Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system

The dacitic Cerro Machin Volcano, associated with bicarbonate waters, resides within the Tolima department of the Colombian Republic. At this system, two types of precipitates were identified through the study of three epithermal, and possibly low-sulphidation, localities. The locality of Puente Tie...

Full description

Autores:
Horkley Jiménez, Nicholas
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74445
Acceso en línea:
https://hdl.handle.net/1992/74445
Palabra clave:
Epithermal
Low sulphidation system
Sinter silica
Travertine
Arsenic
Cerro Machín
Geociencias
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_d3a7884f05b00cae926f1af2787e86c3
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74445
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
title Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
spellingShingle Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
Epithermal
Low sulphidation system
Sinter silica
Travertine
Arsenic
Cerro Machín
Geociencias
title_short Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
title_full Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
title_fullStr Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
title_full_unstemmed Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
title_sort Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system
dc.creator.fl_str_mv Horkley Jiménez, Nicholas
dc.contributor.advisor.none.fl_str_mv Rodríguez Vargas, Andrés Ignacio
Eickmann, Benjamin
dc.contributor.author.none.fl_str_mv Horkley Jiménez, Nicholas
dc.contributor.jury.none.fl_str_mv Nitescu, Bogdan
dc.subject.keyword.eng.fl_str_mv Epithermal
Low sulphidation system
Sinter silica
Travertine
Arsenic
topic Epithermal
Low sulphidation system
Sinter silica
Travertine
Arsenic
Cerro Machín
Geociencias
dc.subject.keyword.spa.fl_str_mv Cerro Machín
dc.subject.themes.spa.fl_str_mv Geociencias
description The dacitic Cerro Machin Volcano, associated with bicarbonate waters, resides within the Tolima department of the Colombian Republic. At this system, two types of precipitates were identified through the study of three epithermal, and possibly low-sulphidation, localities. The locality of Puente Tierra consists predominantly of carbonate deposits with aragonite as the main mineral. In contrast, the locality of Aguas Calientes lacks significant carbonate deposits, but is dominated instead by amorphous silica. The third locality, Estalagmitas, can be characterized by a mix between the two other localities, because it is dominated by amorphous silica and carbonates in the form of calcite. To further understand the genesis of such deposits, the elemental composition of the hot springs has been analysed by inductively coupled mass spectrometry (ICP-MS). Complementary to this, the elemental composition of the hot spring deposits has been analysed by x-ray fluorescence (XRF). Initial results show that the physical parameters and elemental compositions of the hot springs can be used to understand the processes that form silica and travertine deposits. This study further shows that the carbonate deposits at Puente Tierra might also incorporate As through an arsenate replacement of the carbonate ion. Furthermore, by using the Giggenbach diagram, it was possible to estimate the reservoir temperature (160°C – 180°C) of the hydrothermal system at the CMV. This potentially implies cooling of the deep reservoir over a period of 42 years. Finally, the results from this research project could be useful to study the microbial biofilms observed growing on the sides of the precipitates.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-03T19:54:48Z
dc.date.available.none.fl_str_mv 2024-07-03T19:54:48Z
dc.date.issued.none.fl_str_mv 2024-06-19
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74445
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74445
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Agilent. (2024). ICP-MS Instruments - 7900 ICP-MS.
Aguilera Bustos, J. P., Llamosa Ardila, O., & Gutierrez Rueda, J. B. (2019). Colombia — A Geothermal Opportunity. November 2019, November.
Alfaro, C., Aguirre, A., & Jaramillo, L. F. (2002). Inventario de fuentes termales en el Parque Nacional Natural de los Nevados. Instituto de Investigación e Información Geocientífica, Minero Ambiental y Nuclear.
Alfaro, C., Velandia, F., & Cepeda, H. (2005). Colombian geothermal resources. Proceedings World Geothermal Congress.
Beckhoff, B. (Burkhard). (2006). Handbook of practical X-ray fluorescence analysis. Springer.
Berger, B. R., Bethke, P. M., & Robertson, J. M. (1985). Geology and Geochemistry of Epithermal Systems (Vol. 2). www.segweb.org
Brogi, A., Alçiçek, M. C., Liotta, D., Capezzuoli, E., Zucchi, M., & Matera, P. F. (2021). Step over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101941
Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C., & Westall, F. (2015). Geyserite in hot-spring siliceous sinter: Window on Earth’s hottest terrestrial (paleo)environment and its extreme life. In Earth-Science Reviews (Vol. 148). https://doi.org/10.1016/j.earscirev.2015.05.009
Cortés–Jiménez, G. P. (2020). Holocene Lahar Deposits Associated with the Eruptive Activity of Cerro Machín Volcano, Colombia: Impact on Landscape and Associated Potential Hazards. In The Geology of Colombia, Volume 4 Quaternary (Vol. 4).
Effrey, J., Hedenquist, W., Arribas, A., & Onzalez-Urien, E. G. (2000). Chapter 7 Exploration for Epithermal Gold Deposits (Vol. 13).
Fernandez-Turiel, J. L., Garcia-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J., & Martinez-Manent, S. (2005). The hot spring and geyser sinters of El Tatio, northern Chile. Sedimentary Geology, 180(3–4), 125–147. https://doi.org/10.1016/j.sedgeo.2005.07.005
Gadd, G. M. (2009). Arsenic Pollution: A Global Synthesis. By P. Ravenscroft, H. Brammer and K. Richards. Chichester, UK: Wiley-Blackwell, (2009), pp. 588. £65.00 (paperback). ISBN 978-1-4051-8602-5. Experimental Agriculture, 45(4). https://doi.org/10.1017/s0014479709990263
Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12), 2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3
Guido, D. M., & Campbell, K. A. (2011). Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research, 203(1–2). https://doi.org/10.1016/j.jvolgeores.2011.04.001
Inguaggiato, S., Londoño, J. M., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. (2017). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011–2013. Chemical Geology, 469, 60–68. https://doi.org/10.1016/j.chemgeo.2016.12.020
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. In APL Materials (Vol. 1, Issue 1). https://doi.org/10.1063/1.4812323
Jarot, W., Hari, W. U., Muhammad, I. L., Yuliamorsa, S., Anggideliana, S., Juventa, & Yosa, M. (2019). Characteristic of Geothermal System at Semurup Manifestation, Kerinci: Geological and Geochemistry Investigation-Based. IOP Conference Series: Earth and Environmental Science, 391(1). https://doi.org/10.1088/1755-1315/391/1/012051
Malusa, J., Overby, S. T., & Parnell, R. A. (2003). Potential for travertine formation: Fossil Creek, Arizona. Applied Geochemistry, 18(7). https://doi.org/10.1016/S0883-2927(02)00241-X
Marghany, M. (2022). Structural geology of mineral, oil and gas explorations. In Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar (pp. 31–79). Elsevier. https://doi.org/10.1016/b978-0-12-821796-2.00003-3
Ortiz, J., García, J. S., Murcia, H., Schonwalder-Ángel, D., & Sánchez-Torres, L. (2023). The relation between monogenetic and polygenetic dacitic volcanism. Case study from Tapias dome (<95 ka) and Cerro Machín volcano (<50 ka), Colombia. Boletin de Geologia, 45(1). https://doi.org/10.18273/REVBOL.V45N1-2023001
Patel, A. M., Nørskov, J. K., Persson, K. A., & Montoya, J. H. (2019). Efficient Pourbaix diagrams of many-element compounds. Physical Chemistry Chemical Physics, 21(45). https://doi.org/10.1039/c9cp04799a
Persson, K. A., Waldwick, B., Lazic, P., & Ceder, G. (2012). Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Physical Review B - Condensed Matter and Materials Physics, 85(23). https://doi.org/10.1103/PhysRevB.85.235438
Piedrahita, D. A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., & Gómez-Arango, J. (2018). Stratigraphy of the crater and morphology of Cerro Machín volcano, Colombia. Boletin de Geologia, 40(3), 29–48. https://doi.org/10.18273/revbol.v40n3-2018002
Powell, T., & Cumming, W. (2010). SPREADSHEETS FOR GEOTHERMAL WATER AND GAS GEOCHEMISTRY. In PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering.
Romano, P., & Liotta, M. (2020). Using and abusing Giggenbach ternary Na-K-Mg diagram. In Chemical Geology (Vol. 541). Elsevier B.V. https://doi.org/10.1016/j.chemgeo.2020.119577
Roy, P., & Saha, A. (2002). Metabolism and toxicity of arsenic: A human carcinogen Sources of different forms of arsenic: Human exposure and chronic arsenicism Transformation and mobilization of arsenic in the environment. In CURRENT SCIENCE (Vol. 82, Issue
RRUFF. (2024). Aragonite R040078. https://rruff.info/aragonite/display=default/R040078
Ruff, S. W., & Farmer, J. D. (2016). Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7. https://doi.org/10.1038/ncomms13554
Sheth, H. C., Torres-Alvarado, I. S., & Verma, S. P. (2002). What is the “calc-alkaline rock series”? International Geology Review, 44(8). https://doi.org/10.2747/0020-6814.44.8.686
Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., & Persson, K. A. (2017). Electrochemical Stability of Metastable Materials. Chemistry of Materials, 29(23). https://doi.org/10.1021/acs.chemmater.7b03980
Williams-Jones, A. E., & Vasyukova, O. V. (2023). Niobium, Critical Metal, and Progeny of the Mantle. Economic Geology, 118(4), 837–855. https://doi.org/10.5382/ECONGEO.4994
Winkel, L. H. E., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., & Charlet, L. (2013). Speciation of arsenic in Greek travertines: Co-precipitation of arsenate with calcite. Geochimica et Cosmochimica Acta, 106, 99–110. https://doi.org/10.1016/j.gca.2012.11.049
Yu, H., Li, J., & Luan, Y. (2018). Meta-analysis of soil mercury accumulation by vegetables. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19519-3
Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. In New Phytologist (Vol. 181, Issue 4). https://doi.org/10.1111/j.1469-8137.2008.02716.x
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 40 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Geociencias
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Geociencias
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/894a2470-0e32-4304-b894-e5123ff9f37f/download
https://repositorio.uniandes.edu.co/bitstreams/50ea29fc-09de-48c4-9fbb-2fae3178c7ed/download
https://repositorio.uniandes.edu.co/bitstreams/61b7fb8f-b39f-44f1-9578-e578ce646ac1/download
https://repositorio.uniandes.edu.co/bitstreams/4fc62e55-a173-4c5e-9cad-836bedbcbd62/download
https://repositorio.uniandes.edu.co/bitstreams/e387fff2-f2f7-43f3-886f-d6dfc2b8adba/download
https://repositorio.uniandes.edu.co/bitstreams/4a000268-9bb0-4384-a421-ded58bb0c48d/download
https://repositorio.uniandes.edu.co/bitstreams/68838e6e-5502-4138-b1a4-62e116451c1b/download
https://repositorio.uniandes.edu.co/bitstreams/206d6757-5780-4ded-b174-b85e8048c21f/download
bitstream.checksum.fl_str_mv 2669df53965ed432edb4de434b507c2c
6a470278e0692c29d55675294bb75cb6
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
2a428aea6be4ee7b92169a2c9d9e27ae
590f0062defe75debb97ce5fa855baea
33d4ae506f148c293f5e14fba034d3be
7bcfff3a262c4023418e2f1b790890cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390184875589632
spelling Rodríguez Vargas, Andrés IgnacioEickmann, Benjaminvirtual::18546-1Horkley Jiménez, NicholasNitescu, Bogdanvirtual::18548-12024-07-03T19:54:48Z2024-07-03T19:54:48Z2024-06-19https://hdl.handle.net/1992/74445instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The dacitic Cerro Machin Volcano, associated with bicarbonate waters, resides within the Tolima department of the Colombian Republic. At this system, two types of precipitates were identified through the study of three epithermal, and possibly low-sulphidation, localities. The locality of Puente Tierra consists predominantly of carbonate deposits with aragonite as the main mineral. In contrast, the locality of Aguas Calientes lacks significant carbonate deposits, but is dominated instead by amorphous silica. The third locality, Estalagmitas, can be characterized by a mix between the two other localities, because it is dominated by amorphous silica and carbonates in the form of calcite. To further understand the genesis of such deposits, the elemental composition of the hot springs has been analysed by inductively coupled mass spectrometry (ICP-MS). Complementary to this, the elemental composition of the hot spring deposits has been analysed by x-ray fluorescence (XRF). Initial results show that the physical parameters and elemental compositions of the hot springs can be used to understand the processes that form silica and travertine deposits. This study further shows that the carbonate deposits at Puente Tierra might also incorporate As through an arsenate replacement of the carbonate ion. Furthermore, by using the Giggenbach diagram, it was possible to estimate the reservoir temperature (160°C – 180°C) of the hydrothermal system at the CMV. This potentially implies cooling of the deep reservoir over a period of 42 years. Finally, the results from this research project could be useful to study the microbial biofilms observed growing on the sides of the precipitates.Pregrado40 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic systemTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPEpithermalLow sulphidation systemSinter silicaTravertineArsenicCerro MachínGeocienciasAgilent. (2024). ICP-MS Instruments - 7900 ICP-MS.Aguilera Bustos, J. P., Llamosa Ardila, O., & Gutierrez Rueda, J. B. (2019). Colombia — A Geothermal Opportunity. November 2019, November.Alfaro, C., Aguirre, A., & Jaramillo, L. F. (2002). Inventario de fuentes termales en el Parque Nacional Natural de los Nevados. Instituto de Investigación e Información Geocientífica, Minero Ambiental y Nuclear.Alfaro, C., Velandia, F., & Cepeda, H. (2005). Colombian geothermal resources. Proceedings World Geothermal Congress.Beckhoff, B. (Burkhard). (2006). Handbook of practical X-ray fluorescence analysis. Springer.Berger, B. R., Bethke, P. M., & Robertson, J. M. (1985). Geology and Geochemistry of Epithermal Systems (Vol. 2). www.segweb.orgBrogi, A., Alçiçek, M. C., Liotta, D., Capezzuoli, E., Zucchi, M., & Matera, P. F. (2021). Step over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101941Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C., & Westall, F. (2015). Geyserite in hot-spring siliceous sinter: Window on Earth’s hottest terrestrial (paleo)environment and its extreme life. In Earth-Science Reviews (Vol. 148). https://doi.org/10.1016/j.earscirev.2015.05.009Cortés–Jiménez, G. P. (2020). Holocene Lahar Deposits Associated with the Eruptive Activity of Cerro Machín Volcano, Colombia: Impact on Landscape and Associated Potential Hazards. In The Geology of Colombia, Volume 4 Quaternary (Vol. 4).Effrey, J., Hedenquist, W., Arribas, A., & Onzalez-Urien, E. G. (2000). Chapter 7 Exploration for Epithermal Gold Deposits (Vol. 13).Fernandez-Turiel, J. L., Garcia-Valles, M., Gimeno-Torrente, D., Saavedra-Alonso, J., & Martinez-Manent, S. (2005). The hot spring and geyser sinters of El Tatio, northern Chile. Sedimentary Geology, 180(3–4), 125–147. https://doi.org/10.1016/j.sedgeo.2005.07.005Gadd, G. M. (2009). Arsenic Pollution: A Global Synthesis. By P. Ravenscroft, H. Brammer and K. Richards. Chichester, UK: Wiley-Blackwell, (2009), pp. 588. £65.00 (paperback). ISBN 978-1-4051-8602-5. Experimental Agriculture, 45(4). https://doi.org/10.1017/s0014479709990263Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12), 2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3Guido, D. M., & Campbell, K. A. (2011). Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and controls on regional distribution. Journal of Volcanology and Geothermal Research, 203(1–2). https://doi.org/10.1016/j.jvolgeores.2011.04.001Inguaggiato, S., Londoño, J. M., Chacón, Z., Liotta, M., Gil, E., & Alzate, D. (2017). The hydrothermal system of Cerro Machín volcano (Colombia): New magmatic signals observed during 2011–2013. Chemical Geology, 469, 60–68. https://doi.org/10.1016/j.chemgeo.2016.12.020Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. In APL Materials (Vol. 1, Issue 1). https://doi.org/10.1063/1.4812323Jarot, W., Hari, W. U., Muhammad, I. L., Yuliamorsa, S., Anggideliana, S., Juventa, & Yosa, M. (2019). Characteristic of Geothermal System at Semurup Manifestation, Kerinci: Geological and Geochemistry Investigation-Based. IOP Conference Series: Earth and Environmental Science, 391(1). https://doi.org/10.1088/1755-1315/391/1/012051Malusa, J., Overby, S. T., & Parnell, R. A. (2003). Potential for travertine formation: Fossil Creek, Arizona. Applied Geochemistry, 18(7). https://doi.org/10.1016/S0883-2927(02)00241-XMarghany, M. (2022). Structural geology of mineral, oil and gas explorations. In Advanced Algorithms for Mineral and Hydrocarbon Exploration Using Synthetic Aperture Radar (pp. 31–79). Elsevier. https://doi.org/10.1016/b978-0-12-821796-2.00003-3Ortiz, J., García, J. S., Murcia, H., Schonwalder-Ángel, D., & Sánchez-Torres, L. (2023). The relation between monogenetic and polygenetic dacitic volcanism. Case study from Tapias dome (<95 ka) and Cerro Machín volcano (<50 ka), Colombia. Boletin de Geologia, 45(1). https://doi.org/10.18273/REVBOL.V45N1-2023001Patel, A. M., Nørskov, J. K., Persson, K. A., & Montoya, J. H. (2019). Efficient Pourbaix diagrams of many-element compounds. Physical Chemistry Chemical Physics, 21(45). https://doi.org/10.1039/c9cp04799aPersson, K. A., Waldwick, B., Lazic, P., & Ceder, G. (2012). Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Physical Review B - Condensed Matter and Materials Physics, 85(23). https://doi.org/10.1103/PhysRevB.85.235438Piedrahita, D. A., Aguilar-Casallas, C., Arango-Palacio, E., Murcia, H., & Gómez-Arango, J. (2018). Stratigraphy of the crater and morphology of Cerro Machín volcano, Colombia. Boletin de Geologia, 40(3), 29–48. https://doi.org/10.18273/revbol.v40n3-2018002Powell, T., & Cumming, W. (2010). SPREADSHEETS FOR GEOTHERMAL WATER AND GAS GEOCHEMISTRY. In PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering.Romano, P., & Liotta, M. (2020). Using and abusing Giggenbach ternary Na-K-Mg diagram. In Chemical Geology (Vol. 541). Elsevier B.V. https://doi.org/10.1016/j.chemgeo.2020.119577Roy, P., & Saha, A. (2002). Metabolism and toxicity of arsenic: A human carcinogen Sources of different forms of arsenic: Human exposure and chronic arsenicism Transformation and mobilization of arsenic in the environment. In CURRENT SCIENCE (Vol. 82, IssueRRUFF. (2024). Aragonite R040078. https://rruff.info/aragonite/display=default/R040078Ruff, S. W., & Farmer, J. D. (2016). Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nature Communications, 7. https://doi.org/10.1038/ncomms13554Sheth, H. C., Torres-Alvarado, I. S., & Verma, S. P. (2002). What is the “calc-alkaline rock series”? International Geology Review, 44(8). https://doi.org/10.2747/0020-6814.44.8.686Singh, A. K., Zhou, L., Shinde, A., Suram, S. K., Montoya, J. H., Winston, D., Gregoire, J. M., & Persson, K. A. (2017). Electrochemical Stability of Metastable Materials. Chemistry of Materials, 29(23). https://doi.org/10.1021/acs.chemmater.7b03980Williams-Jones, A. E., & Vasyukova, O. V. (2023). Niobium, Critical Metal, and Progeny of the Mantle. Economic Geology, 118(4), 837–855. https://doi.org/10.5382/ECONGEO.4994Winkel, L. H. E., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., & Charlet, L. (2013). Speciation of arsenic in Greek travertines: Co-precipitation of arsenate with calcite. Geochimica et Cosmochimica Acta, 106, 99–110. https://doi.org/10.1016/j.gca.2012.11.049Yu, H., Li, J., & Luan, Y. (2018). Meta-analysis of soil mercury accumulation by vegetables. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19519-3Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. In New Phytologist (Vol. 181, Issue 4). https://doi.org/10.1111/j.1469-8137.2008.02716.x202021304Publication0000-0002-6535-3750virtual::18546-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::18546-1cf07a914-b4d9-4b5a-95f7-940947126780virtual::18546-1120615dc-2a5a-4c66-9a42-8e426e8a66eevirtual::18548-1120615dc-2a5a-4c66-9a42-8e426e8a66eevirtual::18548-1ORIGINALGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdfGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdfapplication/pdf2055461https://repositorio.uniandes.edu.co/bitstreams/894a2470-0e32-4304-b894-e5123ff9f37f/download2669df53965ed432edb4de434b507c2cMD51autorizacion tesis_NicholasHorkley _AR.pdfautorizacion tesis_NicholasHorkley _AR.pdfHIDEapplication/pdf185444https://repositorio.uniandes.edu.co/bitstreams/50ea29fc-09de-48c4-9fbb-2fae3178c7ed/download6a470278e0692c29d55675294bb75cb6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/61b7fb8f-b39f-44f1-9578-e578ce646ac1/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/4fc62e55-a173-4c5e-9cad-836bedbcbd62/download4460e5956bc1d1639be9ae6146a50347MD54TEXTGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.txtGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.txtExtracted texttext/plain66680https://repositorio.uniandes.edu.co/bitstreams/e387fff2-f2f7-43f3-886f-d6dfc2b8adba/download2a428aea6be4ee7b92169a2c9d9e27aeMD55autorizacion tesis_NicholasHorkley _AR.pdf.txtautorizacion tesis_NicholasHorkley _AR.pdf.txtExtracted texttext/plain1625https://repositorio.uniandes.edu.co/bitstreams/4a000268-9bb0-4384-a421-ded58bb0c48d/download590f0062defe75debb97ce5fa855baeaMD57THUMBNAILGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.jpgGeochemical analysis of silica and travertine hydrothermal precipitates at the Cerro Machín volcanic system.pdf.jpgGenerated Thumbnailimage/jpeg7242https://repositorio.uniandes.edu.co/bitstreams/68838e6e-5502-4138-b1a4-62e116451c1b/download33d4ae506f148c293f5e14fba034d3beMD56autorizacion tesis_NicholasHorkley _AR.pdf.jpgautorizacion tesis_NicholasHorkley _AR.pdf.jpgGenerated Thumbnailimage/jpeg9563https://repositorio.uniandes.edu.co/bitstreams/206d6757-5780-4ded-b174-b85e8048c21f/download7bcfff3a262c4023418e2f1b790890cbMD581992/74445oai:repositorio.uniandes.edu.co:1992/744452024-07-04 03:02:00.452http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K