Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
The dacitic Cerro Machin Volcano, associated with bicarbonate waters, resides within the Tolima department of the Colombian Republic. At this system, two types of precipitates were identified through the study of three epithermal, and possibly low-sulphidation, localities. The locality of Puente Tie...
- Autores:
-
Horkley Jiménez, Nicholas
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74445
- Acceso en línea:
- https://hdl.handle.net/1992/74445
- Palabra clave:
- Epithermal
Low sulphidation system
Sinter silica
Travertine
Arsenic
Cerro Machín
Geociencias
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_d3a7884f05b00cae926f1af2787e86c3 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74445 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
title |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
spellingShingle |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system Epithermal Low sulphidation system Sinter silica Travertine Arsenic Cerro Machín Geociencias |
title_short |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
title_full |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
title_fullStr |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
title_full_unstemmed |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
title_sort |
Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system |
dc.creator.fl_str_mv |
Horkley Jiménez, Nicholas |
dc.contributor.advisor.none.fl_str_mv |
Rodríguez Vargas, Andrés Ignacio Eickmann, Benjamin |
dc.contributor.author.none.fl_str_mv |
Horkley Jiménez, Nicholas |
dc.contributor.jury.none.fl_str_mv |
Nitescu, Bogdan |
dc.subject.keyword.eng.fl_str_mv |
Epithermal Low sulphidation system Sinter silica Travertine Arsenic |
topic |
Epithermal Low sulphidation system Sinter silica Travertine Arsenic Cerro Machín Geociencias |
dc.subject.keyword.spa.fl_str_mv |
Cerro Machín |
dc.subject.themes.spa.fl_str_mv |
Geociencias |
description |
The dacitic Cerro Machin Volcano, associated with bicarbonate waters, resides within the Tolima department of the Colombian Republic. At this system, two types of precipitates were identified through the study of three epithermal, and possibly low-sulphidation, localities. The locality of Puente Tierra consists predominantly of carbonate deposits with aragonite as the main mineral. In contrast, the locality of Aguas Calientes lacks significant carbonate deposits, but is dominated instead by amorphous silica. The third locality, Estalagmitas, can be characterized by a mix between the two other localities, because it is dominated by amorphous silica and carbonates in the form of calcite. To further understand the genesis of such deposits, the elemental composition of the hot springs has been analysed by inductively coupled mass spectrometry (ICP-MS). Complementary to this, the elemental composition of the hot spring deposits has been analysed by x-ray fluorescence (XRF). Initial results show that the physical parameters and elemental compositions of the hot springs can be used to understand the processes that form silica and travertine deposits. This study further shows that the carbonate deposits at Puente Tierra might also incorporate As through an arsenate replacement of the carbonate ion. Furthermore, by using the Giggenbach diagram, it was possible to estimate the reservoir temperature (160°C – 180°C) of the hydrothermal system at the CMV. This potentially implies cooling of the deep reservoir over a period of 42 years. Finally, the results from this research project could be useful to study the microbial biofilms observed growing on the sides of the precipitates. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-03T19:54:48Z |
dc.date.available.none.fl_str_mv |
2024-07-03T19:54:48Z |
dc.date.issued.none.fl_str_mv |
2024-06-19 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74445 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74445 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Agilent. (2024). ICP-MS Instruments - 7900 ICP-MS. Aguilera Bustos, J. P., Llamosa Ardila, O., & Gutierrez Rueda, J. B. (2019). Colombia — A Geothermal Opportunity. November 2019, November. Alfaro, C., Aguirre, A., & Jaramillo, L. F. (2002). Inventario de fuentes termales en el Parque Nacional Natural de los Nevados. Instituto de Investigación e Información Geocientífica, Minero Ambiental y Nuclear. Alfaro, C., Velandia, F., & Cepeda, H. (2005). Colombian geothermal resources. Proceedings World Geothermal Congress. Beckhoff, B. (Burkhard). (2006). Handbook of practical X-ray fluorescence analysis. Springer. Berger, B. R., Bethke, P. M., & Robertson, J. M. (1985). Geology and Geochemistry of Epithermal Systems (Vol. 2). www.segweb.org Brogi, A., Alçiçek, M. C., Liotta, D., Capezzuoli, E., Zucchi, M., & Matera, P. F. (2021). Step over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101941 Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C., & Westall, F. (2015). Geyserite in hot-spring siliceous sinter: Window on Earth’s hottest terrestrial (paleo)environment and its extreme life. In Earth-Science Reviews (Vol. 148). https://doi.org/10.1016/j.earscirev.2015.05.009 Cortés–Jiménez, G. P. (2020). Holocene Lahar Deposits Associated with the Eruptive Activity of Cerro Machín Volcano, Colombia: Impact on Landscape and Associated Potential Hazards. In The Geology of Colombia, Volume 4 Quaternary (Vol. 4). Effrey, J., Hedenquist, W., Arribas, A., & Onzalez-Urien, E. G. (2000). Chapter 7 Exploration for Epithermal Gold Deposits (Vol. 13). Fernandez-Turiel, J. L., Garcia-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J., & Martinez-Manent, S. (2005). The hot spring and geyser sinters of El Tatio, northern Chile. Sedimentary Geology, 180(3–4), 125–147. https://doi.org/10.1016/j.sedgeo.2005.07.005 Gadd, G. M. (2009). Arsenic Pollution: A Global Synthesis. By P. Ravenscroft, H. Brammer and K. Richards. Chichester, UK: Wiley-Blackwell, (2009), pp. 588. £65.00 (paperback). ISBN 978-1-4051-8602-5. Experimental Agriculture, 45(4). https://doi.org/10.1017/s0014479709990263 Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12), 2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3 Guido, D. M., & Campbell, K. A. (2011). Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research, 203(1–2). https://doi.org/10.1016/j.jvolgeores.2011.04.001 Inguaggiato, S., Londoño, J. M., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. (2017). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011–2013. Chemical Geology, 469, 60–68. https://doi.org/10.1016/j.chemgeo.2016.12.020 Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. In APL Materials (Vol. 1, Issue 1). https://doi.org/10.1063/1.4812323 Jarot, W., Hari, W. U., Muhammad, I. L., Yuliamorsa, S., Anggideliana, S., Juventa, & Yosa, M. (2019). Characteristic of Geothermal System at Semurup Manifestation, Kerinci: Geological and Geochemistry Investigation-Based. IOP Conference Series: Earth and Environmental Science, 391(1). https://doi.org/10.1088/1755-1315/391/1/012051 Malusa, J., Overby, S. T., & Parnell, R. A. (2003). Potential for travertine formation: Fossil Creek, Arizona. Applied Geochemistry, 18(7). https://doi.org/10.1016/S0883-2927(02)00241-X Marghany, M. (2022). Structural geology of mineral, oil and gas explorations. In Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar (pp. 31–79). Elsevier. https://doi.org/10.1016/b978-0-12-821796-2.00003-3 Ortiz, J., García, J. S., Murcia, H., Schonwalder-Ángel, D., & Sánchez-Torres, L. (2023). The relation between monogenetic and polygenetic dacitic volcanism. Case study from Tapias dome (<95 ka) and Cerro Machín volcano (<50 ka), Colombia. Boletin de Geologia, 45(1). https://doi.org/10.18273/REVBOL.V45N1-2023001 Patel, A. M., Nørskov, J. K., Persson, K. A., & Montoya, J. H. (2019). Efficient Pourbaix diagrams of many-element compounds. Physical Chemistry Chemical Physics, 21(45). https://doi.org/10.1039/c9cp04799a Persson, K. A., Waldwick, B., Lazic, P., & Ceder, G. (2012). Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Physical Review B - Condensed Matter and Materials Physics, 85(23). https://doi.org/10.1103/PhysRevB.85.235438 Piedrahita, D. A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., & Gómez-Arango, J. (2018). Stratigraphy of the crater and morphology of Cerro Machín volcano, Colombia. Boletin de Geologia, 40(3), 29–48. https://doi.org/10.18273/revbol.v40n3-2018002 Powell, T., & Cumming, W. (2010). SPREADSHEETS FOR GEOTHERMAL WATER AND GAS GEOCHEMISTRY. In PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering. Romano, P., & Liotta, M. (2020). Using and abusing Giggenbach ternary Na-K-Mg diagram. In Chemical Geology (Vol. 541). Elsevier B.V. https://doi.org/10.1016/j.chemgeo.2020.119577 Roy, P., & Saha, A. (2002). Metabolism and toxicity of arsenic: A human carcinogen Sources of different forms of arsenic: Human exposure and chronic arsenicism Transformation and mobilization of arsenic in the environment. In CURRENT SCIENCE (Vol. 82, Issue RRUFF. (2024). Aragonite R040078. https://rruff.info/aragonite/display=default/R040078 Ruff, S. W., & Farmer, J. D. (2016). Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7. https://doi.org/10.1038/ncomms13554 Sheth, H. C., Torres-Alvarado, I. S., & Verma, S. P. (2002). What is the “calc-alkaline rock series”? International Geology Review, 44(8). https://doi.org/10.2747/0020-6814.44.8.686 Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., & Persson, K. A. (2017). Electrochemical Stability of Metastable Materials. Chemistry of Materials, 29(23). https://doi.org/10.1021/acs.chemmater.7b03980 Williams-Jones, A. E., & Vasyukova, O. V. (2023). Niobium, Critical Metal, and Progeny of the Mantle. Economic Geology, 118(4), 837–855. https://doi.org/10.5382/ECONGEO.4994 Winkel, L. H. E., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., & Charlet, L. (2013). Speciation of arsenic in Greek travertines: Co-precipitation of arsenate with calcite. Geochimica et Cosmochimica Acta, 106, 99–110. https://doi.org/10.1016/j.gca.2012.11.049 Yu, H., Li, J., & Luan, Y. (2018). Meta-analysis of soil mercury accumulation by vegetables. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19519-3 Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. In New Phytologist (Vol. 181, Issue 4). https://doi.org/10.1111/j.1469-8137.2008.02716.x |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
40 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Geociencias |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Geociencias |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/894a2470-0e32-4304-b894-e5123ff9f37f/download https://repositorio.uniandes.edu.co/bitstreams/50ea29fc-09de-48c4-9fbb-2fae3178c7ed/download https://repositorio.uniandes.edu.co/bitstreams/61b7fb8f-b39f-44f1-9578-e578ce646ac1/download https://repositorio.uniandes.edu.co/bitstreams/4fc62e55-a173-4c5e-9cad-836bedbcbd62/download https://repositorio.uniandes.edu.co/bitstreams/e387fff2-f2f7-43f3-886f-d6dfc2b8adba/download https://repositorio.uniandes.edu.co/bitstreams/4a000268-9bb0-4384-a421-ded58bb0c48d/download https://repositorio.uniandes.edu.co/bitstreams/68838e6e-5502-4138-b1a4-62e116451c1b/download https://repositorio.uniandes.edu.co/bitstreams/206d6757-5780-4ded-b174-b85e8048c21f/download |
bitstream.checksum.fl_str_mv |
2669df53965ed432edb4de434b507c2c 6a470278e0692c29d55675294bb75cb6 ae9e573a68e7f92501b6913cc846c39f 4460e5956bc1d1639be9ae6146a50347 2a428aea6be4ee7b92169a2c9d9e27ae 590f0062defe75debb97ce5fa855baea 33d4ae506f148c293f5e14fba034d3be 7bcfff3a262c4023418e2f1b790890cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818111710431543296 |
spelling |
Rodríguez Vargas, Andrés IgnacioEickmann, Benjaminvirtual::18546-1Horkley Jiménez, NicholasNitescu, Bogdanvirtual::18548-12024-07-03T19:54:48Z2024-07-03T19:54:48Z2024-06-19https://hdl.handle.net/1992/74445instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The dacitic Cerro Machin Volcano, associated with bicarbonate waters, resides within the Tolima department of the Colombian Republic. At this system, two types of precipitates were identified through the study of three epithermal, and possibly low-sulphidation, localities. The locality of Puente Tierra consists predominantly of carbonate deposits with aragonite as the main mineral. In contrast, the locality of Aguas Calientes lacks significant carbonate deposits, but is dominated instead by amorphous silica. The third locality, Estalagmitas, can be characterized by a mix between the two other localities, because it is dominated by amorphous silica and carbonates in the form of calcite. To further understand the genesis of such deposits, the elemental composition of the hot springs has been analysed by inductively coupled mass spectrometry (ICP-MS). Complementary to this, the elemental composition of the hot spring deposits has been analysed by x-ray fluorescence (XRF). Initial results show that the physical parameters and elemental compositions of the hot springs can be used to understand the processes that form silica and travertine deposits. This study further shows that the carbonate deposits at Puente Tierra might also incorporate As through an arsenate replacement of the carbonate ion. Furthermore, by using the Giggenbach diagram, it was possible to estimate the reservoir temperature (160°C – 180°C) of the hydrothermal system at the CMV. This potentially implies cooling of the deep reservoir over a period of 42 years. Finally, the results from this research project could be useful to study the microbial biofilms observed growing on the sides of the precipitates.Pregrado40 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic systemTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEpithermalLow sulphidation systemSinter silicaTravertineArsenicCerro MachínGeocienciasAgilent. (2024). ICP-MS Instruments - 7900 ICP-MS.Aguilera Bustos, J. P., Llamosa Ardila, O., & Gutierrez Rueda, J. B. (2019). Colombia — A Geothermal Opportunity. November 2019, November.Alfaro, C., Aguirre, A., & Jaramillo, L. F. (2002). Inventario de fuentes termales en el Parque Nacional Natural de los Nevados. Instituto de Investigación e Información Geocientífica, Minero Ambiental y Nuclear.Alfaro, C., Velandia, F., & Cepeda, H. (2005). Colombian geothermal resources. Proceedings World Geothermal Congress.Beckhoff, B. (Burkhard). (2006). Handbook of practical X-ray fluorescence analysis. Springer.Berger, B. R., Bethke, P. M., & Robertson, J. M. (1985). Geology and Geochemistry of Epithermal Systems (Vol. 2). www.segweb.orgBrogi, A., Alçiçek, M. C., Liotta, D., Capezzuoli, E., Zucchi, M., & Matera, P. F. (2021). Step over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101941Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C., & Westall, F. (2015). Geyserite in hot-spring siliceous sinter: Window on Earth’s hottest terrestrial (paleo)environment and its extreme life. In Earth-Science Reviews (Vol. 148). https://doi.org/10.1016/j.earscirev.2015.05.009Cortés–Jiménez, G. P. (2020). Holocene Lahar Deposits Associated with the Eruptive Activity of Cerro Machín Volcano, Colombia: Impact on Landscape and Associated Potential Hazards. In The Geology of Colombia, Volume 4 Quaternary (Vol. 4).Effrey, J., Hedenquist, W., Arribas, A., & Onzalez-Urien, E. G. (2000). Chapter 7 Exploration for Epithermal Gold Deposits (Vol. 13).Fernandez-Turiel, J. L., Garcia-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J., & Martinez-Manent, S. (2005). The hot spring and geyser sinters of El Tatio, northern Chile. Sedimentary Geology, 180(3–4), 125–147. https://doi.org/10.1016/j.sedgeo.2005.07.005Gadd, G. M. (2009). Arsenic Pollution: A Global Synthesis. By P. Ravenscroft, H. Brammer and K. Richards. Chichester, UK: Wiley-Blackwell, (2009), pp. 588. £65.00 (paperback). ISBN 978-1-4051-8602-5. Experimental Agriculture, 45(4). https://doi.org/10.1017/s0014479709990263Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12), 2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3Guido, D. M., & Campbell, K. A. (2011). Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research, 203(1–2). https://doi.org/10.1016/j.jvolgeores.2011.04.001Inguaggiato, S., Londoño, J. M., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. (2017). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011–2013. Chemical Geology, 469, 60–68. https://doi.org/10.1016/j.chemgeo.2016.12.020Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. In APL Materials (Vol. 1, Issue 1). https://doi.org/10.1063/1.4812323Jarot, W., Hari, W. U., Muhammad, I. L., Yuliamorsa, S., Anggideliana, S., Juventa, & Yosa, M. (2019). Characteristic of Geothermal System at Semurup Manifestation, Kerinci: Geological and Geochemistry Investigation-Based. IOP Conference Series: Earth and Environmental Science, 391(1). https://doi.org/10.1088/1755-1315/391/1/012051Malusa, J., Overby, S. T., & Parnell, R. A. (2003). Potential for travertine formation: Fossil Creek, Arizona. Applied Geochemistry, 18(7). https://doi.org/10.1016/S0883-2927(02)00241-XMarghany, M. (2022). Structural geology of mineral, oil and gas explorations. In Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar (pp. 31–79). Elsevier. https://doi.org/10.1016/b978-0-12-821796-2.00003-3Ortiz, J., García, J. S., Murcia, H., Schonwalder-Ángel, D., & Sánchez-Torres, L. (2023). The relation between monogenetic and polygenetic dacitic volcanism. Case study from Tapias dome (<95 ka) and Cerro Machín volcano (<50 ka), Colombia. Boletin de Geologia, 45(1). https://doi.org/10.18273/REVBOL.V45N1-2023001Patel, A. M., Nørskov, J. K., Persson, K. A., & Montoya, J. H. (2019). Efficient Pourbaix diagrams of many-element compounds. Physical Chemistry Chemical Physics, 21(45). https://doi.org/10.1039/c9cp04799aPersson, K. A., Waldwick, B., Lazic, P., & Ceder, G. (2012). Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Physical Review B - Condensed Matter and Materials Physics, 85(23). https://doi.org/10.1103/PhysRevB.85.235438Piedrahita, D. A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., & Gómez-Arango, J. (2018). Stratigraphy of the crater and morphology of Cerro Machín volcano, Colombia. Boletin de Geologia, 40(3), 29–48. https://doi.org/10.18273/revbol.v40n3-2018002Powell, T., & Cumming, W. (2010). SPREADSHEETS FOR GEOTHERMAL WATER AND GAS GEOCHEMISTRY. In PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering.Romano, P., & Liotta, M. (2020). Using and abusing Giggenbach ternary Na-K-Mg diagram. In Chemical Geology (Vol. 541). Elsevier B.V. https://doi.org/10.1016/j.chemgeo.2020.119577Roy, P., & Saha, A. (2002). Metabolism and toxicity of arsenic: A human carcinogen Sources of different forms of arsenic: Human exposure and chronic arsenicism Transformation and mobilization of arsenic in the environment. In CURRENT SCIENCE (Vol. 82, IssueRRUFF. (2024). Aragonite R040078. https://rruff.info/aragonite/display=default/R040078Ruff, S. W., & Farmer, J. D. (2016). Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7. https://doi.org/10.1038/ncomms13554Sheth, H. C., Torres-Alvarado, I. S., & Verma, S. P. (2002). What is the “calc-alkaline rock series”? International Geology Review, 44(8). https://doi.org/10.2747/0020-6814.44.8.686Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., & Persson, K. A. (2017). Electrochemical Stability of Metastable Materials. Chemistry of Materials, 29(23). https://doi.org/10.1021/acs.chemmater.7b03980Williams-Jones, A. E., & Vasyukova, O. V. (2023). Niobium, Critical Metal, and Progeny of the Mantle. Economic Geology, 118(4), 837–855. https://doi.org/10.5382/ECONGEO.4994Winkel, L. H. E., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., & Charlet, L. (2013). Speciation of arsenic in Greek travertines: Co-precipitation of arsenate with calcite. Geochimica et Cosmochimica Acta, 106, 99–110. https://doi.org/10.1016/j.gca.2012.11.049Yu, H., Li, J., & Luan, Y. (2018). Meta-analysis of soil mercury accumulation by vegetables. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19519-3Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. In New Phytologist (Vol. 181, Issue 4). https://doi.org/10.1111/j.1469-8137.2008.02716.x202021304Publication0000-0002-6535-3750virtual::18546-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::18546-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::18546-1120615dc-2a5a-4c66-9a42-8e426e8a66eevirtual::18548-1120615dc-2a5a-4c66-9a42-8e426e8a66eevirtual::18548-1ORIGINALGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdfGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdfapplication/pdf2055461https://repositorio.uniandes.edu.co/bitstreams/894a2470-0e32-4304-b894-e5123ff9f37f/download2669df53965ed432edb4de434b507c2cMD51autorizacion tesis_NicholasHorkley _AR.pdfautorizacion tesis_NicholasHorkley _AR.pdfHIDEapplication/pdf185444https://repositorio.uniandes.edu.co/bitstreams/50ea29fc-09de-48c4-9fbb-2fae3178c7ed/download6a470278e0692c29d55675294bb75cb6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/61b7fb8f-b39f-44f1-9578-e578ce646ac1/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/4fc62e55-a173-4c5e-9cad-836bedbcbd62/download4460e5956bc1d1639be9ae6146a50347MD54TEXTGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.txtGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.txtExtracted texttext/plain66680https://repositorio.uniandes.edu.co/bitstreams/e387fff2-f2f7-43f3-886f-d6dfc2b8adba/download2a428aea6be4ee7b92169a2c9d9e27aeMD55autorizacion tesis_NicholasHorkley _AR.pdf.txtautorizacion tesis_NicholasHorkley _AR.pdf.txtExtracted texttext/plain1625https://repositorio.uniandes.edu.co/bitstreams/4a000268-9bb0-4384-a421-ded58bb0c48d/download590f0062defe75debb97ce5fa855baeaMD57THUMBNAILGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.jpgGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.jpgGenerated Thumbnailimage/jpeg7242https://repositorio.uniandes.edu.co/bitstreams/68838e6e-5502-4138-b1a4-62e116451c1b/download33d4ae506f148c293f5e14fba034d3beMD56autorizacion tesis_NicholasHorkley _AR.pdf.jpgautorizacion tesis_NicholasHorkley _AR.pdf.jpgGenerated Thumbnailimage/jpeg9563https://repositorio.uniandes.edu.co/bitstreams/206d6757-5780-4ded-b174-b85e8048c21f/download7bcfff3a262c4023418e2f1b790890cbMD581992/74445oai:repositorio.uniandes.edu.co:1992/744452024-07-04 03:02:00.452http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |