Construction of laccase based electrochemical biosensors for detection of clonazepam
Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to dete...
- Autores:
-
Cardona Quinto, Juan Esteban
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74568
- Acceso en línea:
- https://hdl.handle.net/1992/74568
- Palabra clave:
- Clonazepam
Laccase
Electrochemistry
Biosensor
Calibration curve
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNIANDES2_c82fc15abee774e4779844326a5323f6 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74568 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
dc.title.alternative.none.fl_str_mv |
Construcción de biosensores electroquímicos basados en lacasa para la detección de clonazepam |
title |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
spellingShingle |
Construction of laccase based electrochemical biosensors for detection of clonazepam Clonazepam Laccase Electrochemistry Biosensor Calibration curve Ingeniería |
title_short |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
title_full |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
title_fullStr |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
title_full_unstemmed |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
title_sort |
Construction of laccase based electrochemical biosensors for detection of clonazepam |
dc.creator.fl_str_mv |
Cardona Quinto, Juan Esteban |
dc.contributor.advisor.none.fl_str_mv |
Osma Cruz, Johann Faccelo |
dc.contributor.author.none.fl_str_mv |
Cardona Quinto, Juan Esteban |
dc.contributor.jury.none.fl_str_mv |
Sotelo Briceño, Diana Camila |
dc.subject.keyword.eng.fl_str_mv |
Clonazepam Laccase Electrochemistry Biosensor Calibration curve |
topic |
Clonazepam Laccase Electrochemistry Biosensor Calibration curve Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to detect those drugs. Using a potentiostate and electrochemical electrodes it is possible to quantify pharmaceutical particles in the water. Additionally, the electrodes can be functionalized to enhance their performance using enzymes acting as redox reactions catalyzers augmenting the speed of Clonazepam electrons release at 0.611V with the best sensor made. This study details the process of five Laccase based Biosensors fabrication to quantify Clonazepam in water using redox reactions, finding that is possible to fabricate sensors easily and with high reproducibility to ap-proximate the concentration of the drug dissolved with very low error. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-17T13:46:00Z |
dc.date.available.none.fl_str_mv |
2024-07-17T13:46:00Z |
dc.date.issued.none.fl_str_mv |
2024-07-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74568 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74568 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. https://doi.org/10.3390/ijerph18052532. I. A. Duarte, P. Reis-Santos, J. Fick, H. N. Cabral, B. Duarte, and V. F. Fonseca, “Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species,” Environmental Pollution, vol. 316, p. 120531, 2023, doi: https://doi.org/10.1016/j.envpol.2022.120531. M. S. Nin et al., “Anxiolytic effect of clonazepam in female rats: Grooming microstructure and elevated plus maze tests,” Eur J Pharmacol, vol. 684, no. 1, pp. 95–101, 2012, doi: https://doi.org/10.1016/j.ejphar.2012.03.038. C. N. Nunes, V. E. dos Anjos, and S. P. Quináia, “Are there pharmaceutical compounds in sediments or in water? Determi-nation of the distribution coefficient of benzodiazepine drugs in aquatic environment,” Environmental Pollution, vol. 251, pp. 522–529, 2019, doi: https://doi.org/10.1016/j.envpol.2019.05.015. V. Calisto and V. I. Esteves, “Psychiatric pharmaceuticals in the environment,” Chemosphere, vol. 77, no. 10, pp. 1257–1274, 2009, doi: https://doi.org/10.1016/j.chemosphere.2009.09.021. Y. Chen et al., “Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China.,” Front Public Health, vol. 10, p. 963257, 2022, doi: 10.3389/fpubh.2022.963257. C. Peña-Guzmán et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” J Environ Manage, vol. 237, pp. 408–423, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.02.100. R. Zorzanelli and H. Editorial, “The case of chronic clonazepam use in Rio de,” vol. 8, no. 2, pp. 194–213. Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015 Feb;72(2):136-42. doi: 10.1001/jamapsychiatry.2014.1763. PMID: 25517224. J. L. Wilkinson et al., Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. U.S.A. 119, e2113947119 (2022). Doi: https://doi.org/10.1073/pnas.2113947119. A.M. Botero-Coy et al., ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’, Science of The Total Environment, Volume 642, 2018, Pages 842-853, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2018.06.088. F. Randez-Gil, J. A. Daros, A. Salvador, and M. De La Guardia, “Direct derivative spectrophotometric determination of ni-trazepam and clonazepam in biological fluids,” J Pharm Biomed Anal, vol. 9, no. 7, pp. 539–545, 1991, doi: https://doi.org/10.1016/0731-7085(91)80175-9. A. A. Salem, B. N. Barsoum, and E. L. Izake, “Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 60, no. 4, pp. 771–780, 2004, doi: https://doi.org/10.1016/S1386-1425(03)00300-7. Fatta, D., A. Achilleos, A. Nikolaou, and S. Meriç. 2007. "Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater." TrAC Trends in Analytical Chemistry 26 (6): 515-533. https://doi.org/10.1016/j.trac.2007.02.001. Qriouet, Zidane, Qmichou, Zineb, Bouchoutrouch, Nadia, Mahi, Hassan, Cherrah, Yahia, Sefrioui, Hassan, Analytical Methods Used for the Detection and Quantification of Benzodiazepines, Journal of Analytical Methods in Chemistry, 2019, 2035492, 11 pages, 2019. https://doi.org/10.1155/2019/2035492 Francis, Koshy, and Mathew. “Chapter 7 - Electroanalytical Techniques: A Tool for Nanomaterial Characterization.”. Sci-enceDirect 2022. Chistian C, Segura. A LOW-COST MULTI-TECHNIQUE PORTABLE ELECTROCHEMICAL DEVICE FOR REMOTE BIO-SENSORS. Doctoral thesis 2022. J. Xu, Y. Wang, and S. Hu, “Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review,” Microchimica Acta, vol. 184, no. 1. 2017. doi: 10.1007/s00604-016-2007-0. Juan C, Ariaas. Design and implementation of an electrochemical sensor, 2 based on a microfluidic system, to determine ac-etaminophen 3 concentrations in water. Article 2022. E. Bakker and M. Telting-Diaz, “Electrochemical Sensors,” Anal Chem, vol. 74, no. 12, pp. 2781–2800, Jun. 2002, doi: 10.1021/ac0202278. Garima, A. Sachdev, and I. Matai, “An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam,” Journal of Electroanalytical Chemistry, vol. 919, p. 116537, 2022, doi: https://doi.org/10.1016/j.jelechem.2022.116537. Arregui et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation 2019. Tvorynska, Sofiia, Jiří Barek, and Bohdan Josypcuk. 2022. "Influence of Different Covalent Immobilization Protocols on Elec-troanalytical Performance of Laccase-Based Biosensors." Bioelectrochemistry 148: 108223. https://doi.org/10.1016/j.bioelechem.2022.108223. B. Dey, T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis, Bioelectrochemistry 146 (2022) 108144, https://doi.org/10.1016/j.bioelechem.2022.108144. ChemicalBook. 2024. "3-Aminopropyltriethoxysilane." ChemicalBook. Accessed June 20, 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8686147.htm. Pal, Kunal, Allan T. Paulson, and Dérick Rousseau. 2013. "Biopolymers in Controlled-Release Delivery Systems." In Handbook of Biopolymers and Biodegradable Plastics, edited by Sina Ebnesajjad, 329-363. Plastics Design Library. William Andrew Pub-lishing. https://doi.org/10.1016/B978-1-4557-2834-3.00014-8. ALS Japan. "Current - Potential Curve." Accessed June 20, 2024. https://www.als-japan.com/1822.html. Clonazepam. (2021). In http://www.rochecanada.com/. Hoffmann-La Roche Limited. Retrieved June 20, 2024, from https://assets.roche.com/f/173850/x/75c73cc9d7/rivotril_pm_e.pdf |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
17 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c019f080-e4ee-49bb-98fb-1f85aa6a8c17/download https://repositorio.uniandes.edu.co/bitstreams/b854115d-9cb0-40cd-9a9c-e3289d9ee04b/download https://repositorio.uniandes.edu.co/bitstreams/fa051708-d0a3-4ecf-aeb1-543b7c28f02c/download https://repositorio.uniandes.edu.co/bitstreams/d7cb188e-1c01-477b-b7ad-fc9c6a82e80d/download https://repositorio.uniandes.edu.co/bitstreams/11dea77b-c24b-44bc-8cd9-4377bed7d89a/download https://repositorio.uniandes.edu.co/bitstreams/83ac695f-ccca-4954-bfb2-4e928f008200/download https://repositorio.uniandes.edu.co/bitstreams/da051d95-6618-43df-8852-2c104e49bba4/download https://repositorio.uniandes.edu.co/bitstreams/2c23fdb3-5bdd-44f8-b96c-74e71d3a2b23/download |
bitstream.checksum.fl_str_mv |
372a2124bb6031c64389f00f93162392 f1b6566a9166ee5e6383911ddb93f132 ae9e573a68e7f92501b6913cc846c39f 934f4ca17e109e0a05eaeaba504d7ce4 25239c15d1e0daae3b6c863a35fb9bd1 328b33cec305ac55ac9a2c3f54e3dd1a bfa9ed78ee0705e8e39c116effb7df81 00e1f159aab3c0cea7f8a2434947251f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133901278117888 |
spelling |
Osma Cruz, Johann Faccelovirtual::18950-1Cardona Quinto, Juan EstebanSotelo Briceño, Diana Camila2024-07-17T13:46:00Z2024-07-17T13:46:00Z2024-07-15https://hdl.handle.net/1992/74568instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Pharmaceutical industry waste and wastewater are becoming a very huge pollution problem more and more, not only because of the lack of water treatment methods but also by the incontrollable arrival of drugs at natural water reservoirs. Voltammetry is one of the quantification techniques used to detect those drugs. Using a potentiostate and electrochemical electrodes it is possible to quantify pharmaceutical particles in the water. Additionally, the electrodes can be functionalized to enhance their performance using enzymes acting as redox reactions catalyzers augmenting the speed of Clonazepam electrons release at 0.611V with the best sensor made. This study details the process of five Laccase based Biosensors fabrication to quantify Clonazepam in water using redox reactions, finding that is possible to fabricate sensors easily and with high reproducibility to ap-proximate the concentration of the drug dissolved with very low error.Los residuos y las aguas residuales de la industria farmacéutica se están convirtiendo cada vez más en un enorme problema de contaminación, no sólo por la falta de métodos de tratamiento del agua, sino también por la incontrolable llegada de fármacos a los depósitos naturales de agua. La voltamperometría es una de las técnicas de cuantificación utilizadas para detectar esos fármacos. Utilizando un potenciostato y electrodos electroquímicos es posible cuantificar partículas farmacéuticas en el agua. Además, los electrodos pueden ser funcionalizados para mejorar su rendimiento utilizando enzimas que actúan como catalizadores de reacciones redox, aumentando la velocidad liberación de electrones a 0,611V con el mejor sensor fabricado. Este estudio detalla el proceso de fabricación de cinco Biosensores basados en Lacasa para cuantificar Clonazepam en agua utilizando reacciones redox, encontrando que es posible fabricar sensores fácilmente y con alta reproducibilidad, para aproximar la concentración del fármaco disuelto con muy bajo error.PregradoBiosensors17 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Construction of laccase based electrochemical biosensors for detection of clonazepamConstrucción de biosensores electroquímicos basados en lacasa para la detección de clonazepamTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPClonazepamLaccaseElectrochemistryBiosensorCalibration curveIngenieríaGonzález Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. https://doi.org/10.3390/ijerph18052532.I. A. Duarte, P. Reis-Santos, J. Fick, H. N. Cabral, B. Duarte, and V. F. Fonseca, “Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species,” Environmental Pollution, vol. 316, p. 120531, 2023, doi: https://doi.org/10.1016/j.envpol.2022.120531.M. S. Nin et al., “Anxiolytic effect of clonazepam in female rats: Grooming microstructure and elevated plus maze tests,” Eur J Pharmacol, vol. 684, no. 1, pp. 95–101, 2012, doi: https://doi.org/10.1016/j.ejphar.2012.03.038.C. N. Nunes, V. E. dos Anjos, and S. P. Quináia, “Are there pharmaceutical compounds in sediments or in water? Determi-nation of the distribution coefficient of benzodiazepine drugs in aquatic environment,” Environmental Pollution, vol. 251, pp. 522–529, 2019, doi: https://doi.org/10.1016/j.envpol.2019.05.015.V. Calisto and V. I. Esteves, “Psychiatric pharmaceuticals in the environment,” Chemosphere, vol. 77, no. 10, pp. 1257–1274, 2009, doi: https://doi.org/10.1016/j.chemosphere.2009.09.021.Y. Chen et al., “Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China.,” Front Public Health, vol. 10, p. 963257, 2022, doi: 10.3389/fpubh.2022.963257.C. Peña-Guzmán et al., “Emerging pollutants in the urban water cycle in Latin America: A review of the current literature,” J Environ Manage, vol. 237, pp. 408–423, 2019, doi: https://doi.org/10.1016/j.jenvman.2019.02.100.R. Zorzanelli and H. Editorial, “The case of chronic clonazepam use in Rio de,” vol. 8, no. 2, pp. 194–213.Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015 Feb;72(2):136-42. doi: 10.1001/jamapsychiatry.2014.1763. PMID: 25517224.J. L. Wilkinson et al., Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. U.S.A. 119, e2113947119 (2022). Doi: https://doi.org/10.1073/pnas.2113947119.A.M. Botero-Coy et al., ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater’, Science of The Total Environment, Volume 642, 2018, Pages 842-853, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2018.06.088.F. Randez-Gil, J. A. Daros, A. Salvador, and M. De La Guardia, “Direct derivative spectrophotometric determination of ni-trazepam and clonazepam in biological fluids,” J Pharm Biomed Anal, vol. 9, no. 7, pp. 539–545, 1991, doi: https://doi.org/10.1016/0731-7085(91)80175-9.A. A. Salem, B. N. Barsoum, and E. L. Izake, “Spectrophotometric and fluorimetric determination of diazepam, bromazepam and clonazepam in pharmaceutical and urine samples,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 60, no. 4, pp. 771–780, 2004, doi: https://doi.org/10.1016/S1386-1425(03)00300-7.Fatta, D., A. Achilleos, A. Nikolaou, and S. Meriç. 2007. "Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater." TrAC Trends in Analytical Chemistry 26 (6): 515-533. https://doi.org/10.1016/j.trac.2007.02.001.Qriouet, Zidane, Qmichou, Zineb, Bouchoutrouch, Nadia, Mahi, Hassan, Cherrah, Yahia, Sefrioui, Hassan, Analytical Methods Used for the Detection and Quantification of Benzodiazepines, Journal of Analytical Methods in Chemistry, 2019, 2035492, 11 pages, 2019. https://doi.org/10.1155/2019/2035492Francis, Koshy, and Mathew. “Chapter 7 - Electroanalytical Techniques: A Tool for Nanomaterial Characterization.”. Sci-enceDirect 2022.Chistian C, Segura. A LOW-COST MULTI-TECHNIQUE PORTABLE ELECTROCHEMICAL DEVICE FOR REMOTE BIO-SENSORS. Doctoral thesis 2022.J. Xu, Y. Wang, and S. Hu, “Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review,” Microchimica Acta, vol. 184, no. 1. 2017. doi: 10.1007/s00604-016-2007-0.Juan C, Ariaas. Design and implementation of an electrochemical sensor, 2 based on a microfluidic system, to determine ac-etaminophen 3 concentrations in water. Article 2022.E. Bakker and M. Telting-Diaz, “Electrochemical Sensors,” Anal Chem, vol. 74, no. 12, pp. 2781–2800, Jun. 2002, doi: 10.1021/ac0202278.Garima, A. Sachdev, and I. Matai, “An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam,” Journal of Electroanalytical Chemistry, vol. 919, p. 116537, 2022, doi: https://doi.org/10.1016/j.jelechem.2022.116537.Arregui et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation 2019.Tvorynska, Sofiia, Jiří Barek, and Bohdan Josypcuk. 2022. "Influence of Different Covalent Immobilization Protocols on Elec-troanalytical Performance of Laccase-Based Biosensors." Bioelectrochemistry 148: 108223. https://doi.org/10.1016/j.bioelechem.2022.108223.B. Dey, T. Dutta, Laccases: Thriving the domain of bio-electrocatalysis, Bioelectrochemistry 146 (2022) 108144, https://doi.org/10.1016/j.bioelechem.2022.108144.ChemicalBook. 2024. "3-Aminopropyltriethoxysilane." ChemicalBook. Accessed June 20, 2024. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8686147.htm.Pal, Kunal, Allan T. Paulson, and Dérick Rousseau. 2013. "Biopolymers in Controlled-Release Delivery Systems." In Handbook of Biopolymers and Biodegradable Plastics, edited by Sina Ebnesajjad, 329-363. Plastics Design Library. William Andrew Pub-lishing. https://doi.org/10.1016/B978-1-4557-2834-3.00014-8.ALS Japan. "Current - Potential Curve." Accessed June 20, 2024. https://www.als-japan.com/1822.html.Clonazepam. (2021). In http://www.rochecanada.com/. Hoffmann-La Roche Limited. Retrieved June 20, 2024, from https://assets.roche.com/f/173850/x/75c73cc9d7/rivotril_pm_e.pdf201717667Publicationhttps://scholar.google.es/citations?user=6QQ-dqMAAAAJvirtual::18950-10000-0003-2928-3406virtual::18950-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000221112virtual::18950-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::18950-1a9f6ef37-65d7-4484-be71-8f3b4067a8favirtual::18950-1ORIGINALConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdfConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdfapplication/pdf2035041https://repositorio.uniandes.edu.co/bitstreams/c019f080-e4ee-49bb-98fb-1f85aa6a8c17/download372a2124bb6031c64389f00f93162392MD51autorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf278808https://repositorio.uniandes.edu.co/bitstreams/b854115d-9cb0-40cd-9a9c-e3289d9ee04b/downloadf1b6566a9166ee5e6383911ddb93f132MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/fa051708-d0a3-4ecf-aeb1-543b7c28f02c/downloadae9e573a68e7f92501b6913cc846c39fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.uniandes.edu.co/bitstreams/d7cb188e-1c01-477b-b7ad-fc9c6a82e80d/download934f4ca17e109e0a05eaeaba504d7ce4MD58TEXTConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.txtConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.txtExtracted texttext/plain34808https://repositorio.uniandes.edu.co/bitstreams/11dea77b-c24b-44bc-8cd9-4377bed7d89a/download25239c15d1e0daae3b6c863a35fb9bd1MD59autorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain2044https://repositorio.uniandes.edu.co/bitstreams/83ac695f-ccca-4954-bfb2-4e928f008200/download328b33cec305ac55ac9a2c3f54e3dd1aMD511THUMBNAILConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.jpgConstruction of laccase based electrochemical biosensors for detection of clonazepam.pdf.jpgGenerated Thumbnailimage/jpeg13354https://repositorio.uniandes.edu.co/bitstreams/da051d95-6618-43df-8852-2c104e49bba4/downloadbfa9ed78ee0705e8e39c116effb7df81MD510autorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10822https://repositorio.uniandes.edu.co/bitstreams/2c23fdb3-5bdd-44f8-b96c-74e71d3a2b23/download00e1f159aab3c0cea7f8a2434947251fMD5121992/74568oai:repositorio.uniandes.edu.co:1992/745682024-09-12 16:20:55.29http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |