An algebraic approach to elliptic and hyperelliptic curve cryptography

During the past decades, cryptographic methods have radically improved as well as the mathematical tools employed in them. In this work we introduce elliptic curves as building blocks of cryptosystems and review their properties from a theoretical viewpoint. Moreover, we analyze the Discrete Logarit...

Full description

Autores:
Garzón Mora, Sofía
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/45394
Acceso en línea:
http://hdl.handle.net/1992/45394
Palabra clave:
Curvas elípticas
Algebra abstracta
Jacobianos
Criptografía
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_c26447d3a58c292c0dea3637073095c7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/45394
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Karpuk, David Antonc5f52f4c-7cf9-4ee9-ac8e-fd226ba6aee0500Garzón Mora, Sofíaad4b7f0f-0076-478e-9332-b39a4dd1e53f500Galindo Martínez, César Neyit2020-09-03T15:58:12Z2020-09-03T15:58:12Z2019http://hdl.handle.net/1992/45394u827439.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/During the past decades, cryptographic methods have radically improved as well as the mathematical tools employed in them. In this work we introduce elliptic curves as building blocks of cryptosystems and review their properties from a theoretical viewpoint. Moreover, we analyze the Discrete Logarithm Problem on groups of points on elliptic curves, and algorithms for its solution are implemented and compared. Furthermore, hyperelliptic curves are included as a generalization of elliptic curves for use in cryptography. The Jacobian is then described as an analogue of the group of points on elliptic curves for the case of higher genus curves. Two algorithms are also implemented and compared for the solution of the Discrete Logarithm Problem on the Jacobian of a general hyperelliptic curve. Finally, we find some conditions for curves to be employed in real system applications."Durante las décadas pasadas los métodos criptográficos han mejorado radicalmente, así como las herramientas matemáticas empleadas en ellos. En este trabajo se introducen las curvas elípticas como los bloques con que se construyen criptosistemas y se revisan sus propiedades desde un punto de vista teórico. Más aún, se analiza el Problema del Logaritmo Discreto en grupos de puntos de curvas elípticas y se implementan algoritmos para su solución que luego son comparados. Adicionalmente, se introducen las curvas hiperelípticas como una generalización de las curvas elípticas para uso en criptografía. El Jacobiano se describe entonces como el análogo del grupo de puntos sobre una curva elíptica para el caso de curvas de mayor género. Dos algoritmos se implementan y se comparan también en este caso para la solución del Problema del Logaritmo Discreto en el Jacobiano de una curva hiperelíptica general. Finalmente, se encuentran algunas condiciones para emplear ciertas curvas en aplicaciones a sistemas reales."--Tomado del Formato de Documento de Grado.MatemáticoPregrado72 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaAn algebraic approach to elliptic and hyperelliptic curve cryptographyTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCurvas elípticasAlgebra abstractaJacobianosCriptografíaMatemáticasPublicationTEXTu827439.pdf.txtu827439.pdf.txtExtracted texttext/plain113648https://repositorio.uniandes.edu.co/bitstreams/d331e09c-2913-4eb0-8ffd-3a07102600a2/download42f9538f2fdc4ce0244d01fc8f5b1f56MD54ORIGINALu827439.pdfapplication/pdf465876https://repositorio.uniandes.edu.co/bitstreams/383e211c-fff5-4bac-aa7f-7c50c7e29107/downloadd04542ff2403734704776981e4733ef6MD51THUMBNAILu827439.pdf.jpgu827439.pdf.jpgIM Thumbnailimage/jpeg9318https://repositorio.uniandes.edu.co/bitstreams/5559f713-a6c6-4785-a10a-03665289c648/download71fff3b5f694934449023efc85b6fc0fMD551992/45394oai:repositorio.uniandes.edu.co:1992/453942023-10-10 17:47:12.676http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv An algebraic approach to elliptic and hyperelliptic curve cryptography
title An algebraic approach to elliptic and hyperelliptic curve cryptography
spellingShingle An algebraic approach to elliptic and hyperelliptic curve cryptography
Curvas elípticas
Algebra abstracta
Jacobianos
Criptografía
Matemáticas
title_short An algebraic approach to elliptic and hyperelliptic curve cryptography
title_full An algebraic approach to elliptic and hyperelliptic curve cryptography
title_fullStr An algebraic approach to elliptic and hyperelliptic curve cryptography
title_full_unstemmed An algebraic approach to elliptic and hyperelliptic curve cryptography
title_sort An algebraic approach to elliptic and hyperelliptic curve cryptography
dc.creator.fl_str_mv Garzón Mora, Sofía
dc.contributor.advisor.none.fl_str_mv Karpuk, David Anton
dc.contributor.author.none.fl_str_mv Garzón Mora, Sofía
dc.contributor.jury.none.fl_str_mv Galindo Martínez, César Neyit
dc.subject.armarc.es_CO.fl_str_mv Curvas elípticas
Algebra abstracta
Jacobianos
Criptografía
topic Curvas elípticas
Algebra abstracta
Jacobianos
Criptografía
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description During the past decades, cryptographic methods have radically improved as well as the mathematical tools employed in them. In this work we introduce elliptic curves as building blocks of cryptosystems and review their properties from a theoretical viewpoint. Moreover, we analyze the Discrete Logarithm Problem on groups of points on elliptic curves, and algorithms for its solution are implemented and compared. Furthermore, hyperelliptic curves are included as a generalization of elliptic curves for use in cryptography. The Jacobian is then described as an analogue of the group of points on elliptic curves for the case of higher genus curves. Two algorithms are also implemented and compared for the solution of the Discrete Logarithm Problem on the Jacobian of a general hyperelliptic curve. Finally, we find some conditions for curves to be employed in real system applications.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-09-03T15:58:12Z
dc.date.available.none.fl_str_mv 2020-09-03T15:58:12Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/45394
dc.identifier.pdf.none.fl_str_mv u827439.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/45394
identifier_str_mv u827439.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 72 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/d331e09c-2913-4eb0-8ffd-3a07102600a2/download
https://repositorio.uniandes.edu.co/bitstreams/383e211c-fff5-4bac-aa7f-7c50c7e29107/download
https://repositorio.uniandes.edu.co/bitstreams/5559f713-a6c6-4785-a10a-03665289c648/download
bitstream.checksum.fl_str_mv 42f9538f2fdc4ce0244d01fc8f5b1f56
d04542ff2403734704776981e4733ef6
71fff3b5f694934449023efc85b6fc0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133956491935744