Gauge theories on transitive Lie algebroids
The dynamics of the elementary particles of physics and their interactions are modeled by quantized gauge theories, a type of field theories. These include Quantum Electrodynamics, the Electroweak Interaction, Quantum Chromodynamics and the Standard Model of particle physics, which describe three of...
- Autores:
-
Puerto Galindo, Sebastián Camilo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51300
- Acceso en línea:
- http://hdl.handle.net/1992/51300
- Palabra clave:
- Campos de calibración (Física)
Teoría de campos (Física)
Algebroides de Lie
Geometría diferencial
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_d3f8d9d1051c1faaa1c81b4de9d6d5f3 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51300 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Gauge theories on transitive Lie algebroids |
title |
Gauge theories on transitive Lie algebroids |
spellingShingle |
Gauge theories on transitive Lie algebroids Campos de calibración (Física) Teoría de campos (Física) Algebroides de Lie Geometría diferencial Matemáticas |
title_short |
Gauge theories on transitive Lie algebroids |
title_full |
Gauge theories on transitive Lie algebroids |
title_fullStr |
Gauge theories on transitive Lie algebroids |
title_full_unstemmed |
Gauge theories on transitive Lie algebroids |
title_sort |
Gauge theories on transitive Lie algebroids |
dc.creator.fl_str_mv |
Puerto Galindo, Sebastián Camilo |
dc.contributor.advisor.none.fl_str_mv |
Cardona Guio, Alexander |
dc.contributor.author.none.fl_str_mv |
Puerto Galindo, Sebastián Camilo |
dc.subject.armarc.spa.fl_str_mv |
Campos de calibración (Física) Teoría de campos (Física) Algebroides de Lie Geometría diferencial |
topic |
Campos de calibración (Física) Teoría de campos (Física) Algebroides de Lie Geometría diferencial Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
The dynamics of the elementary particles of physics and their interactions are modeled by quantized gauge theories, a type of field theories. These include Quantum Electrodynamics, the Electroweak Interaction, Quantum Chromodynamics and the Standard Model of particle physics, which describe three of the four known fundamental forces and which classify all observed fundamental particles. The mathematical framework usually used for the formulation of gauge theories, prior to quantization, is that of the differential geometry of principal fiber bundles and vector bundles. In this document we study the use of the structure of transitive Lie algebroids as the mathematical framework for a possible generalization of the formulation of a gauge theory through an action functional: the integral of a differential form on the algebroid. From this, the standard formulation is derived as a particular case in which the underlying algebroid is the Atiyah Lie algebroid associated to the corresponding principal bundle. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:19:21Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:19:21Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51300 |
dc.identifier.pdf.none.fl_str_mv |
23683.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51300 |
identifier_str_mv |
23683.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
167 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/135de014-711a-4c38-a3e7-19ac64542e8c/download https://repositorio.uniandes.edu.co/bitstreams/6a125c4f-8617-4cca-9c9d-5fca983fafb8/download https://repositorio.uniandes.edu.co/bitstreams/83c93dae-34a7-47dd-9285-fb9f61996881/download |
bitstream.checksum.fl_str_mv |
162e320eaca325464af911e51a40d5b2 16821ae2bbb71d120174ab5f7b9c9339 3105f7fc774d637b6efef1c02f384466 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134032058613760 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cardona Guio, Alexandervirtual::14635-1Puerto Galindo, Sebastián Camilocd352ad9-7461-4950-9626-5e2734afae5e5002021-08-10T18:19:21Z2021-08-10T18:19:21Z2020http://hdl.handle.net/1992/5130023683.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The dynamics of the elementary particles of physics and their interactions are modeled by quantized gauge theories, a type of field theories. These include Quantum Electrodynamics, the Electroweak Interaction, Quantum Chromodynamics and the Standard Model of particle physics, which describe three of the four known fundamental forces and which classify all observed fundamental particles. The mathematical framework usually used for the formulation of gauge theories, prior to quantization, is that of the differential geometry of principal fiber bundles and vector bundles. In this document we study the use of the structure of transitive Lie algebroids as the mathematical framework for a possible generalization of the formulation of a gauge theory through an action functional: the integral of a differential form on the algebroid. From this, the standard formulation is derived as a particular case in which the underlying algebroid is the Atiyah Lie algebroid associated to the corresponding principal bundle.La dinámica de las partículas elementales de la física y sus interacciones son modeladas por teorías gauge cuánticas, un tipo de teorías de campo. éstas incluyen a la Electrodinámica Cuántica, la Interacción Electrodébil, la Cromodinámica Cuántica y al Modelo Estándar de la física de partículas, el cual describe tres de las cuatro fuerzas fundamentales y que clasifica todas las partículas fundamentales observadas. El formalismo matemático usualmente utilizado para la formulación de las teorías gauge, previo a la cuantización, es el de la geometría diferencial de haces principales y haces vectoriales. En este documento estudiamos el uso de la estructura de los algebroides de Lie transitivos como formalismo matemático para una posible generalización de la formulación de una teoría gauge a través de un funcional de acción: la integral de una forma diferencial sobre el algebroide. A partir de esto, la formulación estándar se deriva como el caso particular en que el algebroide subyacente sea el algebroide de Lie de Atiyah asociado al haz principal correspondiente.MatemáticoPregrado167 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasGauge theories on transitive Lie algebroidsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCampos de calibración (Física)Teoría de campos (Física)Algebroides de LieGeometría diferencialMatemáticas201318518Publicationb65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::14635-1b65b9b87-c23b-4157-ac5a-55f34b071dc7virtual::14635-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055190virtual::14635-1TEXT23683.pdf.txt23683.pdf.txtExtracted texttext/plain284640https://repositorio.uniandes.edu.co/bitstreams/135de014-711a-4c38-a3e7-19ac64542e8c/download162e320eaca325464af911e51a40d5b2MD54ORIGINAL23683.pdfapplication/pdf941474https://repositorio.uniandes.edu.co/bitstreams/6a125c4f-8617-4cca-9c9d-5fca983fafb8/download16821ae2bbb71d120174ab5f7b9c9339MD51THUMBNAIL23683.pdf.jpg23683.pdf.jpgIM Thumbnailimage/jpeg5945https://repositorio.uniandes.edu.co/bitstreams/83c93dae-34a7-47dd-9285-fb9f61996881/download3105f7fc774d637b6efef1c02f384466MD551992/51300oai:repositorio.uniandes.edu.co:1992/513002024-03-13 15:15:07.119http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |