Human-like recall/association for transfer learning in reinforcement learning
Knowledge transfer is a feature present in the learning process of multiple animal species that machine learning algorithms are capable of imitating. Although different transfer techniques have been developed in reinforcement learning, few techniques have focused on the reproduction of the memory un...
- Autores:
-
Torres García, Edwin Duban
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51598
- Acceso en línea:
- http://hdl.handle.net/1992/51598
- Palabra clave:
- Aprendizaje por refuerzo (Aprendizaje automático)
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_cba1684ec45c682e7463976964ba4abc |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51598 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Human-like recall/association for transfer learning in reinforcement learning |
title |
Human-like recall/association for transfer learning in reinforcement learning |
spellingShingle |
Human-like recall/association for transfer learning in reinforcement learning Aprendizaje por refuerzo (Aprendizaje automático) Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Algoritmos (Computadores) Ingeniería |
title_short |
Human-like recall/association for transfer learning in reinforcement learning |
title_full |
Human-like recall/association for transfer learning in reinforcement learning |
title_fullStr |
Human-like recall/association for transfer learning in reinforcement learning |
title_full_unstemmed |
Human-like recall/association for transfer learning in reinforcement learning |
title_sort |
Human-like recall/association for transfer learning in reinforcement learning |
dc.creator.fl_str_mv |
Torres García, Edwin Duban |
dc.contributor.advisor.none.fl_str_mv |
Lozano Martínez, Fernando Enrique Anderson, Charles W. |
dc.contributor.author.none.fl_str_mv |
Torres García, Edwin Duban |
dc.contributor.jury.none.fl_str_mv |
Villamil Giraldo, María Del Pilar Parra Rodríguez, Carlos Alberto |
dc.subject.armarc.none.fl_str_mv |
Aprendizaje por refuerzo (Aprendizaje automático) Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Algoritmos (Computadores) |
topic |
Aprendizaje por refuerzo (Aprendizaje automático) Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Algoritmos (Computadores) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Knowledge transfer is a feature present in the learning process of multiple animal species that machine learning algorithms are capable of imitating. Although different transfer techniques have been developed in reinforcement learning, few techniques have focused on the reproduction of the memory units involved in knowledge transfer performed by mammals, particularly the episodic memory of humans. This dissertation presents a method that facilitates the transfer by means of a memory unit when an agent is learning to solve an unknown task that is more difficult than previously learned tasks. This dissertation focuses on developing a methodology that integrates characteristics of human learning, in terms of the structures or systems involved, in the context of reinforcement learning to make better use of the information derived from the interaction with environments in past tasks. We show that the memory unit can be learned autonomously over a space in which situations are related through sequences of states that represent the experience of the agent. This space gives the agent a broader context for efficiently relating past experiences and determining the moments when the transfer should occur while learning a new task. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:33:20Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:33:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51598 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/51598 |
dc.identifier.pdf.none.fl_str_mv |
22713.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51598 |
identifier_str_mv |
10.57784/1992/51598 22713.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
111 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c5bd3bac-aba1-4660-bf02-214952a51cae/download https://repositorio.uniandes.edu.co/bitstreams/6b95d5dd-afd7-4917-bf51-2b250b835f08/download https://repositorio.uniandes.edu.co/bitstreams/24ce9eee-3a15-4d81-9594-ab01d213b654/download |
bitstream.checksum.fl_str_mv |
bd2090d5a1e458b6bef36bfef1b5a9ab 2dc21f4dd7058dbb6ebf99821750bdc9 2aeb0046a700a945745d9b3c6427a57e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134082671280128 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lozano Martínez, Fernando Enrique5cc7da60-3b8c-4d5f-9715-b6171372e600400Anderson, Charles W.3027d898-1a1f-4e81-81a1-8099648a1bfa500Torres García, Edwin Duban83be4736-c97b-415f-bd0e-65b096028df5500Villamil Giraldo, María Del PilarParra Rodríguez, Carlos Alberto2021-08-10T18:33:20Z2021-08-10T18:33:20Z2020http://hdl.handle.net/1992/5159810.57784/1992/5159822713.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Knowledge transfer is a feature present in the learning process of multiple animal species that machine learning algorithms are capable of imitating. Although different transfer techniques have been developed in reinforcement learning, few techniques have focused on the reproduction of the memory units involved in knowledge transfer performed by mammals, particularly the episodic memory of humans. This dissertation presents a method that facilitates the transfer by means of a memory unit when an agent is learning to solve an unknown task that is more difficult than previously learned tasks. This dissertation focuses on developing a methodology that integrates characteristics of human learning, in terms of the structures or systems involved, in the context of reinforcement learning to make better use of the information derived from the interaction with environments in past tasks. We show that the memory unit can be learned autonomously over a space in which situations are related through sequences of states that represent the experience of the agent. This space gives the agent a broader context for efficiently relating past experiences and determining the moments when the transfer should occur while learning a new task.La transferencia de conocimiento es una característica presente en el proceso de aprendizaje de múltiples especies animales que los algoritmos de aprendizaje automático son capaces de imitar. Si bien se han desarrollado diferentes técnicas de transferencia en el aprendizaje por refuerzo, pocas técnicas se han centrado en la reproducción de las unidades de memoria involucradas en la transferencia de conocimiento realizada por los mamíferos, particularmente la memoria episódica de los humanos. Esta disertación presenta un método que facilita la transferencia mediante una unidad de memoria cuando un agente está aprendiendo a resolver una tarea desconocida que es más difícil que las tareas aprendidas previamente. Esta tesis se centra en desarrollar una metodología que integre características del aprendizaje humano, en términos de las estructuras o sistemas involucrados, en el contexto del aprendizaje reforzado para hacer un mejor uso de la información derivada de la interacción con los entornos en tareas pasadas.Doctor en IngenieríaDoctorado111 hojasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaHuman-like recall/association for transfer learning in reinforcement learningTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDAprendizaje por refuerzo (Aprendizaje automático)Aprendizaje automático (Inteligencia artificial)Inteligencia artificialAlgoritmos (Computadores)Ingeniería200319095PublicationORIGINAL22713.pdfapplication/pdf5025749https://repositorio.uniandes.edu.co/bitstreams/c5bd3bac-aba1-4660-bf02-214952a51cae/downloadbd2090d5a1e458b6bef36bfef1b5a9abMD51THUMBNAIL22713.pdf.jpg22713.pdf.jpgIM Thumbnailimage/jpeg9622https://repositorio.uniandes.edu.co/bitstreams/6b95d5dd-afd7-4917-bf51-2b250b835f08/download2dc21f4dd7058dbb6ebf99821750bdc9MD55TEXT22713.pdf.txt22713.pdf.txtExtracted texttext/plain164064https://repositorio.uniandes.edu.co/bitstreams/24ce9eee-3a15-4d81-9594-ab01d213b654/download2aeb0046a700a945745d9b3c6427a57eMD541992/51598oai:repositorio.uniandes.edu.co:1992/515982024-08-26 15:27:51.417https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |