Resilient distributed machine learning using network reconfiguration

Machine learning (ML) is currently making great impact in our today's life. However computations may become excessively huge on big data scenarios, so recently distributed models have become an interesting field of study. This thesis presents a reconfiguration strategy over a network of distrib...

Full description

Autores:
Ángel Imitola, Jesús Gabriel
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/50992
Acceso en línea:
http://hdl.handle.net/1992/50992
Palabra clave:
Aprendizaje automático (Inteligencia artificial)
Big Data
Seguridad en computadores
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_c930b0f7c10a1f409fd2750c9da6ae24
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/50992
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Trujillo, Luis Felipevirtual::10022-1Ángel Imitola, Jesús Gabrielc2e91105-3bd6-47ea-9930-fdf201ca3a03500Quijano Silva, NicanorBolívar Nieto, Edgar2021-08-10T18:05:44Z2021-08-10T18:05:44Z2020http://hdl.handle.net/1992/5099223556.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Machine learning (ML) is currently making great impact in our today's life. However computations may become excessively huge on big data scenarios, so recently distributed models have become an interesting field of study. This thesis presents a reconfiguration strategy over a network of distributed machine learning models, in order to boost its reliability against certain types of byzantine faults or attacks. The attacks considered are some attacks that are usually used against machine learning models or concerning consensus. Simulations on a distributed support vector machine (DSVM) network are made to evaluate our reconfiguration strategy under the previously considered attacks.El Aprendizaje de máquina (ML) está haciendo un impacto grande en nuestras vidas actualmente. Sin embargo, las operaciones pueden volverse excesivamente grande en escenarios de big data. Para combatirlo, los modelos distribuidos se han convertido en un campo interesante de estudio. Esta tesis presenta una estrategia de reconfiguración sobre una red de ML distribuida, para aumentar su resiliencia contra ciertas fallas bizantinas o ataques a la red. Los ataques considerados son ataques recurrentes en el estudio de machine learning y consensus. Se realizan algunas simulaciones sobre una máquina de soporte vectorial distribuido (DSVM) para evaluar el desempeño de la estrategia de reconfiguración bajo los ataques considerados previamente.Magíster en Ingeniería Electrónica y de ComputadoresMaestría31 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería Electrónica y de ComputadoresFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaResilient distributed machine learning using network reconfigurationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAprendizaje automático (Inteligencia artificial)Big DataSeguridad en computadoresIngeniería201413561Publicationhttps://scholar.google.es/citations?user=4TGvo8AAAAJvirtual::10022-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000802506virtual::10022-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::10022-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::10022-1THUMBNAIL23556.pdf.jpg23556.pdf.jpgIM Thumbnailimage/jpeg11565https://repositorio.uniandes.edu.co/bitstreams/7c0fc90e-0586-42cf-bef7-2a4c70f6e16c/download7e16aca15df29323b8eac0012f6493dbMD55TEXT23556.pdf.txt23556.pdf.txtExtracted texttext/plain40693https://repositorio.uniandes.edu.co/bitstreams/695f8058-dd3d-4ebf-8c11-69e13172050f/download7ada96bc579b2ded25935b3ca5fcb09aMD54ORIGINAL23556.pdfapplication/pdf579216https://repositorio.uniandes.edu.co/bitstreams/89d85b6f-5492-4307-a072-ee1f27235cd4/download908ca0008f45c93c4ad15fe739c89d5fMD511992/50992oai:repositorio.uniandes.edu.co:1992/509922024-03-13 14:04:54.305https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Resilient distributed machine learning using network reconfiguration
title Resilient distributed machine learning using network reconfiguration
spellingShingle Resilient distributed machine learning using network reconfiguration
Aprendizaje automático (Inteligencia artificial)
Big Data
Seguridad en computadores
Ingeniería
title_short Resilient distributed machine learning using network reconfiguration
title_full Resilient distributed machine learning using network reconfiguration
title_fullStr Resilient distributed machine learning using network reconfiguration
title_full_unstemmed Resilient distributed machine learning using network reconfiguration
title_sort Resilient distributed machine learning using network reconfiguration
dc.creator.fl_str_mv Ángel Imitola, Jesús Gabriel
dc.contributor.advisor.none.fl_str_mv Giraldo Trujillo, Luis Felipe
dc.contributor.author.none.fl_str_mv Ángel Imitola, Jesús Gabriel
dc.contributor.jury.none.fl_str_mv Quijano Silva, Nicanor
Bolívar Nieto, Edgar
dc.subject.armarc.none.fl_str_mv Aprendizaje automático (Inteligencia artificial)
Big Data
Seguridad en computadores
topic Aprendizaje automático (Inteligencia artificial)
Big Data
Seguridad en computadores
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Machine learning (ML) is currently making great impact in our today's life. However computations may become excessively huge on big data scenarios, so recently distributed models have become an interesting field of study. This thesis presents a reconfiguration strategy over a network of distributed machine learning models, in order to boost its reliability against certain types of byzantine faults or attacks. The attacks considered are some attacks that are usually used against machine learning models or concerning consensus. Simulations on a distributed support vector machine (DSVM) network are made to evaluate our reconfiguration strategy under the previously considered attacks.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:05:44Z
dc.date.available.none.fl_str_mv 2021-08-10T18:05:44Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/50992
dc.identifier.pdf.none.fl_str_mv 23556.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/50992
identifier_str_mv 23556.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 31 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Maestría en Ingeniería Electrónica y de Computadores
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/7c0fc90e-0586-42cf-bef7-2a4c70f6e16c/download
https://repositorio.uniandes.edu.co/bitstreams/695f8058-dd3d-4ebf-8c11-69e13172050f/download
https://repositorio.uniandes.edu.co/bitstreams/89d85b6f-5492-4307-a072-ee1f27235cd4/download
bitstream.checksum.fl_str_mv 7e16aca15df29323b8eac0012f6493db
7ada96bc579b2ded25935b3ca5fcb09a
908ca0008f45c93c4ad15fe739c89d5f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133957208113152