Methodological and computational framework of stochastic programming and decisions under uncertainty

We study the Sample Average Approximation method for different types of problems. We discuss the implications of using different schemes of sampling (Uniform, Random and Importance sampling) and different risk measurements (CVaR and EDR). We illustrate this by applying these methods to two problems:...

Full description

Autores:
Puerto Ordóñez, Nicolás Eduardo
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/44046
Acceso en línea:
http://hdl.handle.net/1992/44046
Palabra clave:
Incertidumbre (Teoría de la información) - Investigaciones
Programación estocástica - Investigaciones
Toma de decisiones - Investigaciones
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:We study the Sample Average Approximation method for different types of problems. We discuss the implications of using different schemes of sampling (Uniform, Random and Importance sampling) and different risk measurements (CVaR and EDR). We illustrate this by applying these methods to two problems: the newsvendor problem and the San Francisco Bay Area bridge retrofit problem. We show that Uniform sampling does not exhibit asymptotic behavior as well as underestimate the CVaR measure. In addition, Importance sampling besides being a good estimator of the objective function of the problems can reduce the variance for rare event scenarios.