Spin geometry and orthogonal groups

"In this work, we study Clifford algebras, motivated by the very geometrical problem of finding non-vanishing vector fields over the sphere. The study of such algebras naturally leads to Spin groups which are proven to be the universal covering of the orthogonal groups. We classify Clifford alg...

Full description

Autores:
Jaramillo Duque, David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/61606
Acceso en línea:
http://hdl.handle.net/1992/61606
Palabra clave:
Algebras de Clifford
Análisis espinorial
Representación de grupos (Matemáticas)
Geometría de giro
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_c1681489b49e2c1a2fa51a3691534891
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/61606
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Schaffhauser, Florent8ee887f6-cc38-42d0-af3d-ba696ba4229e500Jaramillo Duque, Davidefe8c050-a6f8-4a04-8c51-41255c2e801c4002022-09-26T22:28:08Z2022-09-26T22:28:08Z2017http://hdl.handle.net/1992/61606instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/795326-1001"In this work, we study Clifford algebras, motivated by the very geometrical problem of finding non-vanishing vector fields over the sphere. The study of such algebras naturally leads to Spin groups which are proven to be the universal covering of the orthogonal groups. We classify Clifford algebras and describe their relation to Spin groups. Studying the irreducible representations of Clifford algebras we get interesting isomorphisms for low dimensional Spin groups. And, at the very end, with the machinery developed we study the construction of non-vanishing vector fields over the sphere and the projective space." -- Tomado del Formato de Documento de Grado."En este trabajo, estudiamos álgebras de Clifford, motivados por el problema geométrico de hallar campos vectoriales que no se anulen sobre la esfera. El estudio de algebras de Clifford naturalmente nos lleva a considerar los grupos de Spin, de los cuáles se prueba que son el recubrimiento universal de los grupos ortogonales. Clasificamos las álgebras de Clifford y describimos sus relaciones con los grupos de Spin. Estudiando las representaciones irreducibles de álgebras de Clifford obtuvimos isomorfismos interesantes para los grupos de Spin en dimensión baja. Al final, utilizando las herramientas construidas, estudiamos la construcción de campos vectoriales que no se anulan sobre las esferas y los espacios proyectivos." -- Tomado del Formato de Documento de Grado.MatemáticoPregrado44 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasSpin geometry and orthogonal groupsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAlgebras de CliffordAnálisis espinorialRepresentación de grupos (Matemáticas)Geometría de giro201127233PublicationTEXT12627.pdf.txt12627.pdf.txtExtracted texttext/plain60406https://repositorio.uniandes.edu.co/bitstreams/e05b343b-a5d7-4f81-9d35-cba544491ba2/downloadd089746ed86380a53191f46aa48b7c4bMD52THUMBNAIL12627.pdf.jpg12627.pdf.jpgIM Thumbnailimage/jpeg7329https://repositorio.uniandes.edu.co/bitstreams/28ab126f-79f5-4300-97a2-f2374704aba8/download89fc7b24425797f5442d4e538053cf54MD53ORIGINAL12627.pdfapplication/pdf294706https://repositorio.uniandes.edu.co/bitstreams/fedb8436-e0f6-4de6-8f4e-0751ec2956ac/downloadf34608c660a93c3a4390f6d3cec0855aMD511992/61606oai:repositorio.uniandes.edu.co:1992/616062023-10-10 19:49:29.971http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Spin geometry and orthogonal groups
title Spin geometry and orthogonal groups
spellingShingle Spin geometry and orthogonal groups
Algebras de Clifford
Análisis espinorial
Representación de grupos (Matemáticas)
Geometría de giro
title_short Spin geometry and orthogonal groups
title_full Spin geometry and orthogonal groups
title_fullStr Spin geometry and orthogonal groups
title_full_unstemmed Spin geometry and orthogonal groups
title_sort Spin geometry and orthogonal groups
dc.creator.fl_str_mv Jaramillo Duque, David
dc.contributor.advisor.none.fl_str_mv Schaffhauser, Florent
dc.contributor.author.none.fl_str_mv Jaramillo Duque, David
dc.subject.keyword.spa.fl_str_mv Algebras de Clifford
Análisis espinorial
Representación de grupos (Matemáticas)
Geometría de giro
topic Algebras de Clifford
Análisis espinorial
Representación de grupos (Matemáticas)
Geometría de giro
description "In this work, we study Clifford algebras, motivated by the very geometrical problem of finding non-vanishing vector fields over the sphere. The study of such algebras naturally leads to Spin groups which are proven to be the universal covering of the orthogonal groups. We classify Clifford algebras and describe their relation to Spin groups. Studying the irreducible representations of Clifford algebras we get interesting isomorphisms for low dimensional Spin groups. And, at the very end, with the machinery developed we study the construction of non-vanishing vector fields over the sphere and the projective space." -- Tomado del Formato de Documento de Grado.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2022-09-26T22:28:08Z
dc.date.available.none.fl_str_mv 2022-09-26T22:28:08Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/61606
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
dc.identifier.local.spa.fl_str_mv 795326-1001
url http://hdl.handle.net/1992/61606
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
795326-1001
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 44 hojas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Andes
dc.publisher.program.spa.fl_str_mv Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/e05b343b-a5d7-4f81-9d35-cba544491ba2/download
https://repositorio.uniandes.edu.co/bitstreams/28ab126f-79f5-4300-97a2-f2374704aba8/download
https://repositorio.uniandes.edu.co/bitstreams/fedb8436-e0f6-4de6-8f4e-0751ec2956ac/download
bitstream.checksum.fl_str_mv d089746ed86380a53191f46aa48b7c4b
89fc7b24425797f5442d4e538053cf54
f34608c660a93c3a4390f6d3cec0855a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134074045693952