Tate's linear algebra and residues on curves

Let X be a projective smooth curve over an algebraically closed field k. Let K = k(X) the field of rational functions on X and O_X,p the regular local ring on p, for p in X. Since X is smooth and dim X = 1, the completion of the regular local ring in p is isomorphic to ring of power series in one va...

Full description

Autores:
Rojas Correa, Juan Diego
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/38987
Acceso en línea:
http://hdl.handle.net/1992/38987
Palabra clave:
Espacios vectoriales
Curvas elípticas
Algebras topológicas
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_c4288dd97b8e4fa6a8af5a7165cf66c2
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/38987
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bressler, Paulvirtual::12837-1Rojas Correa, Juan Diego2c3240f1-17c6-4b86-8a69-e459eadfa97c4002020-06-10T15:59:34Z2020-06-10T15:59:34Z2018http://hdl.handle.net/1992/38987u820770.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Let X be a projective smooth curve over an algebraically closed field k. Let K = k(X) the field of rational functions on X and O_X,p the regular local ring on p, for p in X. Since X is smooth and dim X = 1, the completion of the regular local ring in p is isomorphic to ring of power series in one variable t, for t a choice of uniformizing parameter in p. Then K_p, is isomorphic to the ring of Laurent series in one variable t. In this situation, just as in complex analysis, one could define for a differential fdg, f,g in K_p, the residue in p to be the coefficient of t^-1 in the Laurent expansion of f(t)g'(t). However, it is not obvious that such coefficient is independent of the choice of uniformizing parameter t. In his article, Residues of differentials on curves, John Tate gave a free-coordinate approach to residues. In this document we explore the concept of Tate vector spaces, topological vector spaces that abstract topological properties of k((t)). This is done in order to understand Tate's construction in terms of topological properties. In this way it is shown the invariance of the residue formula and the residue theoremMatemáticoPregrado54 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaTate's linear algebra and residues on curvesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPEspacios vectorialesCurvas elípticasAlgebras topológicasMatemáticasPublication7daf2ba0-1cd4-4967-9654-1d01a62d383avirtual::12837-17daf2ba0-1cd4-4967-9654-1d01a62d383avirtual::12837-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001497226virtual::12837-1ORIGINALu820770.pdfapplication/pdf375663https://repositorio.uniandes.edu.co/bitstreams/d02687f7-c4cf-482f-93ea-d35b284e8832/download3449d34f83dc3860de0051efe98df3bfMD51THUMBNAILu820770.pdf.jpgu820770.pdf.jpgIM Thumbnailimage/jpeg5125https://repositorio.uniandes.edu.co/bitstreams/c3803398-4b52-495a-9c53-fe3e9a5cb2f2/downloade58cf72c4fb158044e312e36595066ceMD55TEXTu820770.pdf.txtu820770.pdf.txtExtracted texttext/plain81305https://repositorio.uniandes.edu.co/bitstreams/70f74120-5aa8-4b11-9cbc-8780caa9b6c2/downloadfeb38998b43ccc850edc9f7f9fff7498MD541992/38987oai:repositorio.uniandes.edu.co:1992/389872024-03-13 14:47:14.304http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Tate's linear algebra and residues on curves
title Tate's linear algebra and residues on curves
spellingShingle Tate's linear algebra and residues on curves
Espacios vectoriales
Curvas elípticas
Algebras topológicas
Matemáticas
title_short Tate's linear algebra and residues on curves
title_full Tate's linear algebra and residues on curves
title_fullStr Tate's linear algebra and residues on curves
title_full_unstemmed Tate's linear algebra and residues on curves
title_sort Tate's linear algebra and residues on curves
dc.creator.fl_str_mv Rojas Correa, Juan Diego
dc.contributor.advisor.none.fl_str_mv Bressler, Paul
dc.contributor.author.none.fl_str_mv Rojas Correa, Juan Diego
dc.subject.keyword.es_CO.fl_str_mv Espacios vectoriales
Curvas elípticas
Algebras topológicas
topic Espacios vectoriales
Curvas elípticas
Algebras topológicas
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description Let X be a projective smooth curve over an algebraically closed field k. Let K = k(X) the field of rational functions on X and O_X,p the regular local ring on p, for p in X. Since X is smooth and dim X = 1, the completion of the regular local ring in p is isomorphic to ring of power series in one variable t, for t a choice of uniformizing parameter in p. Then K_p, is isomorphic to the ring of Laurent series in one variable t. In this situation, just as in complex analysis, one could define for a differential fdg, f,g in K_p, the residue in p to be the coefficient of t^-1 in the Laurent expansion of f(t)g'(t). However, it is not obvious that such coefficient is independent of the choice of uniformizing parameter t. In his article, Residues of differentials on curves, John Tate gave a free-coordinate approach to residues. In this document we explore the concept of Tate vector spaces, topological vector spaces that abstract topological properties of k((t)). This is done in order to understand Tate's construction in terms of topological properties. In this way it is shown the invariance of the residue formula and the residue theorem
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T15:59:34Z
dc.date.available.none.fl_str_mv 2020-06-10T15:59:34Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/38987
dc.identifier.pdf.none.fl_str_mv u820770.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/38987
identifier_str_mv u820770.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 54 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/d02687f7-c4cf-482f-93ea-d35b284e8832/download
https://repositorio.uniandes.edu.co/bitstreams/c3803398-4b52-495a-9c53-fe3e9a5cb2f2/download
https://repositorio.uniandes.edu.co/bitstreams/70f74120-5aa8-4b11-9cbc-8780caa9b6c2/download
bitstream.checksum.fl_str_mv 3449d34f83dc3860de0051efe98df3bf
e58cf72c4fb158044e312e36595066ce
feb38998b43ccc850edc9f7f9fff7498
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134003138887680