13 14:02:03.223http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |