Construction of laccase based electrochemical biosensors for detection of clonazepam

Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to dete...

Full description

Autores:
Cardona Quinto, Juan Esteban
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74568
Acceso en línea:
https://hdl.handle.net/1992/74568
Palabra clave:
Clonazepam
Laccase
Electrochemistry
Biosensor
Calibration curve
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNIANDES2_c82fc15abee774e4779844326a5323f6
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74568
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Construction of laccase based electrochemical biosensors for detection of clonazepam
dc.title.alternative.none.fl_str_mv Construcción de biosensores electroquímicos basados en lacasa para la detección de clonazepam
title Construction of laccase based electrochemical biosensors for detection of clonazepam
spellingShingle Construction of laccase based electrochemical biosensors for detection of clonazepam
Clonazepam
Laccase
Electrochemistry
Biosensor
Calibration curve
Ingeniería
title_short Construction of laccase based electrochemical biosensors for detection of clonazepam
title_full Construction of laccase based electrochemical biosensors for detection of clonazepam
title_fullStr Construction of laccase based electrochemical biosensors for detection of clonazepam
title_full_unstemmed Construction of laccase based electrochemical biosensors for detection of clonazepam
title_sort Construction of laccase based electrochemical biosensors for detection of clonazepam
dc.creator.fl_str_mv Cardona Quinto, Juan Esteban
dc.contributor.advisor.none.fl_str_mv Osma Cruz, Johann Faccelo
dc.contributor.author.none.fl_str_mv Cardona Quinto, Juan Esteban
dc.contributor.jury.none.fl_str_mv Sotelo Briceño, Diana Camila
dc.subject.keyword.eng.fl_str_mv Clonazepam
Laccase
Electrochemistry
Biosensor
Calibration curve
topic Clonazepam
Laccase
Electrochemistry
Biosensor
Calibration curve
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to detect those drugs. Using a potentiostate and electrochemical electrodes it is possible to quantify pharmaceutical particles in the water. Additionally, the electrodes can be functionalized to enhance their performance using enzymes acting as redox reactions catalyzers augmenting the speed of Clonazepam electrons release at 0.611V with the best sensor made. This study details the process of five Laccase based Biosensors fabrication to quantify Clonazepam in water using redox reactions, finding that is possible to fabricate sensors easily and with high reproducibility to ap-proximate the concentration of the drug dissolved with very low error.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-17T13:46:00Z
dc.date.available.none.fl_str_mv 2024-07-17T13:46:00Z
dc.date.issued.none.fl_str_mv 2024-07-15
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74568
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74568
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. https://doi.org/10.3390/ijerph18052532.
I. A. Duarte, P. Reis-Santos, J. Fick, H. N. Cabral, B. Duarte, and V. F. Fonseca, “Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species,” Environmental Pollution, vol. 316, p. 120531, 2023, doi: https://doi.org/10.1016/j.envpol.2022.120531.
M. S. Nin et al., “Anxiolytic effect of clonazepam in female rats: Grooming microstructure and elevated plus maze tests,” Eur J Pharmacol, vol. 684, no. 1, pp. 95–101, 2012, doi: https://doi.org/10.1016/j.ejphar.2012.03.038.
C. N. Nunes, V. E. dos Anjos, and S. P. Quináia, “Are there pharmaceutical compounds in sediments or in water? Determi-nation of the distribution coefficient of benzodiazepine drugs in aquatic environment,” Environmental Pollution, vol. 251, pp. 522–529, 2019, doi: https://doi.org/10.1016/j.envpol.2019.05.015.
V. Calisto and V. I. Esteves, “Psychiatric pharmaceuticals in the environment,” Chemosphere, vol. 77, no. 10, pp. 1257–1274, 2009, doi: https://doi.org/10.1016/j.chemosphere.2009.09.021.
Y. Chen et al., “Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China.,” Front Public Health, vol. 10, p. 963257, 2022, doi: 10.3389/fpubh.2022.963257.
C. Peña-Guzmán et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” J Environ Manage, vol. 237, pp. 408–423, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.02.100.
R. Zorzanelli and H. Editorial, “The case of chronic clonazepam use in Rio de,” vol. 8, no. 2, pp. 194–213.
Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015 Feb;72(2):136-42. doi: 10.1001/jamapsychiatry.2014.1763. PMID: 25517224.
J. L. Wilkinson et al., Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. U.S.A. 119, e2113947119 (2022). Doi: https://doi.org/10.1073/pnas.2113947119.
A.M. Botero-Coy et al., ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’, Science of The Total Environment, Volume 642, 2018, Pages 842-853, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2018.06.088.
F. Randez-Gil, J. A. Daros, A. Salvador, and M. De La Guardia, “Direct derivative spectrophotometric determination of ni-trazepam and clonazepam in biological fluids,” J Pharm Biomed Anal, vol. 9, no. 7, pp. 539–545, 1991, doi: https://doi.org/10.1016/0731-7085(91)80175-9.
A. A. Salem, B. N. Barsoum, and E. L. Izake, “Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 60, no. 4, pp. 771–780, 2004, doi: https://doi.org/10.1016/S1386-1425(03)00300-7.
Fatta, D., A. Achilleos, A. Nikolaou, and S. Meriç. 2007. "Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater." TrAC Trends in Analytical Chemistry 26 (6): 515-533. https://doi.org/10.1016/j.trac.2007.02.001.
Qriouet, Zidane, Qmichou, Zineb, Bouchoutrouch, Nadia, Mahi, Hassan, Cherrah, Yahia, Sefrioui, Hassan, Analytical Methods Used for the Detection and Quantification of Benzodiazepines, Journal of Analytical Methods in Chemistry, 2019, 2035492, 11 pages, 2019. https://doi.org/10.1155/2019/2035492
Francis, Koshy, and Mathew. “Chapter 7 - Electroanalytical Techniques: A Tool for Nanomaterial Characterization.”. Sci-enceDirect 2022.
Chistian C, Segura. A LOW-COST MULTI-TECHNIQUE PORTABLE ELECTROCHEMICAL DEVICE FOR REMOTE BIO-SENSORS. Doctoral thesis 2022.
J. Xu, Y. Wang, and S. Hu, “Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review,” Microchimica Acta, vol. 184, no. 1. 2017. doi: 10.1007/s00604-016-2007-0.
Juan C, Ariaas. Design and implementation of an electrochemical sensor, 2 based on a microfluidic system, to determine ac-etaminophen 3 concentrations in water. Article 2022.
E. Bakker and M. Telting-Diaz, “Electrochemical Sensors,” Anal Chem, vol. 74, no. 12, pp. 2781–2800, Jun. 2002, doi: 10.1021/ac0202278.
Garima, A. Sachdev, and I. Matai, “An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam,” Journal of Electroanalytical Chemistry, vol. 919, p. 116537, 2022, doi: https://doi.org/10.1016/j.jelechem.2022.116537.
Arregui et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation 2019.
Tvorynska, Sofiia, Jiří Barek, and Bohdan Josypcuk. 2022. "Influence of Different Covalent Immobilization Protocols on Elec-troanalytical Performance of Laccase-Based Biosensors." Bioelectrochemistry 148: 108223. https://doi.org/10.1016/j.bioelechem.2022.108223.
B. Dey, T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis, Bioelectrochemistry 146 (2022) 108144, https://doi.org/10.1016/j.bioelechem.2022.108144.
ChemicalBook. 2024. "3-Aminopropyltriethoxysilane." ChemicalBook. Accessed June 20, 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8686147.htm.
Pal, Kunal, Allan T. Paulson, and Dérick Rousseau. 2013. "Biopolymers in Controlled-Release Delivery Systems." In Handbook of Biopolymers and Biodegradable Plastics, edited by Sina Ebnesajjad, 329-363. Plastics Design Library. William Andrew Pub-lishing. https://doi.org/10.1016/B978-1-4557-2834-3.00014-8.
ALS Japan. "Current - Potential Curve." Accessed June 20, 2024. https://www.als-japan.com/1822.html.
Clonazepam. (2021). In http://www.rochecanada.com/. Hoffmann-La Roche Limited. Retrieved June 20, 2024, from https://assets.roche.com/f/173850/x/75c73cc9d7/rivotril_pm_e.pdf
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c019f080-e4ee-49bb-98fb-1f85aa6a8c17/download
https://repositorio.uniandes.edu.co/bitstreams/b854115d-9cb0-40cd-9a9c-e3289d9ee04b/download
https://repositorio.uniandes.edu.co/bitstreams/fa051708-d0a3-4ecf-aeb1-543b7c28f02c/download
https://repositorio.uniandes.edu.co/bitstreams/d7cb188e-1c01-477b-b7ad-fc9c6a82e80d/download
https://repositorio.uniandes.edu.co/bitstreams/11dea77b-c24b-44bc-8cd9-4377bed7d89a/download
https://repositorio.uniandes.edu.co/bitstreams/83ac695f-ccca-4954-bfb2-4e928f008200/download
https://repositorio.uniandes.edu.co/bitstreams/da051d95-6618-43df-8852-2c104e49bba4/download
https://repositorio.uniandes.edu.co/bitstreams/2c23fdb3-5bdd-44f8-b96c-74e71d3a2b23/download
bitstream.checksum.fl_str_mv 372a2124bb6031c64389f00f93162392
f1b6566a9166ee5e6383911ddb93f132
ae9e573a68e7f92501b6913cc846c39f
934f4ca17e109e0a05eaeaba504d7ce4
25239c15d1e0daae3b6c863a35fb9bd1
328b33cec305ac55ac9a2c3f54e3dd1a
bfa9ed78ee0705e8e39c116effb7df81
00e1f159aab3c0cea7f8a2434947251f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133901278117888
spelling Osma Cruz, Johann Faccelovirtual::18950-1Cardona Quinto, Juan EstebanSotelo Briceño, Diana Camila2024-07-17T13:46:00Z2024-07-17T13:46:00Z2024-07-15https://hdl.handle.net/1992/74568instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to detect those drugs. Using a potentiostate and electrochemical electrodes it is possible to quantify pharmaceutical particles in the water. Additionally, the electrodes can be functionalized to enhance their performance using enzymes acting as redox reactions catalyzers augmenting the speed of Clonazepam electrons release at 0.611V with the best sensor made. This study details the process of five Laccase based Biosensors fabrication to quantify Clonazepam in water using redox reactions, finding that is possible to fabricate sensors easily and with high reproducibility to ap-proximate the concentration of the drug dissolved with very low error.Los residuos y las aguas residuales de la industria farmacéutica se están convirtiendo cada vez más en un enorme problema de contaminación, no sólo por la falta de métodos de tratamiento del agua, sino también por la incontrolable llegada de fármacos a los depósitos naturales de agua. La voltamperometría es una de las técnicas de cuantificación utilizadas para detectar esos fármacos. Utilizando un potenciostato y electrodos electroquímicos es posible cuantificar partículas farmacéuticas en el agua. Además, los electrodos pueden ser funcionalizados para mejorar su rendimiento utilizando enzimas que actúan como catalizadores de reacciones redox, aumentando la velocidad liberación de electrones a 0,611V con el mejor sensor fabricado. Este estudio detalla el proceso de fabricación de cinco Biosensores basados en Lacasa para cuantificar Clonazepam en agua utilizando reacciones redox, encontrando que es posible fabricar sensores fácilmente y con alta reproducibilidad, para aproximar la concentración del fármaco disuelto con muy bajo error.PregradoBiosensors17 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Construction of laccase based electrochemical biosensors for detection of clonazepamConstrucción de biosensores electroquímicos basados en lacasa para la detección de clonazepamTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPClonazepamLaccaseElectrochemistryBiosensorCalibration curveIngenieríaGonzález Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. https://doi.org/10.3390/ijerph18052532.I. A. Duarte, P. Reis-Santos, J. Fick, H. N. Cabral, B. Duarte, and V. F. Fonseca, “Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species,” Environmental Pollution, vol. 316, p. 120531, 2023, doi: https://doi.org/10.1016/j.envpol.2022.120531.M. S. Nin et al., “Anxiolytic effect of clonazepam in female rats: Grooming microstructure and elevated plus maze tests,” Eur J Pharmacol, vol. 684, no. 1, pp. 95–101, 2012, doi: https://doi.org/10.1016/j.ejphar.2012.03.038.C. N. Nunes, V. E. dos Anjos, and S. P. Quináia, “Are there pharmaceutical compounds in sediments or in water? Determi-nation of the distribution coefficient of benzodiazepine drugs in aquatic environment,” Environmental Pollution, vol. 251, pp. 522–529, 2019, doi: https://doi.org/10.1016/j.envpol.2019.05.015.V. Calisto and V. I. Esteves, “Psychiatric pharmaceuticals in the environment,” Chemosphere, vol. 77, no. 10, pp. 1257–1274, 2009, doi: https://doi.org/10.1016/j.chemosphere.2009.09.021.Y. Chen et al., “Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China.,” Front Public Health, vol. 10, p. 963257, 2022, doi: 10.3389/fpubh.2022.963257.C. Peña-Guzmán et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” J Environ Manage, vol. 237, pp. 408–423, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.02.100.R. Zorzanelli and H. Editorial, “The case of chronic clonazepam use in Rio de,” vol. 8, no. 2, pp. 194–213.Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015 Feb;72(2):136-42. doi: 10.1001/jamapsychiatry.2014.1763. PMID: 25517224.J. L. Wilkinson et al., Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. U.S.A. 119, e2113947119 (2022). Doi: https://doi.org/10.1073/pnas.2113947119.A.M. Botero-Coy et al., ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’, Science of The Total Environment, Volume 642, 2018, Pages 842-853, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2018.06.088.F. Randez-Gil, J. A. Daros, A. Salvador, and M. De La Guardia, “Direct derivative spectrophotometric determination of ni-trazepam and clonazepam in biological fluids,” J Pharm Biomed Anal, vol. 9, no. 7, pp. 539–545, 1991, doi: https://doi.org/10.1016/0731-7085(91)80175-9.A. A. Salem, B. N. Barsoum, and E. L. Izake, “Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 60, no. 4, pp. 771–780, 2004, doi: https://doi.org/10.1016/S1386-1425(03)00300-7.Fatta, D., A. Achilleos, A. Nikolaou, and S. Meriç. 2007. "Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater." TrAC Trends in Analytical Chemistry 26 (6): 515-533. https://doi.org/10.1016/j.trac.2007.02.001.Qriouet, Zidane, Qmichou, Zineb, Bouchoutrouch, Nadia, Mahi, Hassan, Cherrah, Yahia, Sefrioui, Hassan, Analytical Methods Used for the Detection and Quantification of Benzodiazepines, Journal of Analytical Methods in Chemistry, 2019, 2035492, 11 pages, 2019. https://doi.org/10.1155/2019/2035492Francis, Koshy, and Mathew. “Chapter 7 - Electroanalytical Techniques: A Tool for Nanomaterial Characterization.”. Sci-enceDirect 2022.Chistian C, Segura. A LOW-COST MULTI-TECHNIQUE PORTABLE ELECTROCHEMICAL DEVICE FOR REMOTE BIO-SENSORS. Doctoral thesis 2022.J. Xu, Y. Wang, and S. Hu, “Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review,” Microchimica Acta, vol. 184, no. 1. 2017. doi: 10.1007/s00604-016-2007-0.Juan C, Ariaas. Design and implementation of an electrochemical sensor, 2 based on a microfluidic system, to determine ac-etaminophen 3 concentrations in water. Article 2022.E. Bakker and M. Telting-Diaz, “Electrochemical Sensors,” Anal Chem, vol. 74, no. 12, pp. 2781–2800, Jun. 2002, doi: 10.1021/ac0202278.Garima, A. Sachdev, and I. Matai, “An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam,” Journal of Electroanalytical Chemistry, vol. 919, p. 116537, 2022, doi: https://doi.org/10.1016/j.jelechem.2022.116537.Arregui et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation 2019.Tvorynska, Sofiia, Jiří Barek, and Bohdan Josypcuk. 2022. "Influence of Different Covalent Immobilization Protocols on Elec-troanalytical Performance of Laccase-Based Biosensors." Bioelectrochemistry 148: 108223. https://doi.org/10.1016/j.bioelechem.2022.108223.B. Dey, T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis, Bioelectrochemistry 146 (2022) 108144, https://doi.org/10.1016/j.bioelechem.2022.108144.ChemicalBook. 2024. "3-Aminopropyltriethoxysilane." ChemicalBook. Accessed June 20, 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8686147.htm.Pal, Kunal, Allan T. Paulson, and Dérick Rousseau. 2013. "Biopolymers in Controlled-Release Delivery Systems." In Handbook of Biopolymers and Biodegradable Plastics, edited by Sina Ebnesajjad, 329-363. Plastics Design Library. William Andrew Pub-lishing. https://doi.org/10.1016/B978-1-4557-2834-3.00014-8.ALS Japan. "Current - Potential Curve." Accessed June 20, 2024. https://www.als-japan.com/1822.html.Clonazepam. (2021). In http://www.rochecanada.com/. Hoffmann-La Roche Limited. Retrieved June 20, 2024, from https://assets.roche.com/f/173850/x/75c73cc9d7/rivotril_pm_e.pdf201717667Publicationhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJvirtual::18950-10000-0003-2928-3406virtual::18950-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112virtual::18950-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::18950-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::18950-1ORIGINALConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdfConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdfapplication/pdf2035041https://repositorio.uniandes.edu.co/bitstreams/c019f080-e4ee-49bb-98fb-1f85aa6a8c17/download372a2124bb6031c64389f00f93162392MD51autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf278808https://repositorio.uniandes.edu.co/bitstreams/b854115d-9cb0-40cd-9a9c-e3289d9ee04b/downloadf1b6566a9166ee5e6383911ddb93f132MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/fa051708-d0a3-4ecf-aeb1-543b7c28f02c/downloadae9e573a68e7f92501b6913cc846c39fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/d7cb188e-1c01-477b-b7ad-fc9c6a82e80d/download934f4ca17e109e0a05eaeaba504d7ce4MD58TEXTConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.txtConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.txtExtracted texttext/plain34808https://repositorio.uniandes.edu.co/bitstreams/11dea77b-c24b-44bc-8cd9-4377bed7d89a/download25239c15d1e0daae3b6c863a35fb9bd1MD59autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain2044https://repositorio.uniandes.edu.co/bitstreams/83ac695f-ccca-4954-bfb2-4e928f008200/download328b33cec305ac55ac9a2c3f54e3dd1aMD511THUMBNAILConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.jpgConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.jpgGenerated Thumbnailimage/jpeg13354https://repositorio.uniandes.edu.co/bitstreams/da051d95-6618-43df-8852-2c104e49bba4/downloadbfa9ed78ee0705e8e39c116effb7df81MD510autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10822https://repositorio.uniandes.edu.co/bitstreams/2c23fdb3-5bdd-44f8-b96c-74e71d3a2b23/download00e1f159aab3c0cea7f8a2434947251fMD5121992/74568oai:repositorio.uniandes.edu.co:1992/745682024-09-12 16:20:55.29http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K