Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos

Este documento es una exploración de un protocolo de desecación para Pseudomonas benéficas en plantas utilizando carotenos y discáridos. En este se documenta la metodología general utilizada de manera detallada, para su uso en futuras investigaciones.

Autores:
Puerta Trujillo, Alejandro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/59303
Acceso en línea:
http://hdl.handle.net/1992/59303
Palabra clave:
Desecación
Liofilización
Preservación
Pseudomonas
Gram negativas
Disacáridos
Carotenoides
Física
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_c2ab5c243642d8bfd7cc68199b9d4a1b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/59303
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
title Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
spellingShingle Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
Desecación
Liofilización
Preservación
Pseudomonas
Gram negativas
Disacáridos
Carotenoides
Física
title_short Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
title_full Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
title_fullStr Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
title_full_unstemmed Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
title_sort Diseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridos
dc.creator.fl_str_mv Puerta Trujillo, Alejandro
dc.contributor.advisor.none.fl_str_mv Leidy, Chad
Bernal Giraldo, Adriana Jimena
dc.contributor.author.none.fl_str_mv Puerta Trujillo, Alejandro
dc.contributor.jury.none.fl_str_mv Forero Shelton, Antonio Manu
dc.contributor.researchgroup.es_CO.fl_str_mv Biofísica
dc.subject.keyword.none.fl_str_mv Desecación
Liofilización
Preservación
Pseudomonas
Gram negativas
Disacáridos
Carotenoides
topic Desecación
Liofilización
Preservación
Pseudomonas
Gram negativas
Disacáridos
Carotenoides
Física
dc.subject.themes.es_CO.fl_str_mv Física
description Este documento es una exploración de un protocolo de desecación para Pseudomonas benéficas en plantas utilizando carotenos y discáridos. En este se documenta la metodología general utilizada de manera detallada, para su uso en futuras investigaciones.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-28T20:22:02Z
dc.date.available.none.fl_str_mv 2022-07-28T20:22:02Z
dc.date.issued.none.fl_str_mv 2022-06-10
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/59303
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/59303
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Aksan A Ragoonanan, V. Heterogeneity in desiccated solutions: Implications for biostabilization. Biophysical Journal, 2008.
Lansing M. Prescott. Microbiology, fifth edition, chapter Chapter 3: Procaryotic Cell Structure and Function, pages 41-73. Mc Graw Holl, 2002.
John P. Morrissey y Fergal O'Gara Itan F. Walsh. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Elsevier, 2001.
J M Raaijmakers y D M Weller y L S Thomashow. Frequency of antibiotic-producing pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63(3):881-887, 1997.
Sowjanya K. Sree y Ajit Varma. Biocontrol of Lepidoteran Pests: Uso of Soil Microbes and their Metabolites, volume 43. Springer, 2015.
Corne M. J. Pieterse, Roeland L. Berendsen, Ronnie de Jonge, Ioannis A. Stringlis, Anja J. H. Van Dijken, Johan A. Van Pelt, Saskia C. M. Van Wees, Ke Yu, Christos Zamioudis, and Peter A. H. M. Bakker. Pseudomonas simiae wcs417: star track of a model beneficial rhizobacterium. Plant and Soil, 461(1):245-263, Apr 2021.
Roeland L. Berendsen, Marcel C. van Verk, Ioannis A. Stringlis, Christos Zamiou-dis, Jan Tommassen, Corné M. J. Pieterse, and Peter A. H. M. Bakker. Unearthing the genomes of plant-beneficial pseudomonas model strains wcs358, wcs374 and wcs417. BMC Genomics, 16(1):539, Jul 2015.
Antonino y Quintero-Hernández Verónica y Castañeda-Lucio Miguel y Fuentes-Ramírez Luis Ernesto y Bustillos-Cristales María del Rocío y Rodríguez-Andrade Osvaldo y Morales-García Yolanda Elizabeth y Munive Antonio y Muñoz- Rojas Jesús Molina-Romero, Dalia y Baez. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLOS ONE, 12(11):e0187913, Nov 2017.
Mary K. Halverson, Larry J. y Firestone. Differential Effects of Permeating and Nonpermeating Solutes on the Fatty Acid Composition ofPseudomonas putida. Applied and Environmental Microbiology, 66(6):2414-2421, June 2000. Publisher: American Society for Microbiology.
Ana-Paula Matos y Bisutti Isabella L. Stephan, Dietrich y Da Silva. Optimiza-tion of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biological Control, 94:74-81, March 2016.
J. y Montesinos E. y Bonaterra A. Cabrefiga, J. y Francés. Improvement of a dry formulation of pseudomonas fluorescens eps62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. Journal of Applied Microbiology, 117(4):1122-1131, 2014.
Andreas Nocker, Priscilla Sossa Fernández, Roy Montijn, and Frank Schuren. Effect of air drying on bacterial viability: A multiparameter viability assessment. Journal of Microbiological Methods, 90(2):86-95, Aug 2012.
Fang Wang, Rongxiao Che, Yongcui Deng, Yibo Wu, Li Tang, Zhihong Xu, Weijin Wang, Hongbin Liu, and Xiaoyong Cui. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biology and Biochemistry, 157:108238, Jun 2021.
D. A. Schisler, P. J. Slininger, and N. L. Olsen. Appraisal of selected osmoprotectants and carriers for formulating gram-negative biocontrol agents active against fusarium dry rot on potatoes in storage. Biological Control, 98:1-10, Jul 2016.
Laurent y Ritt Jean-Francois y Lherminier Jeannine y Gervais Patrick Dupont, Sebastien y Beney. Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochimica et Biophysica Acta (BBA) Biomembranes, 1798(5):975-985, May 2010.
Vincent Robert Guy Greffe y Jan Michiels. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Springer, 2020.
Lois M. y Hoekstra Folkert A. Crowe, John H. y Crowe. Phase transitions and permeability changes in dry membranes during rehydration. Journal of Bioenergetics and Biomembranes, 21(1):77-91, Feb 1989.
Vishal y Trivedi Nitin y Kumari Puja y Bijo A. J. y Reddy C. R. K. y Jha Bhavanath Kumar, Manoj y Gupta. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga gracilaria corticata (gracilariales, rhodophyta). Environmental and Experimental Botany, 72(2):194-201, Sep 2011.
Joost y Rousseau Frederic y Van Eldere Johan Bednarska, Natalia G. y Schymkowitz. Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology, 159(Pt9) : 1795-1806, Sep 2013.
A. D. y Eleutherio E. C. A. Franca, M. B. y Panek. Oxidative stress and its effects during dehydration. Comparative Biochemistry and Physiology Part A: Molecular IntegrativePhysiology, 146(4):621-631, 2007.
Pieter y Cowan Don A. Lebre, Pedro H. y De Maayer. Xerotolerant bacteria: surviving through a dry spell. Nature Reviews.Microbiology, 15(5):285-296, 05 2017.
Gary Bryant. Dsc measurement of cell suspensions during successive freezing runs: Implications for the mechanisms of intracellular ice formation. Cryobiology, 32(2):114-128, Apr 1995.
Elmer H. El-Kest, Souzan e. y Marth. Freezing of listeria monocytogenes and other microorganisms: A review. Journal of Food Protection, 55(8):639-648, Aug 1992.
Peter Mazur. Cryobiology: The freezing of biological systems. Science, 168(3934):939-949, May 1970.
Gary Wolfe, Joe y Bryant. Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration, 24(5):438-450, Aug 2001.
Saffron J. y Wilkinson Brendan L. y Bryant Gary Raju, Rekha y Bryant. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865(1):129749, Jan 2021.
Ulrich y Foerst Petra Santivarangkna, Chalat y Kulozik. Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23(2):302-315, 2007.
M. Aguilera, J. M. y Karel. Preservation of biological materials under desiccation. Critical Reviews in Food Science and Nutrition, 37(3):287-309, Apr 1997.
N y Cornelius C y Zgouli S y Mahjoub A y Thonart Ph y Hamdi M Achour, M y Mtimet. Application of the accelerated shelf life testing method (aslt) to study the survival rates of freeze-dried lactococcus starter cultures. Journal of Chemical Technology Biotechnology, 76(6):624-628, 2001.
Teresa Berninger, Óscar González López, Ana Bejarano, Claudia Preininger, and Angela Sessitsch. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 11(2):277-301, Dec 2017.
Frederic Rousseau y Johan Van Eldere Natalia Bednarska, Joost Schymkowitz. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology, 1995.
Dirk K. Cacela, Constanca y Hincha. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophysical Journal, 90(8):2831-2842, Apr 2006.
Ulrich y Foerst Petra Aschenbrenner, Mathias y Kulozik. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the arrhenius and wlf model. Cryobiology, 65(3):308-318, Dec 2012.
M. Potts. Desiccation tolerance of prokaryotes. Microbiological Reviews, 58(4):755-805, December 1994.
Alexandra Clauditz y Alexandra Resch y Karsten-Peter Wieland y Andreas Peschel y Friedrich Götz. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infection and Immunity, 74(8):4950-4953, 2006.
Xiaowei Lou Shabbar Abbas y Yu Guan Chen Tan, Jin Xue. Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food Function, 2014.
Ann C. Smith y Marise A. Hussey. Gram stain protocols. https://asm.org/Protocols/Gram-Stain-Protocols, 2005.
Patricia Shields y Laura Cathcart. Oxidase test protocol. https://asm.org/Protocols/Oxidase-Test-Protocol, 2010.
Gerhard Müller, Susann y Nebe-von-Caron. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiology Reviews, 34(4):554-587, Jul 2010.
P. J y Hewitt C. J y Powell J. R y Badley R. A Nebe-von Caron, G y Stephens. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of Microbiological Methods, 42(1):97-114, Sep 2000.
Peter y Hahn-Hägerdal Bärbel Palmfeldt, Johan y Radström. Optimisation of initial cell concentration enhances freeze-drying tolerance of pseudomonas chlororaphis. Cryo- biology, 47(1):21-29, Aug 2003
W. B. Makower, Benjamin y Dye. Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose. ACS Publications, May 2002.
Paul M. Price, Robert y Young. Visualization of the crystallization of lactose from the amorphous state. Journal of Pharmaceutical Sciences, 93(1):155-164, Jan 2004.
J. y Roos-Y. H. Jouppila, K. y Kansikas. Glass transition, water plasticization, and lactose crystallization in skim milk powder. Journal of Dairy Science, 80(12):3152-3160, Dec 1997.
Andreas y Chopra-Reenu y Bonnet P. Arnaud y Jones William y Motherwell W. D. Samuel y Zifferer Gerhard Simperler, Alexandra y Kornherr. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. The Journal of Physical Chemistry B, 110(39):19678-19684, Oct 2006.
Y. H. Haque, Md. Kamrul y Roos. Water plasticization and crystallization of lactose in spray-dried lactose/protein mixtures. Journal of Food Science, 69(1):FEP23-FEP29, 2004.
Matthias Ibach, Alexander y Kind. Crystallization kinetics of amorphous lactose, whey-permeate and whey powders. Carbohydrate Research, 342(10):1357-1365, Jul 2007.
Gottfried y Jelen Paul Gänzle, Michael G. y Haase. Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18(7):685-694, Jul 2008.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 40 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/cdda800f-b55e-41d0-ab50-128b573967cf/download
https://repositorio.uniandes.edu.co/bitstreams/9efa4dc4-7c12-4b1d-8a9b-51ac4794dc82/download
https://repositorio.uniandes.edu.co/bitstreams/f0c65d01-78d8-45d8-a702-cb9945a78b89/download
https://repositorio.uniandes.edu.co/bitstreams/f271249a-92ea-4934-92a9-86228c35e23f/download
https://repositorio.uniandes.edu.co/bitstreams/d864dcf6-772c-4084-bbe7-0ddd58f8d558/download
https://repositorio.uniandes.edu.co/bitstreams/9b804cc5-18d2-4d4b-94ec-e492d42465d0/download
https://repositorio.uniandes.edu.co/bitstreams/99040893-3e44-4fe8-a651-1c8bf7f9591a/download
bitstream.checksum.fl_str_mv 7a11178ffddf3494ddf53f6380ea9dad
2ef1a8f8ee96b8c249ccd708079c69c3
c3c72573cb22704fc7a9ceac59e5e1af
584b1295ec7068b73a34bb6104b08d9f
5aa5c691a1ffe97abd12c2966efcb8d6
d88cf3b79773365a3b9377472a451804
27c5c64f1a20d8703dd5d6d66636e2eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133908659044352
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Leidy, Chadvirtual::6989-1Bernal Giraldo, Adriana Jimenavirtual::6990-1Puerta Trujillo, Alejandroa9469711-fd4f-4ed4-96ca-6ac822d1708b600Forero Shelton, Antonio ManuBiofísica2022-07-28T20:22:02Z2022-07-28T20:22:02Z2022-06-10http://hdl.handle.net/1992/59303instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este documento es una exploración de un protocolo de desecación para Pseudomonas benéficas en plantas utilizando carotenos y discáridos. En este se documenta la metodología general utilizada de manera detallada, para su uso en futuras investigaciones.El creciente interés en compuestos o agentes que puedan reemplazar el uso de pesticidas en prácticas agrícolas ha llevado al incremento de estudios acerca de bacterias promotoras de crecimiento en plantas, como las Pseudomonas del grupo fluorescens, y de sus modos de uso a nivel industrial. Sin embargo, aún existe la necesidad de explorar protocolos de preservación de bacterias que sean robustos, permitiendo su transporte y aplicación. En esta investigación, se exploraron diferentes protocolos incorporando el uso de carotenos, sacarosa, lactosa y PBS como agentes de preservación, y que a través de la disminución de estrés mecánico y oxidativo, permita la supervivencia de la especie Pseudomonas simiae WCS 417 durante su deshidratación, almacenamiento y rehidratación. Para la deshidratación, se tuvieron en cuenta dos métodos, liofilización y secado por aire a temperatura ambiente, de los cuales el segundo se ejecutó con errores metodológicos que impidieron un análisis cuantitativo robusto. Adicionalmente, se exploraron dos métodos para la cuantificación de viabilidad. El primero fue conteo de unidades formadoras de colonia por diluciones seriadas, el cual mantuvo resultados consistentes, y permitió reconocer diferencias entre los tratamientos evaluados. El segundo fue citometría de flujo, el cual mostró ser inviable pues no fue consistente con los conteos por diluciones seriadas. Luego de liofilizar incorporando lactosa o sacarosa, se encontró que ambos agentes son competentes en la reducción de daño mecánico. Sin embargo, al cabo de 7 días de almacenamiento, todas las muestras liofilizadas en la presencia de lactosa presentaron una muerte generalizada, lo que se cree que fue debido a un proceso de cristalización de las muestras. Al secar con aire el tratamiento con sacarosa mantuvo una alta viabilidad durante 21 días de almacenamiento mientras que el tratamiento con carotenos mantuvo viabilidad baja durante 21 días almacenamiento. Estos resultados son prometedores para la formulación de un protocolo de desecación que mantenga altos porcentajes de viabilidad, luego de intervalos de almacenamiento prolongados.FísicoPregradoBiopreservación40 páginasapplication/pdfspaUniversidad de los AndesFísicaFacultad de CienciasDepartamento de FísicaDiseño de un protocolo de desecación para Pseudomonas benéficas en plantas incorporando carotenoides y disacáridosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDesecaciónLiofilizaciónPreservaciónPseudomonasGram negativasDisacáridosCarotenoidesFísicaAksan A Ragoonanan, V. Heterogeneity in desiccated solutions: Implications for biostabilization. Biophysical Journal, 2008.Lansing M. Prescott. Microbiology, fifth edition, chapter Chapter 3: Procaryotic Cell Structure and Function, pages 41-73. Mc Graw Holl, 2002.John P. Morrissey y Fergal O'Gara Itan F. Walsh. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Elsevier, 2001.J M Raaijmakers y D M Weller y L S Thomashow. Frequency of antibiotic-producing pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63(3):881-887, 1997.Sowjanya K. Sree y Ajit Varma. Biocontrol of Lepidoteran Pests: Uso of Soil Microbes and their Metabolites, volume 43. Springer, 2015.Corne M. J. Pieterse, Roeland L. Berendsen, Ronnie de Jonge, Ioannis A. Stringlis, Anja J. H. Van Dijken, Johan A. Van Pelt, Saskia C. M. Van Wees, Ke Yu, Christos Zamioudis, and Peter A. H. M. Bakker. Pseudomonas simiae wcs417: star track of a model beneficial rhizobacterium. Plant and Soil, 461(1):245-263, Apr 2021.Roeland L. Berendsen, Marcel C. van Verk, Ioannis A. Stringlis, Christos Zamiou-dis, Jan Tommassen, Corné M. J. Pieterse, and Peter A. H. M. Bakker. Unearthing the genomes of plant-beneficial pseudomonas model strains wcs358, wcs374 and wcs417. BMC Genomics, 16(1):539, Jul 2015.Antonino y Quintero-Hernández Verónica y Castañeda-Lucio Miguel y Fuentes-Ramírez Luis Ernesto y Bustillos-Cristales María del Rocío y Rodríguez-Andrade Osvaldo y Morales-García Yolanda Elizabeth y Munive Antonio y Muñoz- Rojas Jesús Molina-Romero, Dalia y Baez. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLOS ONE, 12(11):e0187913, Nov 2017.Mary K. Halverson, Larry J. y Firestone. Differential Effects of Permeating and Nonpermeating Solutes on the Fatty Acid Composition ofPseudomonas putida. Applied and Environmental Microbiology, 66(6):2414-2421, June 2000. Publisher: American Society for Microbiology.Ana-Paula Matos y Bisutti Isabella L. Stephan, Dietrich y Da Silva. Optimiza-tion of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biological Control, 94:74-81, March 2016.J. y Montesinos E. y Bonaterra A. Cabrefiga, J. y Francés. Improvement of a dry formulation of pseudomonas fluorescens eps62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant. Journal of Applied Microbiology, 117(4):1122-1131, 2014.Andreas Nocker, Priscilla Sossa Fernández, Roy Montijn, and Frank Schuren. Effect of air drying on bacterial viability: A multiparameter viability assessment. Journal of Microbiological Methods, 90(2):86-95, Aug 2012.Fang Wang, Rongxiao Che, Yongcui Deng, Yibo Wu, Li Tang, Zhihong Xu, Weijin Wang, Hongbin Liu, and Xiaoyong Cui. Air-drying and long time preservation of soil do not significantly impact microbial community composition and structure. Soil Biology and Biochemistry, 157:108238, Jun 2021.D. A. Schisler, P. J. Slininger, and N. L. Olsen. Appraisal of selected osmoprotectants and carriers for formulating gram-negative biocontrol agents active against fusarium dry rot on potatoes in storage. Biological Control, 98:1-10, Jul 2016.Laurent y Ritt Jean-Francois y Lherminier Jeannine y Gervais Patrick Dupont, Sebastien y Beney. Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochimica et Biophysica Acta (BBA) Biomembranes, 1798(5):975-985, May 2010.Vincent Robert Guy Greffe y Jan Michiels. Desiccation-induced cell damage in bacteria and the relevance for inoculant production. Springer, 2020.Lois M. y Hoekstra Folkert A. Crowe, John H. y Crowe. Phase transitions and permeability changes in dry membranes during rehydration. Journal of Bioenergetics and Biomembranes, 21(1):77-91, Feb 1989.Vishal y Trivedi Nitin y Kumari Puja y Bijo A. J. y Reddy C. R. K. y Jha Bhavanath Kumar, Manoj y Gupta. Desiccation induced oxidative stress and its biochemical responses in intertidal red alga gracilaria corticata (gracilariales, rhodophyta). Environmental and Experimental Botany, 72(2):194-201, Sep 2011.Joost y Rousseau Frederic y Van Eldere Johan Bednarska, Natalia G. y Schymkowitz. Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology, 159(Pt9) : 1795-1806, Sep 2013.A. D. y Eleutherio E. C. A. Franca, M. B. y Panek. Oxidative stress and its effects during dehydration. Comparative Biochemistry and Physiology Part A: Molecular IntegrativePhysiology, 146(4):621-631, 2007.Pieter y Cowan Don A. Lebre, Pedro H. y De Maayer. Xerotolerant bacteria: surviving through a dry spell. Nature Reviews.Microbiology, 15(5):285-296, 05 2017.Gary Bryant. Dsc measurement of cell suspensions during successive freezing runs: Implications for the mechanisms of intracellular ice formation. Cryobiology, 32(2):114-128, Apr 1995.Elmer H. El-Kest, Souzan e. y Marth. Freezing of listeria monocytogenes and other microorganisms: A review. Journal of Food Protection, 55(8):639-648, Aug 1992.Peter Mazur. Cryobiology: The freezing of biological systems. Science, 168(3934):939-949, May 1970.Gary Wolfe, Joe y Bryant. Cellular cryobiology: thermodynamic and mechanical effects. International Journal of Refrigeration, 24(5):438-450, Aug 2001.Saffron J. y Wilkinson Brendan L. y Bryant Gary Raju, Rekha y Bryant. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865(1):129749, Jan 2021.Ulrich y Foerst Petra Santivarangkna, Chalat y Kulozik. Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23(2):302-315, 2007.M. Aguilera, J. M. y Karel. Preservation of biological materials under desiccation. Critical Reviews in Food Science and Nutrition, 37(3):287-309, Apr 1997.N y Cornelius C y Zgouli S y Mahjoub A y Thonart Ph y Hamdi M Achour, M y Mtimet. Application of the accelerated shelf life testing method (aslt) to study the survival rates of freeze-dried lactococcus starter cultures. Journal of Chemical Technology Biotechnology, 76(6):624-628, 2001.Teresa Berninger, Óscar González López, Ana Bejarano, Claudia Preininger, and Angela Sessitsch. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 11(2):277-301, Dec 2017.Frederic Rousseau y Johan Van Eldere Natalia Bednarska, Joost Schymkowitz. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Applied and Environmental Microbiology, 1995.Dirk K. Cacela, Constanca y Hincha. Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophysical Journal, 90(8):2831-2842, Apr 2006.Ulrich y Foerst Petra Aschenbrenner, Mathias y Kulozik. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the arrhenius and wlf model. Cryobiology, 65(3):308-318, Dec 2012.M. Potts. Desiccation tolerance of prokaryotes. Microbiological Reviews, 58(4):755-805, December 1994.Alexandra Clauditz y Alexandra Resch y Karsten-Peter Wieland y Andreas Peschel y Friedrich Götz. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infection and Immunity, 74(8):4950-4953, 2006.Xiaowei Lou Shabbar Abbas y Yu Guan Chen Tan, Jin Xue. Liposomes as delivery systems for carotenoids: Comparative studies of loading ability, storage stability and in vitro release. Food Function, 2014.Ann C. Smith y Marise A. Hussey. Gram stain protocols. https://asm.org/Protocols/Gram-Stain-Protocols, 2005.Patricia Shields y Laura Cathcart. Oxidase test protocol. https://asm.org/Protocols/Oxidase-Test-Protocol, 2010.Gerhard Müller, Susann y Nebe-von-Caron. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiology Reviews, 34(4):554-587, Jul 2010.P. J y Hewitt C. J y Powell J. R y Badley R. A Nebe-von Caron, G y Stephens. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of Microbiological Methods, 42(1):97-114, Sep 2000.Peter y Hahn-Hägerdal Bärbel Palmfeldt, Johan y Radström. Optimisation of initial cell concentration enhances freeze-drying tolerance of pseudomonas chlororaphis. Cryo- biology, 47(1):21-29, Aug 2003W. B. Makower, Benjamin y Dye. Sugar crystallization, equilibrium moisture content and crystallization of amorphous sucrose and glucose. ACS Publications, May 2002.Paul M. Price, Robert y Young. Visualization of the crystallization of lactose from the amorphous state. Journal of Pharmaceutical Sciences, 93(1):155-164, Jan 2004.J. y Roos-Y. H. Jouppila, K. y Kansikas. Glass transition, water plasticization, and lactose crystallization in skim milk powder. Journal of Dairy Science, 80(12):3152-3160, Dec 1997.Andreas y Chopra-Reenu y Bonnet P. Arnaud y Jones William y Motherwell W. D. Samuel y Zifferer Gerhard Simperler, Alexandra y Kornherr. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. The Journal of Physical Chemistry B, 110(39):19678-19684, Oct 2006.Y. H. Haque, Md. Kamrul y Roos. Water plasticization and crystallization of lactose in spray-dried lactose/protein mixtures. Journal of Food Science, 69(1):FEP23-FEP29, 2004.Matthias Ibach, Alexander y Kind. Crystallization kinetics of amorphous lactose, whey-permeate and whey powders. Carbohydrate Research, 342(10):1357-1365, Jul 2007.Gottfried y Jelen Paul Gänzle, Michael G. y Haase. Lactose: Crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18(7):685-694, Jul 2008.201730212Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::6990-10000-0002-3557-697Xvirtual::6990-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000674044virtual::6989-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::6990-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::6989-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::6990-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::6989-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::6990-1ORIGINALTesis_biblioteca.pdfTesis_biblioteca.pdfTrabajo de gradoapplication/pdf3697097https://repositorio.uniandes.edu.co/bitstreams/cdda800f-b55e-41d0-ab50-128b573967cf/download7a11178ffddf3494ddf53f6380ea9dadMD52AutorizacionTesis_Firmas.pdfAutorizacionTesis_Firmas.pdfHIDEapplication/pdf323617https://repositorio.uniandes.edu.co/bitstreams/9efa4dc4-7c12-4b1d-8a9b-51ac4794dc82/download2ef1a8f8ee96b8c249ccd708079c69c3MD53THUMBNAILTesis_biblioteca.pdf.jpgTesis_biblioteca.pdf.jpgIM Thumbnailimage/jpeg15937https://repositorio.uniandes.edu.co/bitstreams/f0c65d01-78d8-45d8-a702-cb9945a78b89/downloadc3c72573cb22704fc7a9ceac59e5e1afMD55AutorizacionTesis_Firmas.pdf.jpgAutorizacionTesis_Firmas.pdf.jpgIM Thumbnailimage/jpeg15916https://repositorio.uniandes.edu.co/bitstreams/f271249a-92ea-4934-92a9-86228c35e23f/download584b1295ec7068b73a34bb6104b08d9fMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/d864dcf6-772c-4084-bbe7-0ddd58f8d558/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTTesis_biblioteca.pdf.txtTesis_biblioteca.pdf.txtExtracted texttext/plain97566https://repositorio.uniandes.edu.co/bitstreams/9b804cc5-18d2-4d4b-94ec-e492d42465d0/downloadd88cf3b79773365a3b9377472a451804MD54AutorizacionTesis_Firmas.pdf.txtAutorizacionTesis_Firmas.pdf.txtExtracted texttext/plain1185https://repositorio.uniandes.edu.co/bitstreams/99040893-3e44-4fe8-a651-1c8bf7f9591a/download27c5c64f1a20d8703dd5d6d66636e2ebMD561992/59303oai:repositorio.uniandes.edu.co:1992/593032024-03-13 13:19:18.556http://creativecommons.org/licenses/by-nc-sa/4.0/embargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==