Connecting reality and virtuality with Human Machine Interface (HMI)

This thesis explores the development and application of machine learning models to predict hand gestures using electromyography (EMG) data. The primary focus is on leveraging a convolutional neural network (CNN) for detecting and analyzing hand gestures based on electrical signals from muscle contra...

Full description

Autores:
Bastidas Peralta, Luciano
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74984
Acceso en línea:
https://hdl.handle.net/1992/74984
Palabra clave:
HMI
EMG
Human machine interface
Electromyography
Machine learning
Deep Learning
Electrodes
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_cff70919e18f0bc35cd56b8410dded03
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74984
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Connecting reality and virtuality with Human Machine Interface (HMI)
title Connecting reality and virtuality with Human Machine Interface (HMI)
spellingShingle Connecting reality and virtuality with Human Machine Interface (HMI)
HMI
EMG
Human machine interface
Electromyography
Machine learning
Deep Learning
Electrodes
Ingeniería
title_short Connecting reality and virtuality with Human Machine Interface (HMI)
title_full Connecting reality and virtuality with Human Machine Interface (HMI)
title_fullStr Connecting reality and virtuality with Human Machine Interface (HMI)
title_full_unstemmed Connecting reality and virtuality with Human Machine Interface (HMI)
title_sort Connecting reality and virtuality with Human Machine Interface (HMI)
dc.creator.fl_str_mv Bastidas Peralta, Luciano
dc.contributor.advisor.none.fl_str_mv Camargo Leyva, Jonathan
dc.contributor.author.none.fl_str_mv Bastidas Peralta, Luciano
dc.subject.keyword.none.fl_str_mv HMI
EMG
topic HMI
EMG
Human machine interface
Electromyography
Machine learning
Deep Learning
Electrodes
Ingeniería
dc.subject.keyword.eng.fl_str_mv Human machine interface
Electromyography
Machine learning
Deep Learning
Electrodes
dc.subject.themes.spa.fl_str_mv Ingeniería
description This thesis explores the development and application of machine learning models to predict hand gestures using electromyography (EMG) data. The primary focus is on leveraging a convolutional neural network (CNN) for detecting and analyzing hand gestures based on electrical signals from muscle contractions. Data acquisition is facilitated through a Cyton OpenBCI board, with electrodes placed on the forearm. Initial challenges with electrode placement using kinesiology tape were addressed by designing a 3D-printed armband to ensure secure and consistent electrode po sitioning. Various machine learning models, including simple and slightly larger CNNs, as well as a pre-trained 3DResNet, were tested for their accuracy and training efficiency. The study reveals that while the models can achieve reasonable accuracy, incor porating additional parameters such as angular velocity of finger joints significantly complicates the training process. A new graphical user interface (GUI) was devel oped to distinguish between dynamic and static gestures, enhancing real-time applicability. The results indicate that although current models can be integrated into real life scenarios, further improvements are needed for effective real-time prediction, particularly for gestures involving thumb movements. Future work will focus on refining the model and incorporating more sophisticated data processing techniques to improve accuracy and usability in practical applications.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-05T16:06:09Z
dc.date.available.none.fl_str_mv 2024-08-05T16:06:09Z
dc.date.issued.none.fl_str_mv 2024-08-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74984
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74984
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv S. M. A. Iqbal, I. Mahgoub, E Du, M. A. Leavitt, and W. Asghar, “Advances in healthcare wearable devices,” en, npj Flexible Electronics, vol. 5, no. 1, p. 9, Apr. 2021, ISSN: 2397-4621. DOI: 10 . 1038 / s41528 - 021 - 00107 - x. [Online]. Available: https://www.nature.com/articles/s41528-021-00107-x (visited on 07/02/2024).
M. R. Ahsan, M. I. Ibrahimy, and O. O. Khalifa, “Electromygraphy (EMG) sig nal based hand gesture recognition using artificial neural network (ANN),” in 2011 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia: IEEE, May 2011, pp.1–6, ISBN: 978-1-61284-435-0. DOI: 10 . 1109 /ICOM . 2011 . 5937135. [Online]. Available: http : / / ieeexplore . ieee . org /document/5937135/ (visited on 07/02/2024).
P. P. Shinde and S. Shah, “A Review of Machine Learning and Deep Learning Applications,” in 2018 Fourth International Conference on Computing Communi cation Control and Automation (ICCUBEA), Pune, India: IEEE, Aug. 2018, pp. 1–6, ISBN: 978-1-5386-5257-2. DOI: 10 .1109/ ICCUBEA . 2018. 8697857. [Online]. Available: https://ieeexplore.ieee.org/document/8697857/ (visited on 07/02/2024).
C. H. Wolters, L Grasedyck, and W Hackbusch, “Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem,” Inverse Problems, vol. 20, no. 4, pp. 1099–1116, Aug. 2004, ISSN: 0266-5611, 1361-6420. DOI: 10 . 1088 / 0266 - 5611 / 20 / 4 / 007. [Online]. Available: https : / / iopscience . iop . org / article /10 . 1088 / 0266 - 5611 / 20 / 4 / 007(visited on 06/28/2024).
D. Farina and A. Holobar, “Characterization of Human Motor Units From Sur face EMG Decomposition,” Proceedings of the IEEE, vol. 104, no. 2, pp. 353–373, Feb. 2016, ISSN: 0018-9219, 1558-2256. DOI: 10 . 1109 / JPROC . 2015 . 2498665. [Online]. Available: http://ieeexplore.ieee.org/document/7386798/ (vis ited on 06/20/2024).
M. B. Bromberg, “The motor unit and quantitative electromyography,” en, Muscle & Nerve, vol. 61, no. 2, pp. 131–142, Feb. 2020, ISSN: 0148-639X, 1097-4598. DOI: 10.1002/mus.26718. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/mus.26718 (visited on 06/20/2024).
N. M. Kakoty, M. Kaiborta, and S. M. Hazarika, “Electromyographic Grasp Recognition for a Five Fingered Robotic Hand,” IAES International Journal of Robotics and Automation (IJRA), vol. 2, no. 1, p. 1, Sep. 2012, ISSN: 2089-4856, 2089-4856. DOI: 10 . 11591 / ijra . v2i1 . pp1 - 10. [Online]. Available: http :/ / ijra . iaescore . com / index . php / IJRA / article / view / 908 (visited on 06/25/2024).
B. Belay, B. Malengier, K. Timothy, W. Sitek, J. Krishnamoorthy, and L. Van Langenhove, “A review on the recent developments in design and integra tion of electromyography textile electrodes for biosignal monitoring,” Journal of Industrial Textiles, vol. 53, p. 152 808 372 311 750, May 2023. DOI: 10.1177/15280837231175062.
Steven Telleen, Human Anatomy, en. OpenStax CNX. [Online]. Available: http://archive.org/details/cnx-org-col11941 (visited on 07/02/2024).
superuser, AI in Healthcare & Medical Affairs, en-US, Jul. 2023. [Online]. Avail able: https : / / bluematterconsulting . com /artificial - intelligence - healthcare-medical-affairs/ (visited on 08/02/2024).
P. Bhasha, T. Kumar, and K. Baseer, “Smarteye: A navigation and obstacle de tection for visually impaired people through smart app,” Journal of Applied Engineering and Technological Science (JAETS), vol. 4, pp. 992–1011, Jun. 2023. DOI: 10.37385/jaets.v4i2.2013.
Image Recognition Tasks, en. [Online]. Available: https://fastercapital.com/keyword/image-recognition-tasks.html (visited on 08/02/2024).
R. Cau, F. Pisu, J. Suri, et al., “Artificial intelligence in the differential diagnosis of cardiomyopathy phenotypes,” Diagnostics, vol. 14, p. 156, Jan. 2024. DOI:10.3390/diagnostics14020156.
Cyton Specs | OpenBCI Documentation. [Online]. Available: https : / / docs .openbci.com/Cyton/CytonSpecs/ (visited on 06/29/2024)
S. D. M. Vaseem, S. M. Yaseen, S. K. Basha, and S. M. Yousuf, “Identification of Power Quality Disturbances in Electrical Systems - A Signal Processing Approach,” International Journal for Research in Applied Science and Engineer ing Technology, vol. 11, no. 5, pp. 1559–1567, May 2023, ISSN: 23219653. DOI:10.22214/ijraset.2023.51823. [Online]. Available: https://www.ijraset.com/best-journal/identification-of-power-quality-disturbances-in electrical-systems-a-signal-processing-approach (visited on 08/02/2024).
S. Sadeqi, N. Xiros, S. Rouhi, J. Ioup, J. VanZwieten, and C. Sultan, “WAVELET TRANSFORMATION ANALYSIS APPLIED TO INCOMPRESSIBLE FLOW FIELD ABOUT A SOLID CYLINDER,” en, in Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC), Virtual: Begellhouse, 2021, pp. 353–363. DOI:10.1615/TFEC2021.cmd.036526. [Online]. Available: https://dl.astfe.org/conferences/tfec2021,5658947e4946fa79,49dbd63e41447bc7.html (visited on 08/02/2024).
S. Li, C. Jiang, Y. Ma, and C. Li, “Spatiotemporal analysis of hydrometeorolog ical factors in the source region of the dongting lake basin, china,” Atmosphere, vol. 14, no. 12, 2023, ISSN: 2073-4433. DOI: 10.3390/atmos14121793. [Online]. Available: https://www.mdpi.com/2073-4433/14/12/1793.
Hand landmarks detection guide | Google AI Edge, en. [Online]. Available:https://ai.google.dev/edge/mediapipe/solutions/vision/hand_landmarker(visited on 08/01/2024).
A. I. Anak, Bedanya 1d, 2d, 3d convolution, May 2021. [Online]. Available: https://www.youtube.com/watch?v=MdNMzJ1qyOI
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 54 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/decc84d7-57aa-402b-b3eb-4b71091f3653/download
https://repositorio.uniandes.edu.co/bitstreams/8404ab8a-039a-4ab3-8325-9935afd2c368/download
https://repositorio.uniandes.edu.co/bitstreams/e96994ae-621f-4a58-abfa-417976ce7c32/download
https://repositorio.uniandes.edu.co/bitstreams/3fc34d8e-f2f9-4331-9d23-f48dc7a3164c/download
https://repositorio.uniandes.edu.co/bitstreams/8e20a50d-552c-48d0-a0f5-597c01ad1795/download
https://repositorio.uniandes.edu.co/bitstreams/e896ca86-d4f4-4f4d-bd5f-cdb217a322cb/download
https://repositorio.uniandes.edu.co/bitstreams/3a6f4dba-d5d9-435b-865c-1bca8022aec0/download
https://repositorio.uniandes.edu.co/bitstreams/17ccbbc9-e29d-4012-81e3-f959a29ca5d3/download
bitstream.checksum.fl_str_mv faf80e0c3edadc06335ba31432a80214
85e1e02c7d6f04191dc0a1db36b0ff6e
ae9e573a68e7f92501b6913cc846c39f
0175ea4a2d4caec4bbcc37e300941108
1d2bb8f48c906066bbdffb7a0b07dfa9
a965f44692df0744ea23103ec2cb05b3
a057661ef2b45ed08a72beddbf1f1071
47d212c09c6da1cc8c9a1068e10736b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111682880208896
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoresAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Camargo Leyva, Jonathanvirtual::19711-1Bastidas Peralta, Luciano2024-08-05T16:06:09Z2024-08-05T16:06:09Z2024-08-02https://hdl.handle.net/1992/74984instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This thesis explores the development and application of machine learning models to predict hand gestures using electromyography (EMG) data. The primary focus is on leveraging a convolutional neural network (CNN) for detecting and analyzing hand gestures based on electrical signals from muscle contractions. Data acquisition is facilitated through a Cyton OpenBCI board, with electrodes placed on the forearm. Initial challenges with electrode placement using kinesiology tape were addressed by designing a 3D-printed armband to ensure secure and consistent electrode po sitioning. Various machine learning models, including simple and slightly larger CNNs, as well as a pre-trained 3DResNet, were tested for their accuracy and training efficiency. The study reveals that while the models can achieve reasonable accuracy, incor porating additional parameters such as angular velocity of finger joints significantly complicates the training process. A new graphical user interface (GUI) was devel oped to distinguish between dynamic and static gestures, enhancing real-time applicability. The results indicate that although current models can be integrated into real life scenarios, further improvements are needed for effective real-time prediction, particularly for gestures involving thumb movements. Future work will focus on refining the model and incorporating more sophisticated data processing techniques to improve accuracy and usability in practical applications.PregradoEquipos de conección humano maquina o wearable technology54 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaConnecting reality and virtuality with Human Machine Interface (HMI)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPHMIEMGHuman machine interfaceElectromyographyMachine learningDeep LearningElectrodesIngenieríaS. M. A. Iqbal, I. Mahgoub, E Du, M. A. Leavitt, and W. Asghar, “Advances in healthcare wearable devices,” en, npj Flexible Electronics, vol. 5, no. 1, p. 9, Apr. 2021, ISSN: 2397-4621. DOI: 10 . 1038 / s41528 - 021 - 00107 - x. [Online]. Available: https://www.nature.com/articles/s41528-021-00107-x (visited on 07/02/2024).M. R. Ahsan, M. I. Ibrahimy, and O. O. Khalifa, “Electromygraphy (EMG) sig nal based hand gesture recognition using artificial neural network (ANN),” in 2011 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia: IEEE, May 2011, pp.1–6, ISBN: 978-1-61284-435-0. DOI: 10 . 1109 /ICOM . 2011 . 5937135. [Online]. Available: http : / / ieeexplore . ieee . org /document/5937135/ (visited on 07/02/2024).P. P. Shinde and S. Shah, “A Review of Machine Learning and Deep Learning Applications,” in 2018 Fourth International Conference on Computing Communi cation Control and Automation (ICCUBEA), Pune, India: IEEE, Aug. 2018, pp. 1–6, ISBN: 978-1-5386-5257-2. DOI: 10 .1109/ ICCUBEA . 2018. 8697857. [Online]. Available: https://ieeexplore.ieee.org/document/8697857/ (visited on 07/02/2024).C. H. Wolters, L Grasedyck, and W Hackbusch, “Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem,” Inverse Problems, vol. 20, no. 4, pp. 1099–1116, Aug. 2004, ISSN: 0266-5611, 1361-6420. DOI: 10 . 1088 / 0266 - 5611 / 20 / 4 / 007. [Online]. Available: https : / / iopscience . iop . org / article /10 . 1088 / 0266 - 5611 / 20 / 4 / 007(visited on 06/28/2024).D. Farina and A. Holobar, “Characterization of Human Motor Units From Sur face EMG Decomposition,” Proceedings of the IEEE, vol. 104, no. 2, pp. 353–373, Feb. 2016, ISSN: 0018-9219, 1558-2256. DOI: 10 . 1109 / JPROC . 2015 . 2498665. [Online]. Available: http://ieeexplore.ieee.org/document/7386798/ (vis ited on 06/20/2024).M. B. Bromberg, “The motor unit and quantitative electromyography,” en, Muscle & Nerve, vol. 61, no. 2, pp. 131–142, Feb. 2020, ISSN: 0148-639X, 1097-4598. DOI: 10.1002/mus.26718. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/mus.26718 (visited on 06/20/2024).N. M. Kakoty, M. Kaiborta, and S. M. Hazarika, “Electromyographic Grasp Recognition for a Five Fingered Robotic Hand,” IAES International Journal of Robotics and Automation (IJRA), vol. 2, no. 1, p. 1, Sep. 2012, ISSN: 2089-4856, 2089-4856. DOI: 10 . 11591 / ijra . v2i1 . pp1 - 10. [Online]. Available: http :/ / ijra . iaescore . com / index . php / IJRA / article / view / 908 (visited on 06/25/2024).B. Belay, B. Malengier, K. Timothy, W. Sitek, J. Krishnamoorthy, and L. Van Langenhove, “A review on the recent developments in design and integra tion of electromyography textile electrodes for biosignal monitoring,” Journal of Industrial Textiles, vol. 53, p. 152 808 372 311 750, May 2023. DOI: 10.1177/15280837231175062.Steven Telleen, Human Anatomy, en. OpenStax CNX. [Online]. Available: http://archive.org/details/cnx-org-col11941 (visited on 07/02/2024).superuser, AI in Healthcare & Medical Affairs, en-US, Jul. 2023. [Online]. Avail able: https : / / bluematterconsulting . com /artificial - intelligence - healthcare-medical-affairs/ (visited on 08/02/2024).P. Bhasha, T. Kumar, and K. Baseer, “Smarteye: A navigation and obstacle de tection for visually impaired people through smart app,” Journal of Applied Engineering and Technological Science (JAETS), vol. 4, pp. 992–1011, Jun. 2023. DOI: 10.37385/jaets.v4i2.2013.Image Recognition Tasks, en. [Online]. Available: https://fastercapital.com/keyword/image-recognition-tasks.html (visited on 08/02/2024).R. Cau, F. Pisu, J. Suri, et al., “Artificial intelligence in the differential diagnosis of cardiomyopathy phenotypes,” Diagnostics, vol. 14, p. 156, Jan. 2024. DOI:10.3390/diagnostics14020156.Cyton Specs | OpenBCI Documentation. [Online]. Available: https : / / docs .openbci.com/Cyton/CytonSpecs/ (visited on 06/29/2024)S. D. M. Vaseem, S. M. Yaseen, S. K. Basha, and S. M. Yousuf, “Identification of Power Quality Disturbances in Electrical Systems - A Signal Processing Approach,” International Journal for Research in Applied Science and Engineer ing Technology, vol. 11, no. 5, pp. 1559–1567, May 2023, ISSN: 23219653. DOI:10.22214/ijraset.2023.51823. [Online]. Available: https://www.ijraset.com/best-journal/identification-of-power-quality-disturbances-in electrical-systems-a-signal-processing-approach (visited on 08/02/2024).S. Sadeqi, N. Xiros, S. Rouhi, J. Ioup, J. VanZwieten, and C. Sultan, “WAVELET TRANSFORMATION ANALYSIS APPLIED TO INCOMPRESSIBLE FLOW FIELD ABOUT A SOLID CYLINDER,” en, in Proceeding of 5-6th Thermal and Fluids Engineering Conference (TFEC), Virtual: Begellhouse, 2021, pp. 353–363. DOI:10.1615/TFEC2021.cmd.036526. [Online]. Available: https://dl.astfe.org/conferences/tfec2021,5658947e4946fa79,49dbd63e41447bc7.html (visited on 08/02/2024).S. Li, C. Jiang, Y. Ma, and C. Li, “Spatiotemporal analysis of hydrometeorolog ical factors in the source region of the dongting lake basin, china,” Atmosphere, vol. 14, no. 12, 2023, ISSN: 2073-4433. DOI: 10.3390/atmos14121793. [Online]. Available: https://www.mdpi.com/2073-4433/14/12/1793.Hand landmarks detection guide | Google AI Edge, en. [Online]. Available:https://ai.google.dev/edge/mediapipe/solutions/vision/hand_landmarker(visited on 08/01/2024).A. I. Anak, Bedanya 1d, 2d, 3d convolution, May 2021. [Online]. Available: https://www.youtube.com/watch?v=MdNMzJ1qyOI201920752Publication0bb50162-7add-44a0-8bf0-a4205f5869a5virtual::19711-10bb50162-7add-44a0-8bf0-a4205f5869a5virtual::19711-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000018833virtual::19711-1ORIGINALConnecting reality and virtuality with Human Machine Interface_HMI.pdfConnecting reality and virtuality with Human Machine Interface_HMI.pdfapplication/pdf4038910https://repositorio.uniandes.edu.co/bitstreams/decc84d7-57aa-402b-b3eb-4b71091f3653/downloadfaf80e0c3edadc06335ba31432a80214MD52autorizacion tesis Luciano.pdfautorizacion tesis Luciano.pdfHIDEapplication/pdf398273https://repositorio.uniandes.edu.co/bitstreams/8404ab8a-039a-4ab3-8325-9935afd2c368/download85e1e02c7d6f04191dc0a1db36b0ff6eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/e96994ae-621f-4a58-abfa-417976ce7c32/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/3fc34d8e-f2f9-4331-9d23-f48dc7a3164c/download0175ea4a2d4caec4bbcc37e300941108MD54TEXTConnecting reality and virtuality with Human Machine Interface_HMI.pdf.txtConnecting reality and virtuality with Human Machine Interface_HMI.pdf.txtExtracted texttext/plain77394https://repositorio.uniandes.edu.co/bitstreams/8e20a50d-552c-48d0-a0f5-597c01ad1795/download1d2bb8f48c906066bbdffb7a0b07dfa9MD55autorizacion tesis Luciano.pdf.txtautorizacion tesis Luciano.pdf.txtExtracted texttext/plain2029https://repositorio.uniandes.edu.co/bitstreams/e896ca86-d4f4-4f4d-bd5f-cdb217a322cb/downloada965f44692df0744ea23103ec2cb05b3MD57THUMBNAILConnecting reality and virtuality with Human Machine Interface_HMI.pdf.jpgConnecting reality and virtuality with Human Machine Interface_HMI.pdf.jpgGenerated Thumbnailimage/jpeg7454https://repositorio.uniandes.edu.co/bitstreams/3a6f4dba-d5d9-435b-865c-1bca8022aec0/downloada057661ef2b45ed08a72beddbf1f1071MD56autorizacion tesis Luciano.pdf.jpgautorizacion tesis Luciano.pdf.jpgGenerated Thumbnailimage/jpeg10947https://repositorio.uniandes.edu.co/bitstreams/17ccbbc9-e29d-4012-81e3-f959a29ca5d3/download47d212c09c6da1cc8c9a1068e10736b9MD581992/74984oai:repositorio.uniandes.edu.co:1992/749842024-09-12 16:23:42.349http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K