Tate's linear algebra and residues on curves
Let X be a projective smooth curve over an algebraically closed field k. Let K = k(X) the field of rational functions on X and O_X,p the regular local ring on p, for p in X. Since X is smooth and dim X = 1, the completion of the regular local ring in p is isomorphic to ring of power series in one va...
- Autores:
-
Rojas Correa, Juan Diego
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/38987
- Acceso en línea:
- http://hdl.handle.net/1992/38987
- Palabra clave:
- Espacios vectoriales
Curvas elípticas
Algebras topológicas
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_c4288dd97b8e4fa6a8af5a7165cf66c2 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/38987 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bressler, Paulvirtual::12837-1Rojas Correa, Juan Diego2c3240f1-17c6-4b86-8a69-e459eadfa97c4002020-06-10T15:59:34Z2020-06-10T15:59:34Z2018http://hdl.handle.net/1992/38987u820770.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Let X be a projective smooth curve over an algebraically closed field k. Let K = k(X) the field of rational functions on X and O_X,p the regular local ring on p, for p in X. Since X is smooth and dim X = 1, the completion of the regular local ring in p is isomorphic to ring of power series in one variable t, for t a choice of uniformizing parameter in p. Then K_p, is isomorphic to the ring of Laurent series in one variable t. In this situation, just as in complex analysis, one could define for a differential fdg, f,g in K_p, the residue in p to be the coefficient of t^-1 in the Laurent expansion of f(t)g'(t). However, it is not obvious that such coefficient is independent of the choice of uniformizing parameter t. In his article, Residues of differentials on curves, John Tate gave a free-coordinate approach to residues. In this document we explore the concept of Tate vector spaces, topological vector spaces that abstract topological properties of k((t)). This is done in order to understand Tate's construction in terms of topological properties. In this way it is shown the invariance of the residue formula and the residue theoremMatemáticoPregrado54 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaTate's linear algebra and residues on curvesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPEspacios vectorialesCurvas elípticasAlgebras topológicasMatemáticasPublication7daf2ba0-1cd4-4967-9654-1d01a62d383avirtual::12837-17daf2ba0-1cd4-4967-9654-1d01a62d383avirtual::12837-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001497226virtual::12837-1ORIGINALu820770.pdfapplication/pdf375663https://repositorio.uniandes.edu.co/bitstreams/d02687f7-c4cf-482f-93ea-d35b284e8832/download3449d34f83dc3860de0051efe98df3bfMD51THUMBNAILu820770.pdf.jpgu820770.pdf.jpgIM Thumbnailimage/jpeg5125https://repositorio.uniandes.edu.co/bitstreams/c3803398-4b52-495a-9c53-fe3e9a5cb2f2/downloade58cf72c4fb158044e312e36595066ceMD55TEXTu820770.pdf.txtu820770.pdf.txtExtracted texttext/plain81305https://repositorio.uniandes.edu.co/bitstreams/70f74120-5aa8-4b11-9cbc-8780caa9b6c2/downloadfeb38998b43ccc850edc9f7f9fff7498MD541992/38987oai:repositorio.uniandes.edu.co:1992/389872024-03-13 14:47:14.304http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Tate's linear algebra and residues on curves |
title |
Tate's linear algebra and residues on curves |
spellingShingle |
Tate's linear algebra and residues on curves Espacios vectoriales Curvas elípticas Algebras topológicas Matemáticas |
title_short |
Tate's linear algebra and residues on curves |
title_full |
Tate's linear algebra and residues on curves |
title_fullStr |
Tate's linear algebra and residues on curves |
title_full_unstemmed |
Tate's linear algebra and residues on curves |
title_sort |
Tate's linear algebra and residues on curves |
dc.creator.fl_str_mv |
Rojas Correa, Juan Diego |
dc.contributor.advisor.none.fl_str_mv |
Bressler, Paul |
dc.contributor.author.none.fl_str_mv |
Rojas Correa, Juan Diego |
dc.subject.keyword.es_CO.fl_str_mv |
Espacios vectoriales Curvas elípticas Algebras topológicas |
topic |
Espacios vectoriales Curvas elípticas Algebras topológicas Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Let X be a projective smooth curve over an algebraically closed field k. Let K = k(X) the field of rational functions on X and O_X,p the regular local ring on p, for p in X. Since X is smooth and dim X = 1, the completion of the regular local ring in p is isomorphic to ring of power series in one variable t, for t a choice of uniformizing parameter in p. Then K_p, is isomorphic to the ring of Laurent series in one variable t. In this situation, just as in complex analysis, one could define for a differential fdg, f,g in K_p, the residue in p to be the coefficient of t^-1 in the Laurent expansion of f(t)g'(t). However, it is not obvious that such coefficient is independent of the choice of uniformizing parameter t. In his article, Residues of differentials on curves, John Tate gave a free-coordinate approach to residues. In this document we explore the concept of Tate vector spaces, topological vector spaces that abstract topological properties of k((t)). This is done in order to understand Tate's construction in terms of topological properties. In this way it is shown the invariance of the residue formula and the residue theorem |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T15:59:34Z |
dc.date.available.none.fl_str_mv |
2020-06-10T15:59:34Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/38987 |
dc.identifier.pdf.none.fl_str_mv |
u820770.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/38987 |
identifier_str_mv |
u820770.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
54 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/d02687f7-c4cf-482f-93ea-d35b284e8832/download https://repositorio.uniandes.edu.co/bitstreams/c3803398-4b52-495a-9c53-fe3e9a5cb2f2/download https://repositorio.uniandes.edu.co/bitstreams/70f74120-5aa8-4b11-9cbc-8780caa9b6c2/download |
bitstream.checksum.fl_str_mv |
3449d34f83dc3860de0051efe98df3bf e58cf72c4fb158044e312e36595066ce feb38998b43ccc850edc9f7f9fff7498 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134003138887680 |