An analytical proof of the atiyah-singer index theorem for dirac operators

"The index of a Fredholm operator acting on a Hilbert space is the integer number defined as the difference between the dimension of its kernel and its cokernel. In some particular cases -such as the geometrical context we consider along this work - this integer number can be computed from inte...

Full description

Autores:
Cano García, Leonardo Arturo
Tipo de recurso:
Fecha de publicación:
2004
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/10457
Acceso en línea:
http://hdl.handle.net/1992/10457
Palabra clave:
Algebras topológicas
Teorema de Atiyah-Singer
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_c40e1f48847adcb69e5e510bc4be12fc
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/10457
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Adarve Delgado, Sergio Miguelvirtual::15511-1Cano García, Leonardo Arturoa7070b81-0a6f-4884-8905-6401dd8fb7ca5002018-09-27T19:35:30Z2018-09-27T19:35:30Z2004http://hdl.handle.net/1992/10457u251271.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/"The index of a Fredholm operator acting on a Hilbert space is the integer number defined as the difference between the dimension of its kernel and its cokernel. In some particular cases -such as the geometrical context we consider along this work - this integer number can be computed from integral expressions involving geometrical and topological data from the background space. This is the case of the index for Dirac operators considered in this manusscript, written for a master thesis of the University of Los Andes in Bogotá, Colombia (under the supervision of Sergio Adarve and Alexander Cardona), as an attempt to present an analytical proof of the Atiyah-Singer theorem (AS)¿"--Tomado de la Introducción.Magíster en MatemáticasMaestría77 hojasapplication/pdfspaUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:SénecaAn analytical proof of the atiyah-singer index theorem for dirac operatorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAlgebras topológicasTeorema de Atiyah-SingerMatemáticasPublication8e216969-7cc3-4aed-9bfa-233e8f17f471virtual::15511-18e216969-7cc3-4aed-9bfa-233e8f17f471virtual::15511-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000055131virtual::15511-1TEXTu251271.pdf.txtu251271.pdf.txtExtracted texttext/plain110374https://repositorio.uniandes.edu.co/bitstreams/708845a1-2b93-4470-9213-fcd239f9b096/downloadc3ef5dd445bffe712b64c5b94ce1403cMD54THUMBNAILu251271.pdf.jpgu251271.pdf.jpgIM Thumbnailimage/jpeg5090https://repositorio.uniandes.edu.co/bitstreams/61e1e7a9-af1f-43fb-a961-e0ffb2e8008f/download00245994a0345689c71ee3d5a3c92a90MD55ORIGINALu251271.pdfapplication/pdf449467https://repositorio.uniandes.edu.co/bitstreams/4036f2c3-0240-4aef-9a27-7754fdbb84c6/downloadaae717a051e1d0751fc8f79d211152a7MD511992/10457oai:repositorio.uniandes.edu.co:1992/104572024-03-13 15:28:56.506http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv An analytical proof of the atiyah-singer index theorem for dirac operators
title An analytical proof of the atiyah-singer index theorem for dirac operators
spellingShingle An analytical proof of the atiyah-singer index theorem for dirac operators
Algebras topológicas
Teorema de Atiyah-Singer
Matemáticas
title_short An analytical proof of the atiyah-singer index theorem for dirac operators
title_full An analytical proof of the atiyah-singer index theorem for dirac operators
title_fullStr An analytical proof of the atiyah-singer index theorem for dirac operators
title_full_unstemmed An analytical proof of the atiyah-singer index theorem for dirac operators
title_sort An analytical proof of the atiyah-singer index theorem for dirac operators
dc.creator.fl_str_mv Cano García, Leonardo Arturo
dc.contributor.advisor.none.fl_str_mv Adarve Delgado, Sergio Miguel
dc.contributor.author.none.fl_str_mv Cano García, Leonardo Arturo
dc.subject.keyword.es_CO.fl_str_mv Algebras topológicas
Teorema de Atiyah-Singer
topic Algebras topológicas
Teorema de Atiyah-Singer
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description "The index of a Fredholm operator acting on a Hilbert space is the integer number defined as the difference between the dimension of its kernel and its cokernel. In some particular cases -such as the geometrical context we consider along this work - this integer number can be computed from integral expressions involving geometrical and topological data from the background space. This is the case of the index for Dirac operators considered in this manusscript, written for a master thesis of the University of Los Andes in Bogotá, Colombia (under the supervision of Sergio Adarve and Alexander Cardona), as an attempt to present an analytical proof of the Atiyah-Singer theorem (AS)¿"--Tomado de la Introducción.
publishDate 2004
dc.date.issued.none.fl_str_mv 2004
dc.date.accessioned.none.fl_str_mv 2018-09-27T19:35:30Z
dc.date.available.none.fl_str_mv 2018-09-27T19:35:30Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/10457
dc.identifier.pdf.none.fl_str_mv u251271.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/10457
identifier_str_mv u251271.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 77 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Uniandes
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Séneca
collection Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/708845a1-2b93-4470-9213-fcd239f9b096/download
https://repositorio.uniandes.edu.co/bitstreams/61e1e7a9-af1f-43fb-a961-e0ffb2e8008f/download
https://repositorio.uniandes.edu.co/bitstreams/4036f2c3-0240-4aef-9a27-7754fdbb84c6/download
bitstream.checksum.fl_str_mv c3ef5dd445bffe712b64c5b94ce1403c
00245994a0345689c71ee3d5a3c92a90
aae717a051e1d0751fc8f79d211152a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134046185029632