Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)

Petrographic, physicochemical, and geochemical analyses of samples from the Dresser, Strelley Pool and Tumbiana Formations revealed insight and partial evidence on some of the earliest microbial organisms that inhabited Earth during the Paleo- (3.49 and 3.42 to 3.37Ga) and Neoarchean (2.71Ga), that...

Full description

Autores:
Pineda Herrera, Juan Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68013
Acceso en línea:
http://hdl.handle.net/1992/68013
Palabra clave:
Stromatolites
Geochemistry
Biogenicity
Archean
Raman spectroscopy
Geociencias
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_d0f15dbd404d082d91d0c6752d81ed2a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68013
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
title Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
spellingShingle Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
Stromatolites
Geochemistry
Biogenicity
Archean
Raman spectroscopy
Geociencias
title_short Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
title_full Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
title_fullStr Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
title_full_unstemmed Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
title_sort Compositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)
dc.creator.fl_str_mv Pineda Herrera, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Eickmann, Benjamin
dc.contributor.author.none.fl_str_mv Pineda Herrera, Juan Camilo
dc.contributor.jury.none.fl_str_mv Murad Rodríguez, César Augusto
dc.subject.keyword.none.fl_str_mv Stromatolites
Geochemistry
Biogenicity
Archean
Raman spectroscopy
topic Stromatolites
Geochemistry
Biogenicity
Archean
Raman spectroscopy
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description Petrographic, physicochemical, and geochemical analyses of samples from the Dresser, Strelley Pool and Tumbiana Formations revealed insight and partial evidence on some of the earliest microbial organisms that inhabited Earth during the Paleo- (3.49 and 3.42 to 3.37Ga) and Neoarchean (2.71Ga), that were presumably sulfate-reducing bacteria. A better understanding on this topic helps constraining the search for the environments where life might exist, both in and outside our planet. This investigation aimed to answer questions on the extent to which and how biogenicity criteria can be useful while working with ancient rocks conditioned by secondary post-depositional processes. Limited samples on the complex Strelley Pool Formation, however, prevented a full understanding on the role of microbial life and their interaction with different elements' biogeochemical processes and cycles. Using non-destructive methods such as X-Ray Fluorescence and Raman Spectroscopy, it was possible to obtain and identify a few characteristics for rocks associated with sulfate reducing bacteria in shallow marine and lacustrine settings, such as the circulation of elements like Mn and Zn, and the spectral differences between biogenic and abiogenic pyrite.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-29T16:51:01Z
dc.date.available.none.fl_str_mv 2023-06-29T16:51:01Z
dc.date.issued.none.fl_str_mv 2023-05-28
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68013
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68013
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv Aitken, J. D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research, 37(4), 1163-1178.
Allwood, A. C., Grotzinger, J. P., Knoll, A. H., Burch, I. W., Anderson, M. S., Coleman, M. L., & Kanik, I. (2009). Controls on development and diversity of Early Archean stromatolites. Proceedings of the National Academy of Sciences, 106(24), 9548-9555.
Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F., & Thorne, A. M. (1991). The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U-Pb results. Australian Journal of Earth Sciences, 38(3), 261-281.
Awramik, S., & Margulis, L. (1974). Definition of stromatolite: Stromatolite Newsletter (Unpublished manuscript), v. 2.
Awramik, S. M., & Buchheim, H. P. (2001). Late Archaean lacustrine carbonates, stromatolites, and transgression. In Proceedings of the Fourth International Archaean Symposium Abstract (pp. 222-223).
Berner RA (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1-23.
Bertrand-Sarfati, J., Freytet, P., & Plaziat, J. C. (1994). Microstructures in Tertiary Nonmarine Stromatolites (France). Comparison with Proterozoic. Phanerozoic Stromatolites II, 1908, 155-191.
Blake, T. S. (1993). Late Archaean crustal extension, sedimentary basin formation, flood basalt volcanism and continental rifting: the Nullagine and Mount Jope Supersequences, Western Australia. Precambrian Research, 60(1-4), 185-241.
Blake, T. S. (2001). Cyclic continental mafic tuff and flood basalt volcanism in the Late Archaean Nullagine and Mount Jope supersequences in the eastern Pilbara, Western Australia. Precambrian Research, 107(3-4), 139-177.
Blake, T. S., & Barley, M. E. (1992). Tectonic evolution of the Late Archaean to Early Proterozoic Mount Bruce Megasequence Set, Western Australia. Tectonics, 11(6), 1415-1425.
Blewett, R. S., Shevchenko, S., & Bell, B. (2004). The North Pole Dome: A non diapiric dome in the Archaean Pilbara Craton, Western Australia. Precambrian Research, 133(1-2), 105-120.
Boyko, V., Avetisyan, K., Findlay, A., Guo, Q., Yang, X., Pellerin, A., & Kamyshny Jr, A. (2021). Biogeochemical cycling of sulfur, manganese and iron in ferruginous limnic analog of Archean ocean. Geochimica et Cosmochimica Acta, 296, 56-74.
Bucher WH (1913) Uber einige Fossilien und über Stromatolithbildung im Tertiär der bayerischen Rheinpfalz. München Geognostische Jahreshefte, Jahrgang 26: 76-102
Buick, R. (1992). The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 255(5040), 74-77.
Buick, R., Dunlop, J. S., & Groves, D. I. (1981). Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an early archaean chert-barite unit from north pole, Western Australia. Alcheringa, 5(3), 161-181.
Buick, R., & Dunlop, J. S. R. (1990). Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology, 37(2), 247-277.
Burne, R. V., & Moore, L. S. (1987). Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 241-254.
Busigny, V., Planavsky, N. J., Jézéquel, D., Crowe, S., Louvat, P., Moureau, J., ... & Lyons, T. W. (2014). Iron isotopes in an Archean ocean analogue. Geochimica et Cosmochimica Acta, 133, 443-462.
Crowe, S. A., Jones, C., Katsev, S., Magen, C., O'Neill, A. H., Sturm, A., ... & Fowle, D. A. (2008). Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Sciences, 105(41), 15938-15943.
De Faria, D. L., Venâncio Silva, S., & De Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman spectroscopy, 28(11), 873-878.
Dodd, M. S., Wang, H., Li, C., Towner, M., Thomson, A. R., Slack, J. F., ... & Papineau, D. (2022). Abiotic anoxic iron oxidation, formation of Archean banded iron formations, and the oxidation of early Earth. Earth and Planetary Science Letters, 584, 117469.
Duda, J. P., Van Kranendonk, M. J., Thiel, V., Ionescu, D., Strauss, H., Schäfer, N., & Reitner, J. (2016). A rare glimpse of paleoarchean life: Geobiology of an exceptionally preserved microbial mat facies from the 3.4 ga strelley pool formation, Western Australia. PLoS ONE, 11(1), 1-19.
Fredsøe, J., Andersen, K. H., & Sumer, B. M. (1999). Wave plus current over a ripple-covered bed. Coastal Engineering, 38(4), 177-221.
Gerdes, G. (2007). Structures left by modern microbial mats in their host sediments. In Atlas of microbial mat features preserved within the siliciclastic rock record (Vol. 2, pp. 5-38). Amsterdam: Elsevier.
Green, M. G., Sylvester, P. J., & Buick, R. (2000). Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics, 322(1-2), 69-88.
Grotzinger, J. P., & Reed, J. F. (1983). Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada. Geology, 11(12), 710-713.
Grotzinger, J. P., & James, N. P. (2000). Precambrian Carbonates: Evolution of Understanding. In J. P. Grotzinger & N. P. James (Eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (Vol. 67, p. 0). SEPM Society for Sedimentary Geology.
Grotzinger, J. R., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313-358.
Groves, D. I., Dunlop, J. S. R., & Buick, R. (1981). An Early Habitat of Life. Scientific American, 245(4), 64-73.
Gumsley, A. P., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E. R., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811-1816.
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P., & Canfield, D. E. (2002). Calibration of sulfate levels in the Archean ocean. Science, 298(5602), 2372-2374.
Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177(3), 941-948.
Hickman, A. H. (2008). Regional review of the 3426-3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. West Australia Geolog Surv Rec, 2008, 15.
Hoffman PF (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (lower Proterozoic), Northwest Territories, Canada. In: Ginsburg RN (ed) Tidal Deposits. Springer, Berlin, pp 257-265
Hofmann, H. J. (1969). Attributes of stromatolites. Geological Survey Canada Paper 69-39. Geological Survey of Canada, Dept. of Energy, Mines and Resources, Ottawa.
Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 903-915.
Jackson MJ (1989) Lower Proterozoic Cowles Lake foredeep reef, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 64-71
Kalkowsky, E. (1908). Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Der Deutschen Geologischen Gesellschaft, 60, 68-125. http://www.schweizerbart.de//papers/zdgg_alt/detail/60/66518/Oolith_und_Stromatolith_im_norddeutschen_Buntsandstein
Krishnan, R. S. (1945). Raman spectrum of quartz. Nature, 155(3937), 452-452.
Krishnamurti, D. (1958, May). The Raman spectrum of quartz and its interpretation. In Proceedings of the Indian Academy of Sciences-Section A (Vol. 47, No. 5, pp. 276-291). New Delhi: Springer India.
Komar, V. A., Raaben, M. E., & Semikhatov, M. A. (1965). Conophytons in the Riphean of the USSR and their stratigraphic significance. Trudy geologicheskogo instituta, Akademiya nauk SSSR, 131, 72.
Kurzweil, F., Wille, M., Gantert, N., Beukes, N. J., & Schoenberg, R. (2016). Manganese oxide shuttling in pre-GOE oceans-evidence from molybdenum and iron isotopes. Earth and Planetary Science Letters, 452, 69-78.
Lambert, I., Donnelly, T., Dunlop, J., Groves, D., 1978. Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276, 808-811.
Legodi, M. A., & de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and pigments, 74(1), 161-168.
Lipp, A. G., Shorttle, O., Sperling, E., Brocks, J. J., Cole, D., Crockford, P. W., ... & Emmings, J. F. (2020). The composition and weathering of the continents over geologic time.
Lowe, D. R. (1983). Restricted shallow water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19(3), 239-283.
Lowe, D. R. (1994). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22(5), 387-390.
Lyons, T. W., & Severmann, S. (2006). A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23), 5698-5722.
Middelburg, J. J., van der Weijden, C. H., & Woittiez, J. R. (1988). Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical geology, 68(3-4), 253-273.
Morgan, R. (2012). Iron-oxide and carbonate formation and transformations from banded iron formations 2.7 to 2.4 Ga (Doctoral dissertation, Université Paris Sud-Paris XI; Universidade federal de Minas Gerais).
Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5), 649-656.
Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 Billion year-old dresser formation, pilbara, Western Australia. Astrobiology, 13(12), 1103-1124.
Olson, S. L., Kump, L. R., & Kasting, J. F. (2013). Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology, 362, 35-43.
Packer, B. M. (1990). Sedimentology, paleontology, and stable isotope geochemistry of selected formations in the 2.7-billion-year-old Fortescue Group, western Australia. University of California, Los Angeles.
Petrov, P. Y., & Semikhatov, M. A. (2001). Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: An example from the Burovaya formation, Turukhansk uplift, Siberia. Precambrian Research, 111(1-4), 257-281.
Planavsky, N. J., Slack, J. F., Cannon, W. F., O'Connell, B., Isson, T. T., Asael, D., ... & Bekker, A. (2018). Evidence for episodic oxygenation in a weakly redox buffered deep mid-Proterozoic ocean. Chemical Geology, 483, 581-594.
Pope, M. C., Grotzinger, J. P., & Schreiber, B. C. (2000). Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance. Journal of Sedimentary Research, 70(5), 1139-1151.
Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431: 173-177
Poulton SW, Fralick PW, Canfield DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience 3: 486-490
Poulton, S. W., & Canfield, D. E. (2011). Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements, 7(2), 107-112.
Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D., & Lyons, T. W. (2009). A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326(5953), 713-716.
Reis, O. M. (1908). Kalkowsky: Ueber OC olith und Stromatolith im norddeutschen Buntsandstein. Neues Jahrbuch fiir Mineralogie, Geologie und Palaontologie, 2, 114-138.
Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179-214.
Riding, R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica 61(2-3): 73-103
Riding, R. (2011). The nature of stromatolites: 3,500 million years of history and a century of research. In Advances in stromatolite geobiology (Eds.: Reitner, J., Quéric, N. V., & Arp, G.) 29-74.
Rincón-Tomás, B., Khonsari, B., Mühlen, D., Wickbold, C., Schäfer, N., Hause Reitner, D., ... & Reitner, J. (2016). Manganese carbonates as possible biogenic relics in Archean settings. International Journal of Astrobiology, 15(3), 219-229.
Sakurai, R., Ito, M., Ueno, Y., Kitajima, K., & Maruyama, S. (2005). Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. In Precambrian Research (Vol. 138, Issues 3-4, pp. 255-273).
Sami TT, James NP (1996) Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research 66: 209-222
Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., & Benmore, W. C. (1979). Stromatolite morphogenesis-progress and problems. Canadian Journal of Earth Sciences, 16(5), 992-1015.
Sforna, M. C., van Zuilen, M. A., & Philippot, P. (2014). Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochimica et Cosmochimica Acta, 124, 18-33.
Sinoir, M., Butler, E. C., Bowie, A. R., Mongin, M., Nesterenko, P. N., & Hassler, C. S. (2012). Zinc marine biogeochemistry in seawater: a review. Marine and Freshwater Research, 63(7), 644-657.
Smithies, R. H., Champion, D. C., & Cassidy, K. F. (2003). Formation of Earth's early Archaean continental crust. Precambrian Research, 127(1-3), 89-101.
Sugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minami, M., Mimura, K., & Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Research, 147(1-2), 124-147.
Sumner, D. Y., & Grotzinger, J. P. (2004). Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51(6), 1273-1299.
Sun, J., Wu, Z., Cheng, H., Zhang, Z., & Frost, R. L. (2014). A Raman spectroscopic comparison of calcite and dolomite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 158-162.
Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of geophysics, 33(2), 241-265.
Thibeau, R. J., Brown, C. W., & Heidersbach, R. H. (1978). Raman spectra of possible corrosion products of iron. Applied spectroscopy, 32(6), 532-535.
Thorne, A. M., & Trendall, A. F. (2001). Geology of the Fortescue Group, Pilbara Craton, Western Australia (No. 144). Geological Survey of Western Australia.
Thorpe, R. I., Hickman, A. H., Davis, D. W., Mortensen, J. K., & Trendall, A. F. (1992). UPb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Research, 56(3-4), 169-189.
Van Kranendonk, M. J. (2000). Geology of the North Shaw 1: 100,000 sheet, Western Australia, 1: 100,000 geological series explanatory notes. Geol. Surv. of West. Aust., Perth.
Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H., Nelson, D. R., & Pike, G. (2002). Geology and tectonic evolution of the archean North Pilbara terrain, Pilbara Craton, Western Australia. Economic Geology, 97(4), 695-732.
Van Kranendonk, M. J. (2006). Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Science Reviews, 74(3), 197-240.
Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., & Champion, D. C. (2007). Review: Secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 19(1), 1-38.
Van Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S., & Pirajno, F. (2008). Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Research, 167(1-2), 93-124.
Vogt, H., Chattopadhyay, T., & Stolz, H. J. (1983). Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 AND SiP2. Journal of Physics and Chemistry of Solids, 44(9), 869-873.
Vologdin, A. G. (1962). The oldest algae of the USSR. Reports of USSR Academy of Sciences, 120(2), 405-408.
Wacey, D., Mcloughlin, N., Stoakes, C. A., Kilburn, M., Green, O. R., & Brasier, M. D. (2010). The 3426-3350 Ma Strelley Pool formation in the east Strelley Greenstone Belt - A field and petrographic guide. Geological Survey of Western Australia.
Walter, MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology 11: 190
Walter, M. R., Buick, R., & Dunlop, J. S. R. (1980). Stromatolites 3,400-3,500 Myr old from the North pole area, Western Australia. Nature, 284, 443-445.
Walter, M.R., (1983). Archean stromatolites: evidence of the Earth's oldest benthos. In: Schopf, J.W. (Ed.), Earth's Earliest Biosphere. Princeton University Press, pp. 187-213.
Wang, X., Algeo, T. J., Liu, W., & Xu, Z. (2023). Effects of weathering and fluvial transport on detrital trace metals. Earth Science Reviews, 104420.
Zhu, L., & Li, J. (2001). Iron oxide minerals in red weathering crust of carbonate rocks. Chinese Journal of Geology, 36(4), 395-401.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 46 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/99b7cf58-0153-47e3-93b0-c238e0584c7f/download
https://repositorio.uniandes.edu.co/bitstreams/6e4c0eed-54c3-4053-821f-a627ec6e1aff/download
https://repositorio.uniandes.edu.co/bitstreams/345880a4-aa13-4df6-9bcb-5862ac773756/download
https://repositorio.uniandes.edu.co/bitstreams/cca680f4-7bc4-4f8d-bfbb-8ec1e134cdc1/download
https://repositorio.uniandes.edu.co/bitstreams/642eb576-afe4-4a5a-bd6a-0dbc705ecf14/download
https://repositorio.uniandes.edu.co/bitstreams/5a45d268-dbd6-44e3-967a-cc431d441c4b/download
https://repositorio.uniandes.edu.co/bitstreams/5fac6c83-bc5c-4083-92af-2442eb5658d5/download
https://repositorio.uniandes.edu.co/bitstreams/7a0277a7-711b-4c3b-a122-bba83b981e3a/download
bitstream.checksum.fl_str_mv ee1c0f63556e970ec39650a6ad271b6f
167985e3e9b669f936c81e236979578d
5aa5c691a1ffe97abd12c2966efcb8d6
86adc93a87d80ae349ead0bf5ed5e92f
3327cc35d94e7729c34f8e5e3b3fb493
4b321eafc055433768190edf380778ca
4e103732e0f6aa78bf0bc5fd31fed39c
4460e5956bc1d1639be9ae6146a50347
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390505831071744
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Eickmann, Benjamin416927f5-812f-48a9-ac35-a53940e9e932600Pineda Herrera, Juan Camilo4f12a58b-4abf-45bd-ae85-e166eb8e2b13600Murad Rodríguez, César Augusto2023-06-29T16:51:01Z2023-06-29T16:51:01Z2023-05-28http://hdl.handle.net/1992/68013instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Petrographic, physicochemical, and geochemical analyses of samples from the Dresser, Strelley Pool and Tumbiana Formations revealed insight and partial evidence on some of the earliest microbial organisms that inhabited Earth during the Paleo- (3.49 and 3.42 to 3.37Ga) and Neoarchean (2.71Ga), that were presumably sulfate-reducing bacteria. A better understanding on this topic helps constraining the search for the environments where life might exist, both in and outside our planet. This investigation aimed to answer questions on the extent to which and how biogenicity criteria can be useful while working with ancient rocks conditioned by secondary post-depositional processes. Limited samples on the complex Strelley Pool Formation, however, prevented a full understanding on the role of microbial life and their interaction with different elements' biogeochemical processes and cycles. Using non-destructive methods such as X-Ray Fluorescence and Raman Spectroscopy, it was possible to obtain and identify a few characteristics for rocks associated with sulfate reducing bacteria in shallow marine and lacustrine settings, such as the circulation of elements like Mn and Zn, and the spectral differences between biogenic and abiogenic pyrite.GeocientíficoPregrado46 páginasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasCompositional and structural analysis of Paleo- and Neoarchean stromatolites from the Pilbara Craton (Western Australia)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPStromatolitesGeochemistryBiogenicityArcheanRaman spectroscopyGeocienciasAitken, J. D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research, 37(4), 1163-1178.Allwood, A. C., Grotzinger, J. P., Knoll, A. H., Burch, I. W., Anderson, M. S., Coleman, M. L., & Kanik, I. (2009). Controls on development and diversity of Early Archean stromatolites. Proceedings of the National Academy of Sciences, 106(24), 9548-9555.Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F., & Thorne, A. M. (1991). The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U-Pb results. Australian Journal of Earth Sciences, 38(3), 261-281.Awramik, S., & Margulis, L. (1974). Definition of stromatolite: Stromatolite Newsletter (Unpublished manuscript), v. 2.Awramik, S. M., & Buchheim, H. P. (2001). Late Archaean lacustrine carbonates, stromatolites, and transgression. In Proceedings of the Fourth International Archaean Symposium Abstract (pp. 222-223).Berner RA (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1-23.Bertrand-Sarfati, J., Freytet, P., & Plaziat, J. C. (1994). Microstructures in Tertiary Nonmarine Stromatolites (France). Comparison with Proterozoic. Phanerozoic Stromatolites II, 1908, 155-191.Blake, T. S. (1993). Late Archaean crustal extension, sedimentary basin formation, flood basalt volcanism and continental rifting: the Nullagine and Mount Jope Supersequences, Western Australia. Precambrian Research, 60(1-4), 185-241.Blake, T. S. (2001). Cyclic continental mafic tuff and flood basalt volcanism in the Late Archaean Nullagine and Mount Jope supersequences in the eastern Pilbara, Western Australia. Precambrian Research, 107(3-4), 139-177.Blake, T. S., & Barley, M. E. (1992). Tectonic evolution of the Late Archaean to Early Proterozoic Mount Bruce Megasequence Set, Western Australia. Tectonics, 11(6), 1415-1425.Blewett, R. S., Shevchenko, S., & Bell, B. (2004). The North Pole Dome: A non diapiric dome in the Archaean Pilbara Craton, Western Australia. Precambrian Research, 133(1-2), 105-120.Boyko, V., Avetisyan, K., Findlay, A., Guo, Q., Yang, X., Pellerin, A., & Kamyshny Jr, A. (2021). Biogeochemical cycling of sulfur, manganese and iron in ferruginous limnic analog of Archean ocean. Geochimica et Cosmochimica Acta, 296, 56-74.Bucher WH (1913) Uber einige Fossilien und über Stromatolithbildung im Tertiär der bayerischen Rheinpfalz. München Geognostische Jahreshefte, Jahrgang 26: 76-102Buick, R. (1992). The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 255(5040), 74-77.Buick, R., Dunlop, J. S., & Groves, D. I. (1981). Stromatolite recognition in ancient rocks: An appraisal of irregularly laminated structures in an early archaean chert-barite unit from north pole, Western Australia. Alcheringa, 5(3), 161-181.Buick, R., & Dunlop, J. S. R. (1990). Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology, 37(2), 247-277.Burne, R. V., & Moore, L. S. (1987). Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 241-254.Busigny, V., Planavsky, N. J., Jézéquel, D., Crowe, S., Louvat, P., Moureau, J., ... & Lyons, T. W. (2014). Iron isotopes in an Archean ocean analogue. Geochimica et Cosmochimica Acta, 133, 443-462.Crowe, S. A., Jones, C., Katsev, S., Magen, C., O'Neill, A. H., Sturm, A., ... & Fowle, D. A. (2008). Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Sciences, 105(41), 15938-15943.De Faria, D. L., Venâncio Silva, S., & De Oliveira, M. T. (1997). Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman spectroscopy, 28(11), 873-878.Dodd, M. S., Wang, H., Li, C., Towner, M., Thomson, A. R., Slack, J. F., ... & Papineau, D. (2022). Abiotic anoxic iron oxidation, formation of Archean banded iron formations, and the oxidation of early Earth. Earth and Planetary Science Letters, 584, 117469.Duda, J. P., Van Kranendonk, M. J., Thiel, V., Ionescu, D., Strauss, H., Schäfer, N., & Reitner, J. (2016). A rare glimpse of paleoarchean life: Geobiology of an exceptionally preserved microbial mat facies from the 3.4 ga strelley pool formation, Western Australia. PLoS ONE, 11(1), 1-19.Fredsøe, J., Andersen, K. H., & Sumer, B. M. (1999). Wave plus current over a ripple-covered bed. Coastal Engineering, 38(4), 177-221.Gerdes, G. (2007). Structures left by modern microbial mats in their host sediments. In Atlas of microbial mat features preserved within the siliciclastic rock record (Vol. 2, pp. 5-38). Amsterdam: Elsevier.Green, M. G., Sylvester, P. J., & Buick, R. (2000). Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics, 322(1-2), 69-88.Grotzinger, J. P., & Reed, J. F. (1983). Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada. Geology, 11(12), 710-713.Grotzinger, J. P., & James, N. P. (2000). Precambrian Carbonates: Evolution of Understanding. In J. P. Grotzinger & N. P. James (Eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (Vol. 67, p. 0). SEPM Society for Sedimentary Geology.Grotzinger, J. R., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27, 313-358.Groves, D. I., Dunlop, J. S. R., & Buick, R. (1981). An Early Habitat of Life. Scientific American, 245(4), 64-73.Gumsley, A. P., Chamberlain, K. R., Bleeker, W., Söderlund, U., De Kock, M. O., Larsson, E. R., & Bekker, A. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences, 114(8), 1811-1816.Habicht, K. S., Gade, M., Thamdrup, B., Berg, P., & Canfield, D. E. (2002). Calibration of sulfate levels in the Archean ocean. Science, 298(5602), 2372-2374.Hanesch, M. (2009). Raman spectroscopy of iron oxides and (oxy) hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177(3), 941-948.Hickman, A. H. (2008). Regional review of the 3426-3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. West Australia Geolog Surv Rec, 2008, 15.Hoffman PF (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (lower Proterozoic), Northwest Territories, Canada. In: Ginsburg RN (ed) Tidal Deposits. Springer, Berlin, pp 257-265Hofmann, H. J. (1969). Attributes of stromatolites. Geological Survey Canada Paper 69-39. Geological Survey of Canada, Dept. of Energy, Mines and Resources, Ottawa.Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 903-915.Jackson MJ (1989) Lower Proterozoic Cowles Lake foredeep reef, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 64-71Kalkowsky, E. (1908). Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Der Deutschen Geologischen Gesellschaft, 60, 68-125. http://www.schweizerbart.de//papers/zdgg_alt/detail/60/66518/Oolith_und_Stromatolith_im_norddeutschen_BuntsandsteinKrishnan, R. S. (1945). Raman spectrum of quartz. Nature, 155(3937), 452-452.Krishnamurti, D. (1958, May). The Raman spectrum of quartz and its interpretation. In Proceedings of the Indian Academy of Sciences-Section A (Vol. 47, No. 5, pp. 276-291). New Delhi: Springer India.Komar, V. A., Raaben, M. E., & Semikhatov, M. A. (1965). Conophytons in the Riphean of the USSR and their stratigraphic significance. Trudy geologicheskogo instituta, Akademiya nauk SSSR, 131, 72.Kurzweil, F., Wille, M., Gantert, N., Beukes, N. J., & Schoenberg, R. (2016). Manganese oxide shuttling in pre-GOE oceans-evidence from molybdenum and iron isotopes. Earth and Planetary Science Letters, 452, 69-78.Lambert, I., Donnelly, T., Dunlop, J., Groves, D., 1978. Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins. Nature 276, 808-811.Legodi, M. A., & de Waal, D. (2007). The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes and pigments, 74(1), 161-168.Lipp, A. G., Shorttle, O., Sperling, E., Brocks, J. J., Cole, D., Crockford, P. W., ... & Emmings, J. F. (2020). The composition and weathering of the continents over geologic time.Lowe, D. R. (1983). Restricted shallow water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19(3), 239-283.Lowe, D. R. (1994). Abiological origin of described stromatolites older than 3.2 Ga. Geology, 22(5), 387-390.Lyons, T. W., & Severmann, S. (2006). A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochimica et Cosmochimica Acta, 70(23), 5698-5722.Middelburg, J. J., van der Weijden, C. H., & Woittiez, J. R. (1988). Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical geology, 68(3-4), 253-273.Morgan, R. (2012). Iron-oxide and carbonate formation and transformations from banded iron formations 2.7 to 2.4 Ga (Doctoral dissertation, Université Paris Sud-Paris XI; Universidade federal de Minas Gerais).Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5), 649-656.Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 Billion year-old dresser formation, pilbara, Western Australia. Astrobiology, 13(12), 1103-1124.Olson, S. L., Kump, L. R., & Kasting, J. F. (2013). Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chemical Geology, 362, 35-43.Packer, B. M. (1990). Sedimentology, paleontology, and stable isotope geochemistry of selected formations in the 2.7-billion-year-old Fortescue Group, western Australia. University of California, Los Angeles.Petrov, P. Y., & Semikhatov, M. A. (2001). Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: An example from the Burovaya formation, Turukhansk uplift, Siberia. Precambrian Research, 111(1-4), 257-281.Planavsky, N. J., Slack, J. F., Cannon, W. F., O'Connell, B., Isson, T. T., Asael, D., ... & Bekker, A. (2018). Evidence for episodic oxygenation in a weakly redox buffered deep mid-Proterozoic ocean. Chemical Geology, 483, 581-594.Pope, M. C., Grotzinger, J. P., & Schreiber, B. C. (2000). Evaporitic subtidal stromatolites produced by in situ precipitation: Textures, facies associations, and temporal significance. Journal of Sedimentary Research, 70(5), 1139-1151.Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431: 173-177Poulton SW, Fralick PW, Canfield DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience 3: 486-490Poulton, S. W., & Canfield, D. E. (2011). Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements, 7(2), 107-112.Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D., & Lyons, T. W. (2009). A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science, 326(5953), 713-716.Reis, O. M. (1908). Kalkowsky: Ueber OC olith und Stromatolith im norddeutschen Buntsandstein. Neues Jahrbuch fiir Mineralogie, Geologie und Palaontologie, 2, 114-138.Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179-214.Riding, R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica 61(2-3): 73-103Riding, R. (2011). The nature of stromatolites: 3,500 million years of history and a century of research. In Advances in stromatolite geobiology (Eds.: Reitner, J., Quéric, N. V., & Arp, G.) 29-74.Rincón-Tomás, B., Khonsari, B., Mühlen, D., Wickbold, C., Schäfer, N., Hause Reitner, D., ... & Reitner, J. (2016). Manganese carbonates as possible biogenic relics in Archean settings. International Journal of Astrobiology, 15(3), 219-229.Sakurai, R., Ito, M., Ueno, Y., Kitajima, K., & Maruyama, S. (2005). Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. In Precambrian Research (Vol. 138, Issues 3-4, pp. 255-273).Sami TT, James NP (1996) Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research 66: 209-222Semikhatov, M. A., Gebelein, C. D., Cloud, P., Awramik, S. M., & Benmore, W. C. (1979). Stromatolite morphogenesis-progress and problems. Canadian Journal of Earth Sciences, 16(5), 992-1015.Sforna, M. C., van Zuilen, M. A., & Philippot, P. (2014). Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochimica et Cosmochimica Acta, 124, 18-33.Sinoir, M., Butler, E. C., Bowie, A. R., Mongin, M., Nesterenko, P. N., & Hassler, C. S. (2012). Zinc marine biogeochemistry in seawater: a review. Marine and Freshwater Research, 63(7), 644-657.Smithies, R. H., Champion, D. C., & Cassidy, K. F. (2003). Formation of Earth's early Archaean continental crust. Precambrian Research, 127(1-3), 89-101.Sugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minami, M., Mimura, K., & Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Research, 147(1-2), 124-147.Sumner, D. Y., & Grotzinger, J. P. (2004). Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform, South Africa. Sedimentology, 51(6), 1273-1299.Sun, J., Wu, Z., Cheng, H., Zhang, Z., & Frost, R. L. (2014). A Raman spectroscopic comparison of calcite and dolomite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 158-162.Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of geophysics, 33(2), 241-265.Thibeau, R. J., Brown, C. W., & Heidersbach, R. H. (1978). Raman spectra of possible corrosion products of iron. Applied spectroscopy, 32(6), 532-535.Thorne, A. M., & Trendall, A. F. (2001). Geology of the Fortescue Group, Pilbara Craton, Western Australia (No. 144). Geological Survey of Western Australia.Thorpe, R. I., Hickman, A. H., Davis, D. W., Mortensen, J. K., & Trendall, A. F. (1992). UPb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Research, 56(3-4), 169-189.Van Kranendonk, M. J. (2000). Geology of the North Shaw 1: 100,000 sheet, Western Australia, 1: 100,000 geological series explanatory notes. Geol. Surv. of West. Aust., Perth.Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H., Nelson, D. R., & Pike, G. (2002). Geology and tectonic evolution of the archean North Pilbara terrain, Pilbara Craton, Western Australia. Economic Geology, 97(4), 695-732.Van Kranendonk, M. J. (2006). Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: A review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Science Reviews, 74(3), 197-240.Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., & Champion, D. C. (2007). Review: Secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, 19(1), 1-38.Van Kranendonk, M. J., Philippot, P., Lepot, K., Bodorkos, S., & Pirajno, F. (2008). Geological setting of Earth's oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Research, 167(1-2), 93-124.Vogt, H., Chattopadhyay, T., & Stolz, H. J. (1983). Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 AND SiP2. Journal of Physics and Chemistry of Solids, 44(9), 869-873.Vologdin, A. G. (1962). The oldest algae of the USSR. Reports of USSR Academy of Sciences, 120(2), 405-408.Wacey, D., Mcloughlin, N., Stoakes, C. A., Kilburn, M., Green, O. R., & Brasier, M. D. (2010). The 3426-3350 Ma Strelley Pool formation in the east Strelley Greenstone Belt - A field and petrographic guide. Geological Survey of Western Australia.Walter, MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology 11: 190Walter, M. R., Buick, R., & Dunlop, J. S. R. (1980). Stromatolites 3,400-3,500 Myr old from the North pole area, Western Australia. Nature, 284, 443-445.Walter, M.R., (1983). Archean stromatolites: evidence of the Earth's oldest benthos. In: Schopf, J.W. (Ed.), Earth's Earliest Biosphere. Princeton University Press, pp. 187-213.Wang, X., Algeo, T. J., Liu, W., & Xu, Z. (2023). Effects of weathering and fluvial transport on detrital trace metals. Earth Science Reviews, 104420.Zhu, L., & Li, J. (2001). Iron oxide minerals in red weathering crust of carbonate rocks. Chinese Journal of Geology, 36(4), 395-401.201820477PublicationORIGINALPineda Herrera Thesis Pilbara Stromatolites.pdfPineda Herrera Thesis Pilbara Stromatolites.pdfTrabajo de gradoapplication/pdf3832590https://repositorio.uniandes.edu.co/bitstreams/99b7cf58-0153-47e3-93b0-c238e0584c7f/downloadee1c0f63556e970ec39650a6ad271b6fMD53Autorización tesis Pineda 201820477.pdfAutorización tesis Pineda 201820477.pdfHIDEapplication/pdf711925https://repositorio.uniandes.edu.co/bitstreams/6e4c0eed-54c3-4053-821f-a627ec6e1aff/download167985e3e9b669f936c81e236979578dMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/345880a4-aa13-4df6-9bcb-5862ac773756/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTPineda Herrera Thesis Pilbara Stromatolites.pdf.txtPineda Herrera Thesis Pilbara Stromatolites.pdf.txtExtracted texttext/plain84860https://repositorio.uniandes.edu.co/bitstreams/cca680f4-7bc4-4f8d-bfbb-8ec1e134cdc1/download86adc93a87d80ae349ead0bf5ed5e92fMD55Autorización tesis Pineda 201820477.pdf.txtAutorización tesis Pineda 201820477.pdf.txtExtracted texttext/plain1459https://repositorio.uniandes.edu.co/bitstreams/642eb576-afe4-4a5a-bd6a-0dbc705ecf14/download3327cc35d94e7729c34f8e5e3b3fb493MD57THUMBNAILPineda Herrera Thesis Pilbara Stromatolites.pdf.jpgPineda Herrera Thesis Pilbara Stromatolites.pdf.jpgIM Thumbnailimage/jpeg9946https://repositorio.uniandes.edu.co/bitstreams/5a45d268-dbd6-44e3-967a-cc431d441c4b/download4b321eafc055433768190edf380778caMD56Autorización tesis Pineda 201820477.pdf.jpgAutorización tesis Pineda 201820477.pdf.jpgIM Thumbnailimage/jpeg13864https://repositorio.uniandes.edu.co/bitstreams/5fac6c83-bc5c-4083-92af-2442eb5658d5/download4e103732e0f6aa78bf0bc5fd31fed39cMD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/7a0277a7-711b-4c3b-a122-bba83b981e3a/download4460e5956bc1d1639be9ae6146a50347MD521992/68013oai:repositorio.uniandes.edu.co:1992/680132023-10-10 19:49:46.831http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==