Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide

In this paper, six different approaches for the multiperiod blending problem are tested in terms of global optimality and computational time using a new set of problem instances. The solution methods discussed are the standard MINLP formulation, the relaxation created using McCormick envelopes, a Ra...

Full description

Autores:
Ovalle Varela, Daniel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51673
Acceso en línea:
http://hdl.handle.net/1992/51673
Palabra clave:
Mezcla (Ingeniería química)-Metodología-Investigaciones
Petroquímicos-Investigaciones
Líquidos-Investigaciones
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_ba5808e88f6f1f0c570f511405d87cf3
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/51673
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
title Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
spellingShingle Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
Mezcla (Ingeniería química)-Metodología-Investigaciones
Petroquímicos-Investigaciones
Líquidos-Investigaciones
Ingeniería
title_short Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
title_full Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
title_fullStr Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
title_full_unstemmed Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
title_sort Systematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guide
dc.creator.fl_str_mv Ovalle Varela, Daniel
dc.contributor.advisor.none.fl_str_mv Gómez Castro, Camilo Hernando
Gómez Ramírez, Jorge Mario
dc.contributor.author.none.fl_str_mv Ovalle Varela, Daniel
dc.contributor.jury.none.fl_str_mv Porras Holguín, Niyireth Alicia
Suárez Bayona, Daniel Eduardo
dc.subject.armarc.spa.fl_str_mv Mezcla (Ingeniería química)-Metodología-Investigaciones
Petroquímicos-Investigaciones
Líquidos-Investigaciones
topic Mezcla (Ingeniería química)-Metodología-Investigaciones
Petroquímicos-Investigaciones
Líquidos-Investigaciones
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description In this paper, six different approaches for the multiperiod blending problem are tested in terms of global optimality and computational time using a new set of problem instances. The solution methods discussed are the standard MINLP formulation, the relaxation created using McCormick envelopes, a Radix-Based Discretization, a generalized disjunctive programming (GDP) formulation, a Redundant Constraint GDP formulation and a Two- Stage MILP-MINLP Decomposition (still ongoing). The addressed problem is a non-convex MINLP which has been solved for instances with a limited number of variables; hence, determining the best approach and the best solution algorithm is desirable. Results obtained show the best method is the standard MINLP, followed by the Redundant Constraint GDP and the best solution algorithms are the MIQCP algorithms provided by Gurobi. Still, results from the Two-Stage MILP-MINLP Decomposition are still ongoing and have shown promising results so far.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:37:50Z
dc.date.available.none.fl_str_mv 2021-08-10T18:37:50Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/51673
dc.identifier.pdf.none.fl_str_mv 22752.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/51673
identifier_str_mv 22752.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 46 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Química
Ingeniería Industrial
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Química y de Alimentos
Departamento de Ingeniería Industrial
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/18109321-03e0-4fb2-8b4e-99e50706d576/download
https://repositorio.uniandes.edu.co/bitstreams/b46a6251-2d0a-4401-b910-e11d11c1bce2/download
https://repositorio.uniandes.edu.co/bitstreams/d0137535-a203-4d5c-a9e3-fce87e7a9eb5/download
bitstream.checksum.fl_str_mv 46929e91c39d09627a4631f86ed80c6b
b583bfdc9d460e4cc89a68ee5695fdbe
0998026b2767430e525a8c7dfd4185f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134030541324288
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Castro, Camilo Hernandovirtual::14542-1Gómez Ramírez, Jorge Mariovirtual::14543-1Ovalle Varela, Daniel32f570fb-06ce-4465-ade4-94a0f0fd52db500Porras Holguín, Niyireth AliciaSuárez Bayona, Daniel Eduardo2021-08-10T18:37:50Z2021-08-10T18:37:50Z2021http://hdl.handle.net/1992/5167322752.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In this paper, six different approaches for the multiperiod blending problem are tested in terms of global optimality and computational time using a new set of problem instances. The solution methods discussed are the standard MINLP formulation, the relaxation created using McCormick envelopes, a Radix-Based Discretization, a generalized disjunctive programming (GDP) formulation, a Redundant Constraint GDP formulation and a Two- Stage MILP-MINLP Decomposition (still ongoing). The addressed problem is a non-convex MINLP which has been solved for instances with a limited number of variables; hence, determining the best approach and the best solution algorithm is desirable. Results obtained show the best method is the standard MINLP, followed by the Redundant Constraint GDP and the best solution algorithms are the MIQCP algorithms provided by Gurobi. Still, results from the Two-Stage MILP-MINLP Decomposition are still ongoing and have shown promising results so far.Se estudiaron e implementaron seis diferentes métodos de solución para el problema del multiperiod blending y se compararon en términos de optimalidad global y tiempo computacional utilizando un nuevo conjunto de instancias. Los métodos utilizados fueron la formulación directa Mixed-Integer Nonlinear Programming (MINLP), el uso de envolturas de McCormick, una discretización basada en radicales, la formulación estándar de Generalized Disjunctive Programming (GDP), la formulación GDP con restricciones redundantes y una descomposición en dos etapas de tipo MILP-MINLP. Este problema resulta complejo dada su naturaleza no convexa y su modelamiento tipo MINLP. Así mismo, se compararon algunos algoritmos de solución comerciales disponibles para este tipo de problemas. Al final, se obtuvo que los dos mejores métodos son la descomposición y la formulación directa MINLP utilizando los algoritmos de Gurobi.Ingeniero QuímicoIngeniero IndustrialPregrado46 hojasapplication/pdfengUniversidad de los AndesIngeniería QuímicaIngeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería Química y de AlimentosDepartamento de Ingeniería IndustrialSystematic solving study for the optimization of the multiperiod blending problem : a multiple mathematical approach solution guideTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPMezcla (Ingeniería química)-Metodología-InvestigacionesPetroquímicos-InvestigacionesLíquidos-InvestigacionesIngeniería10278319Publicationhttps://scholar.google.es/citations?user=FGBxCvcAAAAJvirtual::14543-10000-0002-2018-4121virtual::14543-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000870382virtual::14543-1c9bd55b2-0b42-4b25-acc4-1391a7c9dd22virtual::14542-14f5a1a48-528f-4b59-83ce-a5d765ad0163virtual::14543-1c9bd55b2-0b42-4b25-acc4-1391a7c9dd22virtual::14542-14f5a1a48-528f-4b59-83ce-a5d765ad0163virtual::14543-1THUMBNAIL22752.pdf.jpg22752.pdf.jpgIM Thumbnailimage/jpeg24079https://repositorio.uniandes.edu.co/bitstreams/18109321-03e0-4fb2-8b4e-99e50706d576/download46929e91c39d09627a4631f86ed80c6bMD55TEXT22752.pdf.txt22752.pdf.txtExtracted texttext/plain82179https://repositorio.uniandes.edu.co/bitstreams/b46a6251-2d0a-4401-b910-e11d11c1bce2/downloadb583bfdc9d460e4cc89a68ee5695fdbeMD54ORIGINAL22752.pdfapplication/pdf1045780https://repositorio.uniandes.edu.co/bitstreams/d0137535-a203-4d5c-a9e3-fce87e7a9eb5/download0998026b2767430e525a8c7dfd4185f5MD511992/51673oai:repositorio.uniandes.edu.co:1992/516732024-03-13 15:13:43.071http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co