Quantum machine learning: a theoretical study-case and practical implementation of PCA using quantum computing

Quantum computing is an emerging technology that has the potential to change human history. In this thesis, we propose to dive deep into this new technology through theory background and computational experimentation. We explain the theoretical background needed to understand how quantum computing w...

Full description

Autores:
Laguna Guantiva, Mateo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/63600
Acceso en línea:
http://hdl.handle.net/1992/63600
Palabra clave:
Quantum computing
Machine learning
AWS
Ingeniería
Rights
openAccess
License
Atribución 4.0 Internacional
Description
Summary:Quantum computing is an emerging technology that has the potential to change human history. In this thesis, we propose to dive deep into this new technology through theory background and computational experimentation. We explain the theoretical background needed to understand how quantum computing works, then we use this theory background to make a computational implementation on the AWS cloud using Amazon Braket (i.e. AWS service to use quantum processors). As the result of this project, we deliver a document with the theory background required and the Python- code that implements PCA using Amazon Braket. Computational results are consistent with the theory background described in the thesis.