Spin geometry and orthogonal groups
"In this work, we study Clifford algebras, motivated by the very geometrical problem of finding non-vanishing vector fields over the sphere. The study of such algebras naturally leads to Spin groups which are proven to be the universal covering of the orthogonal groups. We classify Clifford alg...
- Autores:
-
Jaramillo Duque, David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/61606
- Acceso en línea:
- http://hdl.handle.net/1992/61606
- Palabra clave:
- Algebras de Clifford
Análisis espinorial
Representación de grupos (Matemáticas)
Geometría de giro
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_c1681489b49e2c1a2fa51a3691534891 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/61606 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Schaffhauser, Florent8ee887f6-cc38-42d0-af3d-ba696ba4229e500Jaramillo Duque, Davidefe8c050-a6f8-4a04-8c51-41255c2e801c4002022-09-26T22:28:08Z2022-09-26T22:28:08Z2017http://hdl.handle.net/1992/61606instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/795326-1001"In this work, we study Clifford algebras, motivated by the very geometrical problem of finding non-vanishing vector fields over the sphere. The study of such algebras naturally leads to Spin groups which are proven to be the universal covering of the orthogonal groups. We classify Clifford algebras and describe their relation to Spin groups. Studying the irreducible representations of Clifford algebras we get interesting isomorphisms for low dimensional Spin groups. And, at the very end, with the machinery developed we study the construction of non-vanishing vector fields over the sphere and the projective space." -- Tomado del Formato de Documento de Grado."En este trabajo, estudiamos álgebras de Clifford, motivados por el problema geométrico de hallar campos vectoriales que no se anulen sobre la esfera. El estudio de algebras de Clifford naturalmente nos lleva a considerar los grupos de Spin, de los cuáles se prueba que son el recubrimiento universal de los grupos ortogonales. Clasificamos las álgebras de Clifford y describimos sus relaciones con los grupos de Spin. Estudiando las representaciones irreducibles de álgebras de Clifford obtuvimos isomorfismos interesantes para los grupos de Spin en dimensión baja. Al final, utilizando las herramientas construidas, estudiamos la construcción de campos vectoriales que no se anulan sobre las esferas y los espacios proyectivos." -- Tomado del Formato de Documento de Grado.MatemáticoPregrado44 hojasapplication/pdfengUniversidad de los AndesMatemáticasFacultad de CienciasDepartamento de MatemáticasSpin geometry and orthogonal groupsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAlgebras de CliffordAnálisis espinorialRepresentación de grupos (Matemáticas)Geometría de giro201127233PublicationTEXT12627.pdf.txt12627.pdf.txtExtracted texttext/plain60406https://repositorio.uniandes.edu.co/bitstreams/e05b343b-a5d7-4f81-9d35-cba544491ba2/downloadd089746ed86380a53191f46aa48b7c4bMD52THUMBNAIL12627.pdf.jpg12627.pdf.jpgIM Thumbnailimage/jpeg7329https://repositorio.uniandes.edu.co/bitstreams/28ab126f-79f5-4300-97a2-f2374704aba8/download89fc7b24425797f5442d4e538053cf54MD53ORIGINAL12627.pdfapplication/pdf294706https://repositorio.uniandes.edu.co/bitstreams/fedb8436-e0f6-4de6-8f4e-0751ec2956ac/downloadf34608c660a93c3a4390f6d3cec0855aMD511992/61606oai:repositorio.uniandes.edu.co:1992/616062023-10-10 19:49:29.971http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Spin geometry and orthogonal groups |
title |
Spin geometry and orthogonal groups |
spellingShingle |
Spin geometry and orthogonal groups Algebras de Clifford Análisis espinorial Representación de grupos (Matemáticas) Geometría de giro |
title_short |
Spin geometry and orthogonal groups |
title_full |
Spin geometry and orthogonal groups |
title_fullStr |
Spin geometry and orthogonal groups |
title_full_unstemmed |
Spin geometry and orthogonal groups |
title_sort |
Spin geometry and orthogonal groups |
dc.creator.fl_str_mv |
Jaramillo Duque, David |
dc.contributor.advisor.none.fl_str_mv |
Schaffhauser, Florent |
dc.contributor.author.none.fl_str_mv |
Jaramillo Duque, David |
dc.subject.keyword.spa.fl_str_mv |
Algebras de Clifford Análisis espinorial Representación de grupos (Matemáticas) Geometría de giro |
topic |
Algebras de Clifford Análisis espinorial Representación de grupos (Matemáticas) Geometría de giro |
description |
"In this work, we study Clifford algebras, motivated by the very geometrical problem of finding non-vanishing vector fields over the sphere. The study of such algebras naturally leads to Spin groups which are proven to be the universal covering of the orthogonal groups. We classify Clifford algebras and describe their relation to Spin groups. Studying the irreducible representations of Clifford algebras we get interesting isomorphisms for low dimensional Spin groups. And, at the very end, with the machinery developed we study the construction of non-vanishing vector fields over the sphere and the projective space." -- Tomado del Formato de Documento de Grado. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2022-09-26T22:28:08Z |
dc.date.available.none.fl_str_mv |
2022-09-26T22:28:08Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/61606 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
dc.identifier.local.spa.fl_str_mv |
795326-1001 |
url |
http://hdl.handle.net/1992/61606 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ 795326-1001 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
44 hojas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.spa.fl_str_mv |
Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/e05b343b-a5d7-4f81-9d35-cba544491ba2/download https://repositorio.uniandes.edu.co/bitstreams/28ab126f-79f5-4300-97a2-f2374704aba8/download https://repositorio.uniandes.edu.co/bitstreams/fedb8436-e0f6-4de6-8f4e-0751ec2956ac/download |
bitstream.checksum.fl_str_mv |
d089746ed86380a53191f46aa48b7c4b 89fc7b24425797f5442d4e538053cf54 f34608c660a93c3a4390f6d3cec0855a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134074045693952 |