Human-like recall/association for transfer learning in reinforcement learning

Knowledge transfer is a feature present in the learning process of multiple animal species that machine learning algorithms are capable of imitating. Although different transfer techniques have been developed in reinforcement learning, few techniques have focused on the reproduction of the memory un...

Full description

Autores:
Torres García, Edwin Duban
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51598
Acceso en línea:
http://hdl.handle.net/1992/51598
Palabra clave:
Aprendizaje por refuerzo (Aprendizaje automático)
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_cba1684ec45c682e7463976964ba4abc
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/51598
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Human-like recall/association for transfer learning in reinforcement learning
title Human-like recall/association for transfer learning in reinforcement learning
spellingShingle Human-like recall/association for transfer learning in reinforcement learning
Aprendizaje por refuerzo (Aprendizaje automático)
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
title_short Human-like recall/association for transfer learning in reinforcement learning
title_full Human-like recall/association for transfer learning in reinforcement learning
title_fullStr Human-like recall/association for transfer learning in reinforcement learning
title_full_unstemmed Human-like recall/association for transfer learning in reinforcement learning
title_sort Human-like recall/association for transfer learning in reinforcement learning
dc.creator.fl_str_mv Torres García, Edwin Duban
dc.contributor.advisor.none.fl_str_mv Lozano Martínez, Fernando Enrique
Anderson, Charles W.
dc.contributor.author.none.fl_str_mv Torres García, Edwin Duban
dc.contributor.jury.none.fl_str_mv Villamil Giraldo, María Del Pilar
Parra Rodríguez, Carlos Alberto
dc.subject.armarc.none.fl_str_mv Aprendizaje por refuerzo (Aprendizaje automático)
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
topic Aprendizaje por refuerzo (Aprendizaje automático)
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Algoritmos (Computadores)
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Knowledge transfer is a feature present in the learning process of multiple animal species that machine learning algorithms are capable of imitating. Although different transfer techniques have been developed in reinforcement learning, few techniques have focused on the reproduction of the memory units involved in knowledge transfer performed by mammals, particularly the episodic memory of humans. This dissertation presents a method that facilitates the transfer by means of a memory unit when an agent is learning to solve an unknown task that is more difficult than previously learned tasks. This dissertation focuses on developing a methodology that integrates characteristics of human learning, in terms of the structures or systems involved, in the context of reinforcement learning to make better use of the information derived from the interaction with environments in past tasks. We show that the memory unit can be learned autonomously over a space in which situations are related through sequences of states that represent the experience of the agent. This space gives the agent a broader context for efficiently relating past experiences and determining the moments when the transfer should occur while learning a new task.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:33:20Z
dc.date.available.none.fl_str_mv 2021-08-10T18:33:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/51598
dc.identifier.doi.none.fl_str_mv 10.57784/1992/51598
dc.identifier.pdf.none.fl_str_mv 22713.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/51598
identifier_str_mv 10.57784/1992/51598
22713.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 111 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c5bd3bac-aba1-4660-bf02-214952a51cae/download
https://repositorio.uniandes.edu.co/bitstreams/6b95d5dd-afd7-4917-bf51-2b250b835f08/download
https://repositorio.uniandes.edu.co/bitstreams/24ce9eee-3a15-4d81-9594-ab01d213b654/download
bitstream.checksum.fl_str_mv bd2090d5a1e458b6bef36bfef1b5a9ab
2dc21f4dd7058dbb6ebf99821750bdc9
2aeb0046a700a945745d9b3c6427a57e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134082671280128
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lozano Martínez, Fernando Enrique5cc7da60-3b8c-4d5f-9715-b6171372e600400Anderson, Charles W.3027d898-1a1f-4e81-81a1-8099648a1bfa500Torres García, Edwin Duban83be4736-c97b-415f-bd0e-65b096028df5500Villamil Giraldo, María Del PilarParra Rodríguez, Carlos Alberto2021-08-10T18:33:20Z2021-08-10T18:33:20Z2020http://hdl.handle.net/1992/5159810.57784/1992/5159822713.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Knowledge transfer is a feature present in the learning process of multiple animal species that machine learning algorithms are capable of imitating. Although different transfer techniques have been developed in reinforcement learning, few techniques have focused on the reproduction of the memory units involved in knowledge transfer performed by mammals, particularly the episodic memory of humans. This dissertation presents a method that facilitates the transfer by means of a memory unit when an agent is learning to solve an unknown task that is more difficult than previously learned tasks. This dissertation focuses on developing a methodology that integrates characteristics of human learning, in terms of the structures or systems involved, in the context of reinforcement learning to make better use of the information derived from the interaction with environments in past tasks. We show that the memory unit can be learned autonomously over a space in which situations are related through sequences of states that represent the experience of the agent. This space gives the agent a broader context for efficiently relating past experiences and determining the moments when the transfer should occur while learning a new task.La transferencia de conocimiento es una característica presente en el proceso de aprendizaje de múltiples especies animales que los algoritmos de aprendizaje automático son capaces de imitar. Si bien se han desarrollado diferentes técnicas de transferencia en el aprendizaje por refuerzo, pocas técnicas se han centrado en la reproducción de las unidades de memoria involucradas en la transferencia de conocimiento realizada por los mamíferos, particularmente la memoria episódica de los humanos. Esta disertación presenta un método que facilita la transferencia mediante una unidad de memoria cuando un agente está aprendiendo a resolver una tarea desconocida que es más difícil que las tareas aprendidas previamente. Esta tesis se centra en desarrollar una metodología que integre características del aprendizaje humano, en términos de las estructuras o sistemas involucrados, en el contexto del aprendizaje reforzado para hacer un mejor uso de la información derivada de la interacción con los entornos en tareas pasadas.Doctor en IngenieríaDoctorado111 hojasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaHuman-like recall/association for transfer learning in reinforcement learningTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDAprendizaje por refuerzo (Aprendizaje automático)Aprendizaje automático (Inteligencia artificial)Inteligencia artificialAlgoritmos (Computadores)Ingeniería200319095PublicationORIGINAL22713.pdfapplication/pdf5025749https://repositorio.uniandes.edu.co/bitstreams/c5bd3bac-aba1-4660-bf02-214952a51cae/downloadbd2090d5a1e458b6bef36bfef1b5a9abMD51THUMBNAIL22713.pdf.jpg22713.pdf.jpgIM Thumbnailimage/jpeg9622https://repositorio.uniandes.edu.co/bitstreams/6b95d5dd-afd7-4917-bf51-2b250b835f08/download2dc21f4dd7058dbb6ebf99821750bdc9MD55TEXT22713.pdf.txt22713.pdf.txtExtracted texttext/plain164064https://repositorio.uniandes.edu.co/bitstreams/24ce9eee-3a15-4d81-9594-ab01d213b654/download2aeb0046a700a945745d9b3c6427a57eMD541992/51598oai:repositorio.uniandes.edu.co:1992/515982024-08-26 15:27:51.417https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co