Quantum fields with dynamical boundary conditions
En este trabajo se exponen las características principales de la teoría cuántica de campos en espacio-tiempo plano y en espacio-tiempo curvo enfocándose en la no unicidad del vacío. Este hecho involucra muchos detalles de la teoría que son la causa de que no exista una generalización simple y, por l...
- Autores:
-
Prada Malagón, Juan David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/44613
- Acceso en línea:
- http://hdl.handle.net/1992/44613
- Palabra clave:
- Teoría del campo cuántico
Efecto casimir
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_cd7b1524be1ebb99e220c9c662f8f585 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/44613 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Quantum fields with dynamical boundary conditions |
title |
Quantum fields with dynamical boundary conditions |
spellingShingle |
Quantum fields with dynamical boundary conditions Teoría del campo cuántico Efecto casimir Física |
title_short |
Quantum fields with dynamical boundary conditions |
title_full |
Quantum fields with dynamical boundary conditions |
title_fullStr |
Quantum fields with dynamical boundary conditions |
title_full_unstemmed |
Quantum fields with dynamical boundary conditions |
title_sort |
Quantum fields with dynamical boundary conditions |
dc.creator.fl_str_mv |
Prada Malagón, Juan David |
dc.contributor.advisor.none.fl_str_mv |
Reyes Lega, Andrés Fernando |
dc.contributor.author.none.fl_str_mv |
Prada Malagón, Juan David |
dc.contributor.jury.none.fl_str_mv |
Buitrago Aza, Nelson Javier |
dc.subject.armarc.es_CO.fl_str_mv |
Teoría del campo cuántico Efecto casimir |
topic |
Teoría del campo cuántico Efecto casimir Física |
dc.subject.themes.none.fl_str_mv |
Física |
description |
En este trabajo se exponen las características principales de la teoría cuántica de campos en espacio-tiempo plano y en espacio-tiempo curvo enfocándose en la no unicidad del vacío. Este hecho involucra muchos detalles de la teoría que son la causa de que no exista una generalización simple y, por lo tanto, se observan diferencias en los fenómenos físicos desde cada una de las teorías. Dichas diferencias entre ambas teorías fueron estudiadas en el contexto del efecto Casimir con modificaciones tales como; cambios en la topología del espacio-tiempo, introducción de fronteras dinámicas, en un colapso gravitacional y para observadores con distintos tipos de movimiento en el espacio-tiempo. En el estudio del fenómeno físico se mostró que el valor esperado del tensor de energía-momento y el valor esperado del número de partículas en el vacío cambiaba cuando se introducían dichas modificaciones. En este orden de ideas, la investigación se orientó en la observación de los cambios en el observable del número de partículas en el vacío ya que este depende del movimiento acelerado y la curvatura del espacio-tiempo. En resumen, los cambios en el vacío introducen cambios en los observables del sistema físico, luego se puede pensar en relacionar dichos cambios con invariantes topológicos. Para tener un problema bien definido que busque solucionar la idea anterior cabe resaltar que los fenómenos físicos estudiados tienen un alto grado de universalidad y se pueden modelar como transiciones de fase cuánticas después de definir un parámetro de orden que va a hacer las veces de invariante topológico. Para un trabajo futuro, se van a presentar las herramientas matemáticas necesarias para resolver dicho problema en el contexto de sistemas fermiónicos y bosónicos. Se mencionan aspectos relacionados con las condiciones de vacío y su estrecha relación con estructuras complejas ortogonales, y se resaltan aspectos relevantes de las representaciones irreducibles de algebras CAR. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T14:56:42Z |
dc.date.available.none.fl_str_mv |
2020-09-03T14:56:42Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/44613 |
dc.identifier.pdf.none.fl_str_mv |
u830764.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/44613 |
identifier_str_mv |
u830764.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
79 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Física |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Física |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/2fdc9452-9d6f-49e7-a0b2-a6a049d71dd5/download https://repositorio.uniandes.edu.co/bitstreams/6685b29b-71a0-40d9-b7d1-4388fda60e36/download https://repositorio.uniandes.edu.co/bitstreams/be6894f3-67d0-4c82-8cdb-228c3cf450f3/download |
bitstream.checksum.fl_str_mv |
5337f6f774bb8585f956de69e09c94a0 cd9c0c43bab09bf159da01b422b6fe55 b18ead124bfda21778dfa7e2ffcc4507 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134080964198400 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Lega, Andrés Fernandovirtual::17652-1Prada Malagón, Juan Davideefb4860-22ee-41a1-a7cd-b0bbc52a4514500Buitrago Aza, Nelson Javier2020-09-03T14:56:42Z2020-09-03T14:56:42Z2020http://hdl.handle.net/1992/44613u830764.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En este trabajo se exponen las características principales de la teoría cuántica de campos en espacio-tiempo plano y en espacio-tiempo curvo enfocándose en la no unicidad del vacío. Este hecho involucra muchos detalles de la teoría que son la causa de que no exista una generalización simple y, por lo tanto, se observan diferencias en los fenómenos físicos desde cada una de las teorías. Dichas diferencias entre ambas teorías fueron estudiadas en el contexto del efecto Casimir con modificaciones tales como; cambios en la topología del espacio-tiempo, introducción de fronteras dinámicas, en un colapso gravitacional y para observadores con distintos tipos de movimiento en el espacio-tiempo. En el estudio del fenómeno físico se mostró que el valor esperado del tensor de energía-momento y el valor esperado del número de partículas en el vacío cambiaba cuando se introducían dichas modificaciones. En este orden de ideas, la investigación se orientó en la observación de los cambios en el observable del número de partículas en el vacío ya que este depende del movimiento acelerado y la curvatura del espacio-tiempo. En resumen, los cambios en el vacío introducen cambios en los observables del sistema físico, luego se puede pensar en relacionar dichos cambios con invariantes topológicos. Para tener un problema bien definido que busque solucionar la idea anterior cabe resaltar que los fenómenos físicos estudiados tienen un alto grado de universalidad y se pueden modelar como transiciones de fase cuánticas después de definir un parámetro de orden que va a hacer las veces de invariante topológico. Para un trabajo futuro, se van a presentar las herramientas matemáticas necesarias para resolver dicho problema en el contexto de sistemas fermiónicos y bosónicos. Se mencionan aspectos relacionados con las condiciones de vacío y su estrecha relación con estructuras complejas ortogonales, y se resaltan aspectos relevantes de las representaciones irreducibles de algebras CAR.In this work it is exposed the main characteristics of quantum field theory in flat spacetime and curved spacetime focusing on the non uniqueness of the vacuum state in the later theory. This fact involves many datails on the flat spacetime theory that can not be generalized in an easy way to curved spacetime. Therefore the observed physical phenomena looks quite different in both theories. Such differences between theories were studied in the context of the Casimir effect with several modifications: change in topology of spacetime, introduction of moving boundaries, in a gravitational collapse and in different types of motion for the observers on spacetime. In the study of the physical phenomena it was shown that the expec- tation value of the energy-momentum tensor and the expectation value of the number of particles on vacuum changes when introducing such modifications. The research di- rected mostly on the observation of changes on the observable of number of particles in vacuum as it depends directly on acceleration motion and spacetime curvature. In brief, changes on vacuum introduce changes on observables of the physical system. Therefore one would think about relating those observables with topological invariants. This, in order to have a well defined problem which aims to solve the latter idea. It is claimed that the physical phenomena studied have a great degree of universality and they can be modeled as quantum phase transitions by defining an order parameter which is going to be the topological invariant. As a first step for future work, some of the mathematical tools that are going to be needed in order to solve such a problem in the context of fermionic and bosonic systems are exposed. Aspects concerning the vacuum condition are mentioned and their close relation with orthogonal complex structures and irreducible representations of the CAR algebras are highlighted.FísicoPregrado79 hojasapplication/pdfengUniversidad de los AndesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaQuantum fields with dynamical boundary conditionsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPTeoría del campo cuánticoEfecto casimirFísicaPublicationhttps://scholar.google.es/citations?user=04V0g64AAAAJvirtual::17652-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055174virtual::17652-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::17652-19cfe3fb3-ca67-4abc-bf3f-6ceb7f9f4adfvirtual::17652-1ORIGINALu830764.pdfapplication/pdf588058https://repositorio.uniandes.edu.co/bitstreams/2fdc9452-9d6f-49e7-a0b2-a6a049d71dd5/download5337f6f774bb8585f956de69e09c94a0MD51THUMBNAILu830764.pdf.jpgu830764.pdf.jpgIM Thumbnailimage/jpeg11497https://repositorio.uniandes.edu.co/bitstreams/6685b29b-71a0-40d9-b7d1-4388fda60e36/downloadcd9c0c43bab09bf159da01b422b6fe55MD55TEXTu830764.pdf.txtu830764.pdf.txtExtracted texttext/plain128545https://repositorio.uniandes.edu.co/bitstreams/be6894f3-67d0-4c82-8cdb-228c3cf450f3/downloadb18ead124bfda21778dfa7e2ffcc4507MD541992/44613oai:repositorio.uniandes.edu.co:1992/446132024-03-13 16:04:47.463http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |