Resilient distributed machine learning using network reconfiguration
Machine learning (ML) is currently making great impact in our today's life. However computations may become excessively huge on big data scenarios, so recently distributed models have become an interesting field of study. This thesis presents a reconfiguration strategy over a network of distrib...
- Autores:
-
Ángel Imitola, Jesús Gabriel
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/50992
- Acceso en línea:
- http://hdl.handle.net/1992/50992
- Palabra clave:
- Aprendizaje automático (Inteligencia artificial)
Big Data
Seguridad en computadores
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_c930b0f7c10a1f409fd2750c9da6ae24 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/50992 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Trujillo, Luis Felipevirtual::10022-1Ángel Imitola, Jesús Gabrielc2e91105-3bd6-47ea-9930-fdf201ca3a03500Quijano Silva, NicanorBolívar Nieto, Edgar2021-08-10T18:05:44Z2021-08-10T18:05:44Z2020http://hdl.handle.net/1992/5099223556.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Machine learning (ML) is currently making great impact in our today's life. However computations may become excessively huge on big data scenarios, so recently distributed models have become an interesting field of study. This thesis presents a reconfiguration strategy over a network of distributed machine learning models, in order to boost its reliability against certain types of byzantine faults or attacks. The attacks considered are some attacks that are usually used against machine learning models or concerning consensus. Simulations on a distributed support vector machine (DSVM) network are made to evaluate our reconfiguration strategy under the previously considered attacks.El Aprendizaje de máquina (ML) está haciendo un impacto grande en nuestras vidas actualmente. Sin embargo, las operaciones pueden volverse excesivamente grande en escenarios de big data. Para combatirlo, los modelos distribuidos se han convertido en un campo interesante de estudio. Esta tesis presenta una estrategia de reconfiguración sobre una red de ML distribuida, para aumentar su resiliencia contra ciertas fallas bizantinas o ataques a la red. Los ataques considerados son ataques recurrentes en el estudio de machine learning y consensus. Se realizan algunas simulaciones sobre una máquina de soporte vectorial distribuido (DSVM) para evaluar el desempeño de la estrategia de reconfiguración bajo los ataques considerados previamente.Magíster en Ingeniería Electrónica y de ComputadoresMaestría31 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería Electrónica y de ComputadoresFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaResilient distributed machine learning using network reconfigurationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAprendizaje automático (Inteligencia artificial)Big DataSeguridad en computadoresIngeniería201413561Publicationhttps://scholar.google.es/citations?user=4TGvo8AAAAJvirtual::10022-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000802506virtual::10022-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::10022-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::10022-1THUMBNAIL23556.pdf.jpg23556.pdf.jpgIM Thumbnailimage/jpeg11565https://repositorio.uniandes.edu.co/bitstreams/7c0fc90e-0586-42cf-bef7-2a4c70f6e16c/download7e16aca15df29323b8eac0012f6493dbMD55TEXT23556.pdf.txt23556.pdf.txtExtracted texttext/plain40693https://repositorio.uniandes.edu.co/bitstreams/695f8058-dd3d-4ebf-8c11-69e13172050f/download7ada96bc579b2ded25935b3ca5fcb09aMD54ORIGINAL23556.pdfapplication/pdf579216https://repositorio.uniandes.edu.co/bitstreams/89d85b6f-5492-4307-a072-ee1f27235cd4/download908ca0008f45c93c4ad15fe739c89d5fMD511992/50992oai:repositorio.uniandes.edu.co:1992/509922024-03-13 14:04:54.305https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Resilient distributed machine learning using network reconfiguration |
title |
Resilient distributed machine learning using network reconfiguration |
spellingShingle |
Resilient distributed machine learning using network reconfiguration Aprendizaje automático (Inteligencia artificial) Big Data Seguridad en computadores Ingeniería |
title_short |
Resilient distributed machine learning using network reconfiguration |
title_full |
Resilient distributed machine learning using network reconfiguration |
title_fullStr |
Resilient distributed machine learning using network reconfiguration |
title_full_unstemmed |
Resilient distributed machine learning using network reconfiguration |
title_sort |
Resilient distributed machine learning using network reconfiguration |
dc.creator.fl_str_mv |
Ángel Imitola, Jesús Gabriel |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Trujillo, Luis Felipe |
dc.contributor.author.none.fl_str_mv |
Ángel Imitola, Jesús Gabriel |
dc.contributor.jury.none.fl_str_mv |
Quijano Silva, Nicanor Bolívar Nieto, Edgar |
dc.subject.armarc.none.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Big Data Seguridad en computadores |
topic |
Aprendizaje automático (Inteligencia artificial) Big Data Seguridad en computadores Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Machine learning (ML) is currently making great impact in our today's life. However computations may become excessively huge on big data scenarios, so recently distributed models have become an interesting field of study. This thesis presents a reconfiguration strategy over a network of distributed machine learning models, in order to boost its reliability against certain types of byzantine faults or attacks. The attacks considered are some attacks that are usually used against machine learning models or concerning consensus. Simulations on a distributed support vector machine (DSVM) network are made to evaluate our reconfiguration strategy under the previously considered attacks. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:05:44Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:05:44Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/50992 |
dc.identifier.pdf.none.fl_str_mv |
23556.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/50992 |
identifier_str_mv |
23556.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
31 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Maestría en Ingeniería Electrónica y de Computadores |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/7c0fc90e-0586-42cf-bef7-2a4c70f6e16c/download https://repositorio.uniandes.edu.co/bitstreams/695f8058-dd3d-4ebf-8c11-69e13172050f/download https://repositorio.uniandes.edu.co/bitstreams/89d85b6f-5492-4307-a072-ee1f27235cd4/download |
bitstream.checksum.fl_str_mv |
7e16aca15df29323b8eac0012f6493db 7ada96bc579b2ded25935b3ca5fcb09a 908ca0008f45c93c4ad15fe739c89d5f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133957208113152 |