A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players

Consider a game with a continuum of players where only a finite number of them are atomic. Objective functions and admissible strategies may dependon the actions chosen by atomic players and on aggregate information about theactions chosen by non-atomic players. Only atomic players are required to h...

Full description

Autores:
Riascos Villegas, Álvaro José
Torres-Martínez, Juan Pablo
Tipo de recurso:
Work document
Fecha de publicación:
2010
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/8167
Acceso en línea:
http://hdl.handle.net/1992/8167
Palabra clave:
Generalized games
Non-convexities
Pure-strategy Nash equilibrium
Equilibrios de Nash
Teoría de los juegos
C72, C62
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_bee2025e44c256cf253deb7b4a83688d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/8167
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Riascos Villegas, Álvaro José10110600Torres-Martínez, Juan Pablo2320ef05-6ebf-4184-8968-e604cb567c616002018-09-27T16:50:59Z2018-09-27T16:50:59Z20101657-5334http://hdl.handle.net/1992/81671657-719110.57784/1992/8167instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Consider a game with a continuum of players where only a finite number of them are atomic. Objective functions and admissible strategies may dependon the actions chosen by atomic players and on aggregate information about theactions chosen by non-atomic players. Only atomic players are required to haveconvex sets of admissible strategies and quasi-concave objective functions. In thiscontext, we prove the existence of pure strategy Nash equilibria, a result that ex-tends Rath (1992, Theorem 2) to generalized games and gives a direct proof of aspecial case of Balder (1999, Theorem 2.1). Our proof has the merit of being simple,based only on standard fixed point arguments and finite dimensional real analysis.Considere un juego con un continuo de jugadores y un número finito de jugadores atómicos. Las funciones objetivo y estrategias admisibles pueden depender de las acciones de los jugadores atómicos y de información agregada de las acciones de los jugadores no atómicos. Sólo los jugadores atómicos deben tener espacios de acciones convexos y funciones objetivo cuasi cóncavas. En este contexto, probamos las existencias de equilibrios de Nash en estrategias puras, un resultado que extiende el resultado de Rath (1992, Teorema 2) a juegos generalizados y es una prueba directa de un caso especial de Balder (1999, Teorema 2.1). Nuestra prueba tiene el mérito de ser simple, basada en argumentos estándar de punto fijo y análisis real en finitas dimensiones.10 páginasapplication/pdfengUniversidad de los Andes, Facultad de Economía, CEDEDocumentos CEDE No. 13 Mayo de 2010https://ideas.repec.org/p/col/000089/007091.htmlA direct proof of the existence of pure strategy equilibria in large generalized games with atomic playersUna prueba directa de la existencia de equilibrios en estrategias puras en juegos generalizados, continuos y con agentes atómicosDocumento de trabajoinfo:eu-repo/semantics/workingPaperhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttps://purl.org/redcol/resource_type/WPGeneralized gamesNon-convexitiesPure-strategy Nash equilibriumEquilibrios de NashTeoría de los juegosC72, C62Facultad de EconomíaPublicationTHUMBNAILdcede2010-13.pdf.jpgdcede2010-13.pdf.jpgIM Thumbnailimage/jpeg4261https://repositorio.uniandes.edu.co/bitstreams/4432ab3a-6af0-4ed4-86e9-40ee445cbf0a/download431edaef02e986f7455c0cb68140cb7aMD55ORIGINALdcede2010-13.pdfdcede2010-13.pdfapplication/pdf482585https://repositorio.uniandes.edu.co/bitstreams/001037fc-03b7-4ebd-8f96-d2fd167b023d/downloadccd442fcb565c702ee4e0ee68dce4fdbMD51TEXTdcede2010-13.pdf.txtdcede2010-13.pdf.txtExtracted texttext/plain21518https://repositorio.uniandes.edu.co/bitstreams/cea4f2b6-2143-424e-879b-38a4550f77b2/downloadee945b936f5d0f255c406d9349fc6924MD541992/8167oai:repositorio.uniandes.edu.co:1992/81672024-06-04 15:37:08.622http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.none.fl_str_mv A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
dc.title.alternative.none.fl_str_mv Una prueba directa de la existencia de equilibrios en estrategias puras en juegos generalizados, continuos y con agentes atómicos
title A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
spellingShingle A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
Generalized games
Non-convexities
Pure-strategy Nash equilibrium
Equilibrios de Nash
Teoría de los juegos
C72, C62
title_short A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
title_full A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
title_fullStr A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
title_full_unstemmed A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
title_sort A direct proof of the existence of pure strategy equilibria in large generalized games with atomic players
dc.creator.fl_str_mv Riascos Villegas, Álvaro José
Torres-Martínez, Juan Pablo
dc.contributor.author.none.fl_str_mv Riascos Villegas, Álvaro José
Torres-Martínez, Juan Pablo
dc.subject.keyword.none.fl_str_mv Generalized games
Non-convexities
Pure-strategy Nash equilibrium
topic Generalized games
Non-convexities
Pure-strategy Nash equilibrium
Equilibrios de Nash
Teoría de los juegos
C72, C62
dc.subject.armarc.none.fl_str_mv Equilibrios de Nash
Teoría de los juegos
dc.subject.jel.none.fl_str_mv C72, C62
description Consider a game with a continuum of players where only a finite number of them are atomic. Objective functions and admissible strategies may dependon the actions chosen by atomic players and on aggregate information about theactions chosen by non-atomic players. Only atomic players are required to haveconvex sets of admissible strategies and quasi-concave objective functions. In thiscontext, we prove the existence of pure strategy Nash equilibria, a result that ex-tends Rath (1992, Theorem 2) to generalized games and gives a direct proof of aspecial case of Balder (1999, Theorem 2.1). Our proof has the merit of being simple,based only on standard fixed point arguments and finite dimensional real analysis.
publishDate 2010
dc.date.issued.none.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2018-09-27T16:50:59Z
dc.date.available.none.fl_str_mv 2018-09-27T16:50:59Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
dc.identifier.issn.none.fl_str_mv 1657-5334
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/8167
dc.identifier.eissn.none.fl_str_mv 1657-7191
dc.identifier.doi.none.fl_str_mv 10.57784/1992/8167
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
identifier_str_mv 1657-5334
1657-7191
10.57784/1992/8167
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/8167
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Documentos CEDE No. 13 Mayo de 2010
dc.relation.repec.none.fl_str_mv https://ideas.repec.org/p/col/000089/007091.html
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes, Facultad de Economía, CEDE
publisher.none.fl_str_mv Universidad de los Andes, Facultad de Economía, CEDE
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/4432ab3a-6af0-4ed4-86e9-40ee445cbf0a/download
https://repositorio.uniandes.edu.co/bitstreams/001037fc-03b7-4ebd-8f96-d2fd167b023d/download
https://repositorio.uniandes.edu.co/bitstreams/cea4f2b6-2143-424e-879b-38a4550f77b2/download
bitstream.checksum.fl_str_mv 431edaef02e986f7455c0cb68140cb7a
ccd442fcb565c702ee4e0ee68dce4fdb
ee945b936f5d0f255c406d9349fc6924
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133954924314624