Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta

El documento cuenta con cinco análisis de imagen, cuatro corresponden a indices espectrales y la restante a la clasificación supervisada, para cinco periodos.

Autores:
Rico Traslaviña, Jorge David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/67810
Acceso en línea:
http://hdl.handle.net/1992/67810
Palabra clave:
Humedal
Manglares
Sensores remotos
Actividad antropogénica
Cambio climático
Uso del suelo y cobertura
Calidad del agua
Geociencias
Rights
openAccess
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_c96337cffecd15c4f547cd46fed7d02d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/67810
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
title Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
spellingShingle Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
Humedal
Manglares
Sensores remotos
Actividad antropogénica
Cambio climático
Uso del suelo y cobertura
Calidad del agua
Geociencias
title_short Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
title_full Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
title_fullStr Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
title_full_unstemmed Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
title_sort Análisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa Marta
dc.creator.fl_str_mv Rico Traslaviña, Jorge David
dc.contributor.advisor.none.fl_str_mv González Molina, María Alejandra
Pardo Villaveces, Natalia
dc.contributor.author.none.fl_str_mv Rico Traslaviña, Jorge David
dc.contributor.jury.none.fl_str_mv Eickmann, Benjamin
dc.subject.keyword.none.fl_str_mv Humedal
Manglares
Sensores remotos
Actividad antropogénica
Cambio climático
Uso del suelo y cobertura
Calidad del agua
topic Humedal
Manglares
Sensores remotos
Actividad antropogénica
Cambio climático
Uso del suelo y cobertura
Calidad del agua
Geociencias
dc.subject.themes.es_CO.fl_str_mv Geociencias
description El documento cuenta con cinco análisis de imagen, cuatro corresponden a indices espectrales y la restante a la clasificación supervisada, para cinco periodos.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-22T21:19:03Z
dc.date.available.none.fl_str_mv 2023-06-22T21:19:03Z
dc.date.issued.none.fl_str_mv 2023-06
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/67810
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/67810
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Abd-El Monsef, H., & Smith, S. E. (2017). A new approach for estimating mangrove canopy cover using Landsat 8 imagery. Computers and Electronics in Agriculture, 135, 183-194. https://doi.org/10.1016/j.compag.2017.02.007
Aguilera-Díaz, M. M. (2011). Habitantes del agua: El complejo lagunar de la Ciénaga Grande de Santa Marta. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 144. https://doi.org/10.32468/dtseru.144
Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660
Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon, Red Sea. Forests, 12(1), 52. https://doi.org/10.3390/f12010052
Ayangbenro, A. S., & Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growthpromoting archaea and bacteria. Current Plant Biology, 25, 100173.
Batur, E., & Maktav, D. (2018). Assessment of surface water quality by using satellite images fusion based on PCA method in the Lake Gala, Turkey. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2983-2989. https://doi.org/10.1109/TGRS.2018.2879024
Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791-811. https://doi.org/10.1007/s11119-021-09861-4
Cardona, C. G., Moreno, J., Contreras, A., Sanchez-Nuñez, D., Moreno, N. A., Guerrero, D., ... & Navarro, J. L. (2023). Accounting of marine and coastal ecosystems at the Ramsar Site, Estuarine Delta System of the Magdalena River, Ciénaga Grande de Santa Marta, Colombia. One Ecosystem, 8, e98852.
Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026
Chen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., & Xu, W. (2020). Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706
Congalton, R. (2004). Putting the Map Back in Map Accuracy Assessment (pp. 1-11). https://doi.org/10.1201/9780203497586.ch1
Corporación Autónoma Regional del Magdalena - Corpamag. (19 de noviembre de 2021). Ciénaga Grande de Santa Marta. Recuperado el 15 de abril de 2023, de https://www.corpamag.gov.co/en/informacionambiental/ecosistemas-fisiograficos/cienaga-grande-de-santa-marta
Das, S., Kaur, S., & Jutla, A. (2021). Earth observations based assessment of impact of COVID-19 lockdown on surface water Quality of Buddha Nala, Punjab, India. Water, 13(10), 1363. https://doi.org/10.3390/w13101363
Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354
Dunea, D., Bretcan, P., Purcoi, L., Tanislav, D., Serban, G., Neagoe, A., ... & Iordache, . (2021). Effects of riparian vegetation on evapotranspiration processes and water quality of small plain streams. Ecohydrology & Hydrobiology, 21(4), 629-640. https://doi.org/10.1016/j.ecohyd.2021.02.004
Espinosa-Díaz, L. F., Zapata-Rey, Y. T., Ibarra-Gutierrez, K., & Bernal, C. A. (2021). Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two decades of monitoring. Science of The Total Environment, 785, 147203. https://doi.org/10.1016/j.scitotenv.2021.147203
Esri (2022) What's new in ArcMap (10.8) [Computer software].
Ezcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T., & Aburto-Oropeza, O. (2016). Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. Proceedings of the National Academy of Sciences, 113(16), 4404-4409. https://doi.org/10.1073/pnas.1519774113
Fernandez, C., Saunier, A., Wortham, H., Ormeño, E., Proffit, M., Lecareux, C., ... & Bousquet-Mélou, A. (2023). Mangrove's species are weak isoprenoid emitters. Estuarine, Coastal and Shelf Science, 108256. https://doi.org/10.1016/j.ecss.2023.108256
Filipovic, S., Lior, N., & Radovanovic, M. (2022). The green deal-just transition and sustainable development goals Nexus. Renewable and Sustainable Energy Reviews, 168, 112759. https://doi.org/10.1016/j.rser.2022.112759
Franks, S., Storey, J., & Rengarajan, R. (2020). The new landsat collection-2 digital elevation model. Remote Sensing, 12(23), 3909. https://doi.org/10.3390/rs12233909
Friess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change in a 2 C world. Wiley Interdisciplinary Reviews: Climate Change, 13(4), e792. https://doi.org/10.1002/wcc.792
Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034- 4257(96)00067-3
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7
Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., ... & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129-1139. https://doi.org/10.1016/j.mex.2018.09.011
Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., ... & Pun, L. (2019). Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. Remote sensing, 11(6), 617. https://doi.org/10.3390/rs11060617
Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and status. Science of the total environment, 586, 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001
Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1
INVEMAR. (2019). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2019. Vol. Volumen 18.
Jaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J. A., Guittard, A., ... & Espinosa, L. F. (2018). Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands, 38, 755-767. https://doi.org/10.1007/s13157- 018-1024-7
Kaita, E., Markham, B., Haque, M. O., Dichmann, D., Gerace, A., Leigh, L., ... & Crawford, C. J. (2022). Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution. Remote Sensing, 14(21), 5414. https://doi.org/10.3390/rs14215414
Khan, M. N., & Mohammad, F. (2014). Eutrophication: challenges and solutions. Eutrophication: Causes, Consequences and Control: Volume 2, 1-15.
Lawley, V., Lewis, M., Clarke, K., & Ostendorf, B. (2016). Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecological Indicators, 60, 1273- 1283. https://doi.org/10.1016/j.ecolind.2015.03.021
Li, K., Chen, S., Pang, X., Cai, J., Zhang, X., Liu, Y., ... & Zhou, X. (2022). Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. European Journal of Medicinal Chemistry, 114117. https://doi.org/10.1016/j.ejmech.2022.114117
Li, C., Rousta, I., Olafsson, H., & Zhang, H. (2023). Lake Water Quality and Dynamics Assessment during 1990-2020 (A Case Study: Chao Lake, China). Atmosphere, 14(2), 382. https://doi.org/10.3390/atmos14020382
Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., ... & Duarte, C. M. (2019). The future of Blue Carbon science. Nature communications, 10(1), 3998. https://doi.org/10.1038/s41467-019-11693-w
Mangewa, L. J., Ndakidemi, P. A., Alward, R. D., Kija, H. K., Bukombe, J. K., Nasolwa, E. R., & Munishi, L. K. (2022). Comparative Assessment of UAV and Sentinel-2 NDVI and GNDVI for Preliminary Diagnosis of Habitat Conditions in Burunge Wildlife Management Area, Tanzania. Earth, 3(3), 769- 787. https://doi.org/10.3390/earth3030044
Mao, S. H., Zhang, H. H., Zhuang, G. C., Li, X. J., Liu, Q., Zhou, Z., ... & Yang, G. P. (2022). Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters. Nature Communications, 13(1), 7309. https://doi.org/10.1038/s41467-022-35082-y
Martinez Baños, V. T. (2019). Cambios en los capitales comunitarios de la población palafítica de Bocas de Aracataca (Pueblo Viejo, Magdalena), durante los últimos 70 años. https://doi.org/10.11144/Javeriana.10554.45004
Maryantika, N., & Lin, C. (2017). Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in Agriculture, 4(4), 321-332. https://doi.org/10.1016/j.inpa.2017.06.003
Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. https://doi.org/10.1016/j.rse.2020.111968
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714
Meza, T. C., Díaz, L. F. E., & Aguas, L. J. V. (2022). OCURRENCIA Y DISTRIBUCIÓN DE Vibrio cholerae CULTIVABLE EN LA CIÉNAGA GRANDE DE SANTA MARTA, CARIBE COLOMBIANO. Acta Biológica Colombiana, 27(2). https://doi.org/10.15446/abc.v27n2.92057
Moreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015). Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. International Journal of Applied Earth Observation and Geoinformation, 38, 204-215. https://doi.org/10.1016/j.jag.2015.01.008
Otero, V., Van De Kerchove, R., Satyanarayana, B., Mohd-Lokman, H., Lucas, R., & Dahdouh-Guebas, F. (2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sensing, 11(7), 774. https://doi.org/10.3390/rs11070774
Pastor-Guzman, J., Dash, J., & Atkinson, P. M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote sensing of environment, 205, 71-84. https://doi.org/10.1016/j.rse.2017.11.009
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011
Pomárico, A. T., Peña, A. L., Ante, R. F., & Duarte, L. O. (2020). Dieta y amplitud del nicho trófico del cormorán neotropical [Nannopterum brasilianus (Gmelin, 1789)] en el Santuario de Flora y Fauna Ciénaga Grande de Santa Marta, Caribe de Colombia. Boletín de Investigaciones Marinas y Costeras, 49(SuplEsp), 193-208. https://doi.org/10.25268/bimc.invemar.2020.49.SuplEsp.1072
Qiu, S., Zhu, Z., Olofsson, P., Woodcock, C. E., & Jin, S. (2023). Evaluation of Landsat image compositing algorithms. Remote Sensing of Environment, 285, 113375. https://doi.org/10.1016/j.rse.2022.113375
Rabiei, J., Khademi, M. S., Bagherpour, S., Ebadi, N., Karimi, A., & Ostad-Ali-Askari, K. (2022). Investigation of fire risk zones using heat-humidity time series data and vegetation. Applied Water Science, 12(9), 216. https://doi.org/10.1007/s13201-022-01742-z
Rahman, M. M., Lamb, D. W., & Stanley, J. N. (2015). The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology, 202, 39-43. https://doi.org/10.1016/j.agrformet.2014.12.001
República de Colombia. (2009). Decreto 3888. Modifica el artículo 1° del Decreto 224 de 1998.
Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing, 6(5), 4173-4189. https://doi.org/10.3390/rs6054173
Ruan, L., Yan, M., Zhang, L., Fan, X., & Yang, H. (2022). Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000-2018. Science of The Total Environment, 844, 157075. https://doi.org/10.1016/j.scitotenv.2022.157075
Sabins, F. F., & Ellis, J. M. (2020). Remote sensing: Principles, interpretation, and applications. Waveland Press.
Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., ... & Adams, C. (2020). Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. https://doi.org/10.1016/j.earscirev.2020.103187
Sasmito, S. D., Basyuni, M., Kridalaksana, A., Saragi-Sasmito, M. F., Lovelock, C. E., & Murdiyarso, D. (2023). Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia's mangroves. Nature Ecology & Evolution, 1-9. https://doi.org/10.1038/s41559-022-01926-5
Sharma, B., Rasul, G., & Chettri, N. (2015). The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services, 12, 84-93. https://doi.org/10.1016/j.ecoser.2015.02.007
Sisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. In International conference on recent advances and innovations in engineering (ICRAIE-2014) (pp. 1-4). IEEE. doi: 10.1109/ICRAIE.2014.6909319.
Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051.
Teixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote sensing, 12(16), 2597. https://doi.org/10.3390/rs12162597
Torres Guevara, L. E., Schlüter, A., & Lopez, M. C. (2016). Collective action in a tropical estuarine lagoon: Adapting Ostrom's SES framework to Ciénaga Grande de Santa Marta, Colombia. International Journal of the Commons, 10(1), 334-362.
Toth, C., & Józków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. https://doi.org/10.1016/j.isprsjprs.2015.10.004
Trofymchuk, O., Okhariev, V., & Trysnyuk, V. (2020). Environmental security management of geosystems. In 18th International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214- 4609.201902083
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
Vinciková, H., Hanus, J., & Pechar, L. (2015). Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands. Wetlands ecology and management, 23, 933-946. https://doi.org/10.1007/s11273-015-9431-5
Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956- 2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223
Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., ... & Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195. https://doi.org/10.1016/j.rse.2022.113195
Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017. https://doi.org/10.1155/2017/1353691
Zaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., & Aufaristama, M. (2022). Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105, 102499. https://doi.org/10.1016/j.geothermics.2022.102499
Zaitunah, A., Ahmad, A. G., & Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 126, No. 1, p. 012112). IOP Publishing. https://10.1088/1755- 1315/126/1/012112
Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510. https://doi.org/10.1002/ldr.2246
Zhang, K., Thapa, B., Ross, M., & Gann, D. (2016). Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere, 7(6), e01366. https://doi.org/10.1002/ecs2.1366
Zhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., & Li, X. (2017). Mapping mangrove forests using multitidal remotely-sensed data and a decision-tree-based procedure. International journal of applied earth observation and geoinformation, 62, 201-214. https://doi.org/10.1016/j.jag.2017.06.010
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 40 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0e3d3c2f-c983-4c50-ba34-03c699ef3ca7/download
https://repositorio.uniandes.edu.co/bitstreams/e14d7081-ea93-4dfb-950a-dddf1166f706/download
https://repositorio.uniandes.edu.co/bitstreams/3c95fad3-aefe-4585-a6de-ccd7a47e2961/download
https://repositorio.uniandes.edu.co/bitstreams/6844fd2d-e893-49e4-8dc0-563ce0163767/download
https://repositorio.uniandes.edu.co/bitstreams/e66db0b1-05d2-4491-866c-1ee409599593/download
https://repositorio.uniandes.edu.co/bitstreams/13126d0a-19ef-451a-a4ac-bfec600d8249/download
https://repositorio.uniandes.edu.co/bitstreams/b559f783-c3c8-4163-af03-e78a366706f6/download
https://repositorio.uniandes.edu.co/bitstreams/da4f3e88-1253-4685-8714-a2b34f194007/download
bitstream.checksum.fl_str_mv 13bb850d59eb777a0191dbac7205fa65
08b106dfeb12472e88207a069e15ba30
5aa5c691a1ffe97abd12c2966efcb8d6
d982d235b58223a2986a78abc7b444df
ca1ee337a18870af36c9af87463674fa
317c3665708149368be9a6c11b9c1b0c
539cdafc773da3f1d623312a7cefed4f
f7d494f61e544413a13e6ba1da2089cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390170524778496
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Molina, María Alejandra2425af5a-6b16-487a-b28b-9e5d64aada06600Pardo Villaveces, Nataliavirtual::1663-1Rico Traslaviña, Jorge David9df616d5-fc76-4401-85cb-2fb7a7567ff1600Eickmann, Benjamin2023-06-22T21:19:03Z2023-06-22T21:19:03Z2023-06http://hdl.handle.net/1992/67810instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El documento cuenta con cinco análisis de imagen, cuatro corresponden a indices espectrales y la restante a la clasificación supervisada, para cinco periodos.Los humedales como los manglares son ecosistemas de suma importancia para el progreso humano, y medios relevantes que nos ayudan a cumplir los objetivos de desarrollo sostenible de la ONU, por lo que es de suma importancia monitorearlos y determinar si se están conservando. Así, el principal objetivo de este estudio multitemporal y espectral es monitorear las variaciones en el uso del suelo del Sitio Ramsar Delta estuarino del río Magdalena Ciénaga Grande de Santa Marta, el cual se efectuó a través de imágenes satelitales de Landsat con ayuda del programa de ArcGIS. De esta manera, se realizaron índices espectrales como NDVI, NDWI, NDMI y GNDVI para analizar las condiciones en la vegetación y la calidad del agua. Adicionalmente, se utilizó la clasificación supervisada para identificar los manglares y otros tipos de vegetación, así como para detectar las actividades humanas en la zona de estudio, cuantificando los cambios de área en el uso y cobertura del suelo, ejecutado para 5 periodos. Los resultados mostraron que la cobertura de manglares ha disminuido en la zona de estudio debido a actividades humanas, tales como construcción de infraestructuras y tala de bosques, adecuándolos a diferentes explotaciones, principalmente agricultura. De igual forma, se encontró que la calidad del agua ha disminuido en los últimos años, por procesos de sedimentación y eutrofización. Este estudio pudo identificar las variaciones en el tiempo de las principales coberturas del suelo e identificar su uso, lo cual permitió cuantificar el área de manglar y las principales actividades humanas desempeñadas en la zona. Los resultados indicaron que la cobertura de manglares se ha menguado y que la calidad del agua ha disminuido debido a la actividad humana. Los resultados de este estudio suministran información fundamental que puede repercutir en la toma de decisiones, y por consiguiente en la implementación de políticas tendientes en proteger la biodiversidad y la calidad del agua en un sitio Ramsar.Wetlands such as mangroves are ecosystems of utmost importance for human development and to meet the UN Sustainable Development Goals, so it is of utmost importance to monitor and determine whether these ecosystems are being conserved. Thus, the main objective of this multi-temporal and spectral study is to monitor the variations in land use of the Ramsar Site Delta estuarine of the Magdalena River Ciénaga Grande de Santa Marta, which was carried out through Landsat satellite images with the help of the ArcGIS program. Spectral indices such as NDVI, NDWI, NDMI and GNDVI were used to analyze vegetation conditions and water quality. In addition, supervised classification was used to identify mangroves and other vegetation types, as well as to detect human activities in the study area and to quantify changes in land use and land cover area, carried out for 5 periods. The results showed that mangrove cover has decreased in the study area due to human activity, such as infrastructure construction and forest clearing to make it suitable for mainly agricultural activities. It was also found that water quality in the study area has decreased in recent years due to sedimentation and eutrophication processes. The results of this study are important to inform decision making and policy implementation to protect biodiversity and water quality in the study area. Thus, this study was able to identify the variations over time of the main land covers and identify their use, which allowed us to quantify the mangrove area and the main human activities in the study area. The results indicated that mangrove cover has decreased and water quality has decreased due to human activity in the study area. These results can be used to inform decision making and policy implementation to protect biodiversity and water quality in this Ramsar site.GeocientíficoPregrado40 páginasapplication/pdfspaUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de GeocienciasAnálisis espectral y multitemporal de modificaciones en el uso del suelo y calidad del agua en el Sistema Delta Estuarino del Río Magdalena, Ciénaga Grande de Santa MartaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPHumedalManglaresSensores remotosActividad antropogénicaCambio climáticoUso del suelo y coberturaCalidad del aguaGeocienciasAbd-El Monsef, H., & Smith, S. E. (2017). A new approach for estimating mangrove canopy cover using Landsat 8 imagery. Computers and Electronics in Agriculture, 135, 183-194. https://doi.org/10.1016/j.compag.2017.02.007Aguilera-Díaz, M. M. (2011). Habitantes del agua: El complejo lagunar de la Ciénaga Grande de Santa Marta. Documentos de Trabajo Sobre Economía Regional y Urbana; No. 144. https://doi.org/10.32468/dtseru.144Akhtar, N., Syakir Ishak, M. I., Bhawani, S. A., & Umar, K. (2021). Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660. https://doi.org/10.3390/w13192660Aljahdali, M. O., Munawar, S., & Khan, W. R. (2021). Monitoring mangrove forest degradation and regeneration: Landsat time series analysis of moisture and vegetation indices at Rabigh Lagoon, Red Sea. Forests, 12(1), 52. https://doi.org/10.3390/f12010052Ayangbenro, A. S., & Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growthpromoting archaea and bacteria. Current Plant Biology, 25, 100173.Batur, E., & Maktav, D. (2018). Assessment of surface water quality by using satellite images fusion based on PCA method in the Lake Gala, Turkey. IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2983-2989. https://doi.org/10.1109/TGRS.2018.2879024Burns, B. W., Green, V. S., Hashem, A. A., Massey, J. H., Shew, A. M., Adviento-Borbe, M. A. A., & Milad, M. (2022). Determining nitrogen deficiencies for maize using various remote sensing indices. Precision Agriculture, 23(3), 791-811. https://doi.org/10.1007/s11119-021-09861-4Cardona, C. G., Moreno, J., Contreras, A., Sanchez-Nuñez, D., Moreno, N. A., Guerrero, D., ... & Navarro, J. L. (2023). Accounting of marine and coastal ecosystems at the Ramsar Site, Estuarine Delta System of the Magdalena River, Ciénaga Grande de Santa Marta, Colombia. One Ecosystem, 8, e98852.Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., & Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026Chen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., & Xu, W. (2020). Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706Congalton, R. (2004). Putting the Map Back in Map Accuracy Assessment (pp. 1-11). https://doi.org/10.1201/9780203497586.ch1Corporación Autónoma Regional del Magdalena - Corpamag. (19 de noviembre de 2021). Ciénaga Grande de Santa Marta. Recuperado el 15 de abril de 2023, de https://www.corpamag.gov.co/en/informacionambiental/ecosistemas-fisiograficos/cienaga-grande-de-santa-martaDas, S., Kaur, S., & Jutla, A. (2021). Earth observations based assessment of impact of COVID-19 lockdown on surface water Quality of Buddha Nala, Punjab, India. Water, 13(10), 1363. https://doi.org/10.3390/w13101363Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354Dunea, D., Bretcan, P., Purcoi, L., Tanislav, D., Serban, G., Neagoe, A., ... & Iordache, . (2021). Effects of riparian vegetation on evapotranspiration processes and water quality of small plain streams. Ecohydrology & Hydrobiology, 21(4), 629-640. https://doi.org/10.1016/j.ecohyd.2021.02.004Espinosa-Díaz, L. F., Zapata-Rey, Y. T., Ibarra-Gutierrez, K., & Bernal, C. A. (2021). Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two decades of monitoring. Science of The Total Environment, 785, 147203. https://doi.org/10.1016/j.scitotenv.2021.147203Esri (2022) What's new in ArcMap (10.8) [Computer software].Ezcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T., & Aburto-Oropeza, O. (2016). Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. Proceedings of the National Academy of Sciences, 113(16), 4404-4409. https://doi.org/10.1073/pnas.1519774113Fernandez, C., Saunier, A., Wortham, H., Ormeño, E., Proffit, M., Lecareux, C., ... & Bousquet-Mélou, A. (2023). Mangrove's species are weak isoprenoid emitters. Estuarine, Coastal and Shelf Science, 108256. https://doi.org/10.1016/j.ecss.2023.108256Filipovic, S., Lior, N., & Radovanovic, M. (2022). The green deal-just transition and sustainable development goals Nexus. Renewable and Sustainable Energy Reviews, 168, 112759. https://doi.org/10.1016/j.rser.2022.112759Franks, S., Storey, J., & Rengarajan, R. (2020). The new landsat collection-2 digital elevation model. Remote Sensing, 12(23), 3909. https://doi.org/10.3390/rs12233909Friess, D. A., Adame, M. F., Adams, J. B., & Lovelock, C. E. (2022). Mangrove forests under climate change in a 2 C world. Wiley Interdisciplinary Reviews: Climate Change, 13(4), e792. https://doi.org/10.1002/wcc.792Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. https://doi.org/10.1016/S0034- 4257(96)00067-3Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., ... & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129-1139. https://doi.org/10.1016/j.mex.2018.09.011Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., ... & Pun, L. (2019). Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: A case study of Hong Kong. Remote sensing, 11(6), 617. https://doi.org/10.3390/rs11060617Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and status. Science of the total environment, 586, 319-327. https://doi.org/10.1016/j.scitotenv.2017.02.001Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6. https://doi.org/10.1007/s11676-020-01155-1INVEMAR. (2019). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2019. Vol. Volumen 18.Jaramillo, F., Licero, L., Åhlen, I., Manzoni, S., Rodríguez-Rodríguez, J. A., Guittard, A., ... & Espinosa, L. F. (2018). Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands, 38, 755-767. https://doi.org/10.1007/s13157- 018-1024-7Kaita, E., Markham, B., Haque, M. O., Dichmann, D., Gerace, A., Leigh, L., ... & Crawford, C. J. (2022). Landsat 9 Cross Calibration Under-Fly of Landsat 8: Planning, and Execution. Remote Sensing, 14(21), 5414. https://doi.org/10.3390/rs14215414Khan, M. N., & Mohammad, F. (2014). Eutrophication: challenges and solutions. Eutrophication: Causes, Consequences and Control: Volume 2, 1-15.Lawley, V., Lewis, M., Clarke, K., & Ostendorf, B. (2016). Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecological Indicators, 60, 1273- 1283. https://doi.org/10.1016/j.ecolind.2015.03.021Li, K., Chen, S., Pang, X., Cai, J., Zhang, X., Liu, Y., ... & Zhou, X. (2022). Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. European Journal of Medicinal Chemistry, 114117. https://doi.org/10.1016/j.ejmech.2022.114117Li, C., Rousta, I., Olafsson, H., & Zhang, H. (2023). Lake Water Quality and Dynamics Assessment during 1990-2020 (A Case Study: Chao Lake, China). Atmosphere, 14(2), 382. https://doi.org/10.3390/atmos14020382Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., ... & Duarte, C. M. (2019). The future of Blue Carbon science. Nature communications, 10(1), 3998. https://doi.org/10.1038/s41467-019-11693-wMangewa, L. J., Ndakidemi, P. A., Alward, R. D., Kija, H. K., Bukombe, J. K., Nasolwa, E. R., & Munishi, L. K. (2022). Comparative Assessment of UAV and Sentinel-2 NDVI and GNDVI for Preliminary Diagnosis of Habitat Conditions in Burunge Wildlife Management Area, Tanzania. Earth, 3(3), 769- 787. https://doi.org/10.3390/earth3030044Mao, S. H., Zhang, H. H., Zhuang, G. C., Li, X. J., Liu, Q., Zhou, Z., ... & Yang, G. P. (2022). Aerobic oxidation of methane significantly reduces global diffusive methane emissions from shallow marine waters. Nature Communications, 13(1), 7309. https://doi.org/10.1038/s41467-022-35082-yMartinez Baños, V. T. (2019). Cambios en los capitales comunitarios de la población palafítica de Bocas de Aracataca (Pueblo Viejo, Magdalena), durante los últimos 70 años. https://doi.org/10.11144/Javeriana.10554.45004Maryantika, N., & Lin, C. (2017). Exploring changes of land use and mangrove distribution in the economic area of Sidoarjo District, East Java using multi-temporal Landsat images. Information Processing in Agriculture, 4(4), 321-332. https://doi.org/10.1016/j.inpa.2017.06.003Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., & Jenstrom, D. T. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, 111968. https://doi.org/10.1016/j.rse.2020.111968McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714Meza, T. C., Díaz, L. F. E., & Aguas, L. J. V. (2022). OCURRENCIA Y DISTRIBUCIÓN DE Vibrio cholerae CULTIVABLE EN LA CIÉNAGA GRANDE DE SANTA MARTA, CARIBE COLOMBIANO. Acta Biológica Colombiana, 27(2). https://doi.org/10.15446/abc.v27n2.92057Moreno-Madriñán, M. J., Rickman, D. L., Ogashawara, I., Irwin, D. E., Ye, J., & Al-Hamdan, M. Z. (2015). Using remote sensing to monitor the influence of river discharge on watershed outlets and adjacent coral Reefs: Magdalena River and Rosario Islands, Colombia. International Journal of Applied Earth Observation and Geoinformation, 38, 204-215. https://doi.org/10.1016/j.jag.2015.01.008Otero, V., Van De Kerchove, R., Satyanarayana, B., Mohd-Lokman, H., Lucas, R., & Dahdouh-Guebas, F. (2019). An analysis of the early regeneration of mangrove forests using Landsat time series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sensing, 11(7), 774. https://doi.org/10.3390/rs11070774Pastor-Guzman, J., Dash, J., & Atkinson, P. M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote sensing of environment, 205, 71-84. https://doi.org/10.1016/j.rse.2017.11.009Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011Pomárico, A. T., Peña, A. L., Ante, R. F., & Duarte, L. O. (2020). Dieta y amplitud del nicho trófico del cormorán neotropical [Nannopterum brasilianus (Gmelin, 1789)] en el Santuario de Flora y Fauna Ciénaga Grande de Santa Marta, Caribe de Colombia. Boletín de Investigaciones Marinas y Costeras, 49(SuplEsp), 193-208. https://doi.org/10.25268/bimc.invemar.2020.49.SuplEsp.1072Qiu, S., Zhu, Z., Olofsson, P., Woodcock, C. E., & Jin, S. (2023). Evaluation of Landsat image compositing algorithms. Remote Sensing of Environment, 285, 113375. https://doi.org/10.1016/j.rse.2022.113375Rabiei, J., Khademi, M. S., Bagherpour, S., Ebadi, N., Karimi, A., & Ostad-Ali-Askari, K. (2022). Investigation of fire risk zones using heat-humidity time series data and vegetation. Applied Water Science, 12(9), 216. https://doi.org/10.1007/s13201-022-01742-zRahman, M. M., Lamb, D. W., & Stanley, J. N. (2015). The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology, 202, 39-43. https://doi.org/10.1016/j.agrformet.2014.12.001República de Colombia. (2009). Decreto 3888. Modifica el artículo 1° del Decreto 224 de 1998.Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote sensing, 6(5), 4173-4189. https://doi.org/10.3390/rs6054173Ruan, L., Yan, M., Zhang, L., Fan, X., & Yang, H. (2022). Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000-2018. Science of The Total Environment, 844, 157075. https://doi.org/10.1016/j.scitotenv.2022.157075Sabins, F. F., & Ellis, J. M. (2020). Remote sensing: Principles, interpretation, and applications. Waveland Press.Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., ... & Adams, C. (2020). Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. https://doi.org/10.1016/j.earscirev.2020.103187Sasmito, S. D., Basyuni, M., Kridalaksana, A., Saragi-Sasmito, M. F., Lovelock, C. E., & Murdiyarso, D. (2023). Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia's mangroves. Nature Ecology & Evolution, 1-9. https://doi.org/10.1038/s41559-022-01926-5Sharma, B., Rasul, G., & Chettri, N. (2015). The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services, 12, 84-93. https://doi.org/10.1016/j.ecoser.2015.02.007Sisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. In International conference on recent advances and innovations in engineering (ICRAIE-2014) (pp. 1-4). IEEE. doi: 10.1109/ICRAIE.2014.6909319.Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051.Teixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote sensing, 12(16), 2597. https://doi.org/10.3390/rs12162597Torres Guevara, L. E., Schlüter, A., & Lopez, M. C. (2016). Collective action in a tropical estuarine lagoon: Adapting Ostrom's SES framework to Ciénaga Grande de Santa Marta, Colombia. International Journal of the Commons, 10(1), 334-362.Toth, C., & Józków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. https://doi.org/10.1016/j.isprsjprs.2015.10.004Trofymchuk, O., Okhariev, V., & Trysnyuk, V. (2020). Environmental security management of geosystems. In 18th International Conference on Geoinformatics-Theoretical and Applied Aspects (Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214- 4609.201902083Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0Vinciková, H., Hanus, J., & Pechar, L. (2015). Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands. Wetlands ecology and management, 23, 933-946. https://doi.org/10.1007/s11273-015-9431-5Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956- 2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., ... & Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195. https://doi.org/10.1016/j.rse.2022.113195Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017. https://doi.org/10.1155/2017/1353691Zaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., & Aufaristama, M. (2022). Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105, 102499. https://doi.org/10.1016/j.geothermics.2022.102499Zaitunah, A., Ahmad, A. G., & Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 126, No. 1, p. 012112). IOP Publishing. https://10.1088/1755- 1315/126/1/012112Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24(5), 499-510. https://doi.org/10.1002/ldr.2246Zhang, K., Thapa, B., Ross, M., & Gann, D. (2016). Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere, 7(6), e01366. https://doi.org/10.1002/ecs2.1366Zhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., & Li, X. (2017). Mapping mangrove forests using multitidal remotely-sensed data and a decision-tree-based procedure. International journal of applied earth observation and geoinformation, 62, 201-214. https://doi.org/10.1016/j.jag.2017.06.010201914103Publicationhttps://scholar.google.es/citations?user=ikmh8i0AAAAJvirtual::1663-10000-0002-8247-4116virtual::1663-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000406740virtual::1663-1a782b64a-d94d-4fd1-b866-03e18a0b504fvirtual::1663-1a782b64a-d94d-4fd1-b866-03e18a0b504fvirtual::1663-1TEXTTrabajodeGrado_VersionFinal.pdf.txtTrabajodeGrado_VersionFinal.pdf.txtExtracted texttext/plain73608https://repositorio.uniandes.edu.co/bitstreams/0e3d3c2f-c983-4c50-ba34-03c699ef3ca7/download13bb850d59eb777a0191dbac7205fa65MD55FormatoAutorizacion.pdf.txtFormatoAutorizacion.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/e14d7081-ea93-4dfb-950a-dddf1166f706/download08b106dfeb12472e88207a069e15ba30MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/3c95fad3-aefe-4585-a6de-ccd7a47e2961/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTrabajodeGrado_VersionFinal.pdf.jpgTrabajodeGrado_VersionFinal.pdf.jpgIM Thumbnailimage/jpeg8859https://repositorio.uniandes.edu.co/bitstreams/6844fd2d-e893-49e4-8dc0-563ce0163767/downloadd982d235b58223a2986a78abc7b444dfMD56FormatoAutorizacion.pdf.jpgFormatoAutorizacion.pdf.jpgIM Thumbnailimage/jpeg16301https://repositorio.uniandes.edu.co/bitstreams/e66db0b1-05d2-4491-866c-1ee409599593/downloadca1ee337a18870af36c9af87463674faMD58ORIGINALTrabajodeGrado_VersionFinal.pdfTrabajodeGrado_VersionFinal.pdfTrabajo de gradoapplication/pdf2329994https://repositorio.uniandes.edu.co/bitstreams/13126d0a-19ef-451a-a4ac-bfec600d8249/download317c3665708149368be9a6c11b9c1b0cMD53FormatoAutorizacion.pdfFormatoAutorizacion.pdfHIDEapplication/pdf212835https://repositorio.uniandes.edu.co/bitstreams/b559f783-c3c8-4163-af03-e78a366706f6/download539cdafc773da3f1d623312a7cefed4fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/da4f3e88-1253-4685-8714-a2b34f194007/downloadf7d494f61e544413a13e6ba1da2089cdMD521992/67810oai:repositorio.uniandes.edu.co:1992/678102024-03-13 12:01:00.288http://creativecommons.org/licenses/by-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==