Machine learning classification for epilepsy lesions localization based on MRIs

Treatment of epilepsy patients usually involves antiepileptic drugs to control seizures. However, patients with drug-resistant, or refractory epilepsy go through various trials before becoming candidates for surgery to treat brain lesions that cause their seizures, and this process can take a long t...

Full description

Autores:
González García, Néstor Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73657
Acceso en línea:
https://hdl.handle.net/1992/73657
Palabra clave:
Machine learning
Epilepsy
Magnetic resonance images
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_c647d4df52a105148ff318f5e82c8191
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73657
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Machine learning classification for epilepsy lesions localization based on MRIs
title Machine learning classification for epilepsy lesions localization based on MRIs
spellingShingle Machine learning classification for epilepsy lesions localization based on MRIs
Machine learning
Epilepsy
Magnetic resonance images
Ingeniería
title_short Machine learning classification for epilepsy lesions localization based on MRIs
title_full Machine learning classification for epilepsy lesions localization based on MRIs
title_fullStr Machine learning classification for epilepsy lesions localization based on MRIs
title_full_unstemmed Machine learning classification for epilepsy lesions localization based on MRIs
title_sort Machine learning classification for epilepsy lesions localization based on MRIs
dc.creator.fl_str_mv González García, Néstor Felipe
dc.contributor.advisor.none.fl_str_mv Garcés Pernett, Kelly Johany
Duitama Castellanos, Jorge Alexander
dc.contributor.author.none.fl_str_mv González García, Néstor Felipe
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::TICSw: Tecnologías de Información y Construcción de Software
dc.subject.keyword.eng.fl_str_mv Machine learning
Epilepsy
Magnetic resonance images
topic Machine learning
Epilepsy
Magnetic resonance images
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description Treatment of epilepsy patients usually involves antiepileptic drugs to control seizures. However, patients with drug-resistant, or refractory epilepsy go through various trials before becoming candidates for surgery to treat brain lesions that cause their seizures, and this process can take a long time. In this work, a machine learning approach was used to localize lesions in refractory patients by grouping lesions in two categories: hemisphere (left and right), and lobe (frontal lobe and other lobes). To train the model, a public magnetic resonance image (MRI) dataset was used and images went through a preprocessing pipeline that consisted of histogram oriented gradients, and principal component analysis. The models were tuned through cross validation techniques and then compared by their metrics to choose the best performing model for each type of image viewpoint (sagittal, coronal, and axial).
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-31T12:47:58Z
dc.date.available.none.fl_str_mv 2024-01-31T12:47:58Z
dc.date.issued.none.fl_str_mv 2024-01-24
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73657
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73657
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Chauhan, V.K., Dahiya, K. & Sharma, A. (2019). Problem formulations and solvers in linear SVM: a review. Artif Intell Rev 52, 803–855. https://doi.org/10.1007/s10462-018-9614-6
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
El Azami M., Hammers A., Jung J., Costes N., Bouet R., et al. (2016). Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem. PLOS ONE 11(9): e0161498. https://doi.org/10.1371/journal.pone.0161498 
Luckett, P., Maccotta, L., Lee, J., Park, K., Dosenbach, N., Ances, B., et al. (2022). Deep learning resting state functional magnetic resonance imaging lateralization of temporal lobe epilepsy. Epilepsia; 63: 1542–1552. https://doi.org/10.1111/epi.17233
Murphy, J. (2016). An overview of convolutional neural network architectures for deep learning. Microway Inc, 1-22.
Schuch, F., Walger, L., Schmitz, M. et al. (2023). An open presurgery MRI dataset of people with epilepsy and focal cortical dysplasia type II. Sci Data 10, 475. https://doi.org/10.1038/s41597-023-02386-7  
Shilaskar, S., Mahajan, T., Bhatlawande, S., Chaudhari, S., Mahajan, R. and Junnare, K. (2023). "Machine Learning based Brain Tumor Detection and Classification using HOG Feature Descriptor," 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), pp. 67-75, doi: 10.1109/ICSCSS57650.2023.10169700
Tabatabaei, S., Rezaee, K. and Zhu, M. (2023). ‘Attention transformer mechanism and fusion-based deep learning architecture for MRI Brain Tumor Classification System’, Biomedical Signal Processing and Control, 86, p. 105119. doi:10.1016/j.bspc.2023.105119. 
World Health Organization. (n.d.). Epilepsy. https://www.who.int/es/news-room/fact-sheets/detail/epilepsy
Wu, X., Kumar, V., Ross Quinlan, J. et al. (2008). Top 10 algorithms in data mining. Knowl Inf Syst 14, 1–37. https://doi.org/10.1007/s10115-007-0114-2
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/1a7165d5-e8af-40fa-8d9a-1aa4dc9eef2b/download
https://repositorio.uniandes.edu.co/bitstreams/01886164-b5c9-400b-98b7-5a3a96014bc7/download
https://repositorio.uniandes.edu.co/bitstreams/ac7a2954-9da3-4fdb-8938-703f14f75577/download
https://repositorio.uniandes.edu.co/bitstreams/400d80f9-717e-4bb7-8b60-6da3f67b626a/download
https://repositorio.uniandes.edu.co/bitstreams/4ac4f705-8f19-4460-b105-d30fd782a5dc/download
https://repositorio.uniandes.edu.co/bitstreams/d0b0126a-af9f-4b78-ac2b-9b8a3b59b774/download
https://repositorio.uniandes.edu.co/bitstreams/b3b94b8a-1623-4e07-8d34-8c7c4a0e5c34/download
https://repositorio.uniandes.edu.co/bitstreams/bd40bf08-6892-4d2d-ad31-8c93e134aadf/download
bitstream.checksum.fl_str_mv c4acb876afc719a522f37e64abaace30
c9757d7f6f9ef7e4449191f3519cd582
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
2dd32494168cb60222b579c46d1a62c9
66a327c004d91f9e6c786faf8b074150
d32ea5cc088fbf6f511146e546d72cd8
968ac647169c91d96034bb8451b8e269
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133981990158336
spelling Garcés Pernett, Kelly JohanyDuitama Castellanos, Jorge AlexanderGonzález García, Néstor FelipeFacultad de Ingeniería::TICSw: Tecnologías de Información y Construcción de Software2024-01-31T12:47:58Z2024-01-31T12:47:58Z2024-01-24https://hdl.handle.net/1992/73657instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Treatment of epilepsy patients usually involves antiepileptic drugs to control seizures. However, patients with drug-resistant, or refractory epilepsy go through various trials before becoming candidates for surgery to treat brain lesions that cause their seizures, and this process can take a long time. In this work, a machine learning approach was used to localize lesions in refractory patients by grouping lesions in two categories: hemisphere (left and right), and lobe (frontal lobe and other lobes). To train the model, a public magnetic resonance image (MRI) dataset was used and images went through a preprocessing pipeline that consisted of histogram oriented gradients, and principal component analysis. The models were tuned through cross validation techniques and then compared by their metrics to choose the best performing model for each type of image viewpoint (sagittal, coronal, and axial).Ingeniero de Sistemas y ComputaciónPregrado22 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Machine learning classification for epilepsy lesions localization based on MRIsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMachine learningEpilepsyMagnetic resonance imagesIngenieríaChauhan, V.K., Dahiya, K. & Sharma, A. (2019). Problem formulations and solvers in linear SVM: a review. Artif Intell Rev 52, 803–855. https://doi.org/10.1007/s10462-018-9614-6Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).El Azami M., Hammers A., Jung J., Costes N., Bouet R., et al. (2016). Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem. PLOS ONE 11(9): e0161498. https://doi.org/10.1371/journal.pone.0161498 Luckett, P., Maccotta, L., Lee, J., Park, K., Dosenbach, N., Ances, B., et al. (2022). Deep learning resting state functional magnetic resonance imaging lateralization of temporal lobe epilepsy. Epilepsia; 63: 1542–1552. https://doi.org/10.1111/epi.17233Murphy, J. (2016). An overview of convolutional neural network architectures for deep learning. Microway Inc, 1-22.Schuch, F., Walger, L., Schmitz, M. et al. (2023). An open presurgery MRI dataset of people with epilepsy and focal cortical dysplasia type II. Sci Data 10, 475. https://doi.org/10.1038/s41597-023-02386-7  Shilaskar, S., Mahajan, T., Bhatlawande, S., Chaudhari, S., Mahajan, R. and Junnare, K. (2023). "Machine Learning based Brain Tumor Detection and Classification using HOG Feature Descriptor," 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), pp. 67-75, doi: 10.1109/ICSCSS57650.2023.10169700Tabatabaei, S., Rezaee, K. and Zhu, M. (2023). ‘Attention transformer mechanism and fusion-based deep learning architecture for MRI Brain Tumor Classification System’, Biomedical Signal Processing and Control, 86, p. 105119. doi:10.1016/j.bspc.2023.105119. World Health Organization. (n.d.). Epilepsy. https://www.who.int/es/news-room/fact-sheets/detail/epilepsyWu, X., Kumar, V., Ross Quinlan, J. et al. (2008). Top 10 algorithms in data mining. Knowl Inf Syst 14, 1–37. https://doi.org/10.1007/s10115-007-0114-2201912670PublicationORIGINALMachine Learning Classification for Epilepsy.pdfMachine Learning Classification for Epilepsy.pdfapplication/pdf2297958https://repositorio.uniandes.edu.co/bitstreams/1a7165d5-e8af-40fa-8d9a-1aa4dc9eef2b/downloadc4acb876afc719a522f37e64abaace30MD52AutorizacionTesisNestorGonzalez_firmaJDKG.pdfAutorizacionTesisNestorGonzalez_firmaJDKG.pdfHIDEapplication/pdf314727https://repositorio.uniandes.edu.co/bitstreams/01886164-b5c9-400b-98b7-5a3a96014bc7/downloadc9757d7f6f9ef7e4449191f3519cd582MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/ac7a2954-9da3-4fdb-8938-703f14f75577/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/400d80f9-717e-4bb7-8b60-6da3f67b626a/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTMachine Learning Classification for Epilepsy.pdf.txtMachine Learning Classification for Epilepsy.pdf.txtExtracted texttext/plain36146https://repositorio.uniandes.edu.co/bitstreams/4ac4f705-8f19-4460-b105-d30fd782a5dc/download2dd32494168cb60222b579c46d1a62c9MD56AutorizacionTesisNestorGonzalez_firmaJDKG.pdf.txtAutorizacionTesisNestorGonzalez_firmaJDKG.pdf.txtExtracted texttext/plain1643https://repositorio.uniandes.edu.co/bitstreams/d0b0126a-af9f-4b78-ac2b-9b8a3b59b774/download66a327c004d91f9e6c786faf8b074150MD58THUMBNAILMachine Learning Classification for Epilepsy.pdf.jpgMachine Learning Classification for Epilepsy.pdf.jpgGenerated Thumbnailimage/jpeg14603https://repositorio.uniandes.edu.co/bitstreams/b3b94b8a-1623-4e07-8d34-8c7c4a0e5c34/downloadd32ea5cc088fbf6f511146e546d72cd8MD57AutorizacionTesisNestorGonzalez_firmaJDKG.pdf.jpgAutorizacionTesisNestorGonzalez_firmaJDKG.pdf.jpgGenerated Thumbnailimage/jpeg11470https://repositorio.uniandes.edu.co/bitstreams/bd40bf08-6892-4d2d-ad31-8c93e134aadf/download968ac647169c91d96034bb8451b8e269MD591992/73657oai:repositorio.uniandes.edu.co:1992/736572024-02-16 15:14:06.33http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K