NEAT for video game learning: advancing agent intelligence through evolutionary algorithms
This document presents an exploration of NEAT (NeuroEvolution of Augmenting Topologies) as a powerful approach for training video game agents, with a focus on its application and effectiveness in a specific game. NEAT is a neuroevolutionary algorithm that combines artificial neural networks and gene...
- Autores:
-
Castellamos Matamoros, Boris
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73636
- Acceso en línea:
- https://hdl.handle.net/1992/73636
- Palabra clave:
- Neat
Galaxian
Video game
Artificial intelligence
Ingeniería
- Rights
- openAccess
- License
- Attribution-ShareAlike 4.0 International
id |
UNIANDES2_d63db6076e8838114276029f6d3c5680 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73636 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
dc.title.alternative.none.fl_str_mv |
NEAT for Video Game Learning |
title |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
spellingShingle |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms Neat Galaxian Video game Artificial intelligence Ingeniería |
title_short |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
title_full |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
title_fullStr |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
title_full_unstemmed |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
title_sort |
NEAT for video game learning: advancing agent intelligence through evolutionary algorithms |
dc.creator.fl_str_mv |
Castellamos Matamoros, Boris |
dc.contributor.advisor.none.fl_str_mv |
Takahashi Rodríguez, Silvia |
dc.contributor.author.none.fl_str_mv |
Castellamos Matamoros, Boris |
dc.subject.keyword.eng.fl_str_mv |
Neat |
topic |
Neat Galaxian Video game Artificial intelligence Ingeniería |
dc.subject.keyword.none.fl_str_mv |
Galaxian Video game Artificial intelligence |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
This document presents an exploration of NEAT (NeuroEvolution of Augmenting Topologies) as a powerful approach for training video game agents, with a focus on its application and effectiveness in a specific game. NEAT is a neuroevolutionary algorithm that combines artificial neural networks and genetic algorithms to evolve efficient neural networks capable of solving complex tasks. By dynamically adjusting network structures and connections, NEAT enables the discovery of novel gameplay strategies. Through a series of experiments and analysis in the context of the chosen game, this study aims to demonstrate the effectiveness of NEAT in optimizing agent behavior and achieving high levels of performance. Additionally, this document discusses potential future improvements and explores other potential applications of NEAT beyond video game AI, highlighting its versatility and potential for advancements in related fields. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-06-09 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T21:07:17Z |
dc.date.available.none.fl_str_mv |
2024-01-30T21:07:17Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73636 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73636 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.en.fl_str_mv |
Attribution-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-ShareAlike 4.0 International http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
8 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Sistemas y Computación |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/bc851a4c-963d-44eb-be0d-2c446e02c7ed/download https://repositorio.uniandes.edu.co/bitstreams/e4fa845a-4c1a-4e9b-8ce1-0e484a9818e9/download https://repositorio.uniandes.edu.co/bitstreams/e33b4000-8efd-4d8d-a394-faf3c091671f/download https://repositorio.uniandes.edu.co/bitstreams/047ae95d-6acc-4034-8bb6-f88899ce9c00/download https://repositorio.uniandes.edu.co/bitstreams/1b736abe-034a-4d86-a228-0c32f1e1d40d/download https://repositorio.uniandes.edu.co/bitstreams/c2c25af4-1678-4347-b27b-621518d23ad2/download https://repositorio.uniandes.edu.co/bitstreams/1618e264-45b8-4669-9a1a-7a3e1d6ec856/download https://repositorio.uniandes.edu.co/bitstreams/82b57962-f030-42e4-913c-ea612456bdec/download |
bitstream.checksum.fl_str_mv |
84a900c9dd4b2a10095a94649e1ce116 ae9e573a68e7f92501b6913cc846c39f 0d59bc545d2fff8336c483401be30560 69aa340b1498160429426b17765b5a7b fb8100584f4fdda39d08bc29fc60cafa cdc9a748176a267f3bc12f6c425e765c 95424d7f6db47765835faac4f4352ac9 ae7b06bbbb6600d3f16a237b61ef6926 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133861227757568 |
spelling |
Takahashi Rodríguez, Silviavirtual::52-1Castellamos Matamoros, Boris2024-01-30T21:07:17Z2024-01-30T21:07:17Z2023-06-09https://hdl.handle.net/1992/73636instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This document presents an exploration of NEAT (NeuroEvolution of Augmenting Topologies) as a powerful approach for training video game agents, with a focus on its application and effectiveness in a specific game. NEAT is a neuroevolutionary algorithm that combines artificial neural networks and genetic algorithms to evolve efficient neural networks capable of solving complex tasks. By dynamically adjusting network structures and connections, NEAT enables the discovery of novel gameplay strategies. Through a series of experiments and analysis in the context of the chosen game, this study aims to demonstrate the effectiveness of NEAT in optimizing agent behavior and achieving high levels of performance. Additionally, this document discusses potential future improvements and explores other potential applications of NEAT beyond video game AI, highlighting its versatility and potential for advancements in related fields.Ingeniero de Sistemas y ComputaciónPregrado8 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónAttribution-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NEAT for video game learning: advancing agent intelligence through evolutionary algorithmsNEAT for Video Game LearningTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPNeatGalaxianVideo gameArtificial intelligenceIngeniería201822683Publicationhttps://scholar.google.es/citations?user=x7gjZ04AAAAJvirtual::52-10000-0001-7971-8979virtual::52-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143898virtual::52-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::52-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::52-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/bc851a4c-963d-44eb-be0d-2c446e02c7ed/download84a900c9dd4b2a10095a94649e1ce116MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/e4fa845a-4c1a-4e9b-8ce1-0e484a9818e9/downloadae9e573a68e7f92501b6913cc846c39fMD54ORIGINALNEAT for Video Game Learning.pdfNEAT for Video Game Learning.pdfapplication/pdf105660https://repositorio.uniandes.edu.co/bitstreams/e33b4000-8efd-4d8d-a394-faf3c091671f/download0d59bc545d2fff8336c483401be30560MD55autorizacion tesis(3).pdfautorizacion tesis(3).pdfHIDEapplication/pdf236862https://repositorio.uniandes.edu.co/bitstreams/047ae95d-6acc-4034-8bb6-f88899ce9c00/download69aa340b1498160429426b17765b5a7bMD56TEXTNEAT for Video Game Learning.pdf.txtNEAT for Video Game Learning.pdf.txtExtracted texttext/plain35170https://repositorio.uniandes.edu.co/bitstreams/1b736abe-034a-4d86-a228-0c32f1e1d40d/downloadfb8100584f4fdda39d08bc29fc60cafaMD57autorizacion tesis(3).pdf.txtautorizacion tesis(3).pdf.txtExtracted texttext/plain2020https://repositorio.uniandes.edu.co/bitstreams/c2c25af4-1678-4347-b27b-621518d23ad2/downloadcdc9a748176a267f3bc12f6c425e765cMD59THUMBNAILNEAT for Video Game Learning.pdf.jpgNEAT for Video Game Learning.pdf.jpgGenerated Thumbnailimage/jpeg14769https://repositorio.uniandes.edu.co/bitstreams/1618e264-45b8-4669-9a1a-7a3e1d6ec856/download95424d7f6db47765835faac4f4352ac9MD58autorizacion tesis(3).pdf.jpgautorizacion tesis(3).pdf.jpgGenerated Thumbnailimage/jpeg10898https://repositorio.uniandes.edu.co/bitstreams/82b57962-f030-42e4-913c-ea612456bdec/downloadae7b06bbbb6600d3f16a237b61ef6926MD5101992/73636oai:repositorio.uniandes.edu.co:1992/736362024-02-16 14:46:16.915http://creativecommons.org/licenses/by-sa/4.0/Attribution-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |