Redefining identity and security: Spoofing in the age of artificial intelligence
This research explores the growing threat of AI-driven deepfakes in the context of spoofing attacks. By systematically analyzing attack models, including facial reenactment, replacement, editing, and synthesis, as well as audio deepfake techniques, the study dissects both the creation mechanisms and...
- Autores:
-
Murillo Fonseca, Nicole
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/76116
- Acceso en línea:
- https://hdl.handle.net/1992/76116
- Palabra clave:
- Spoofing
Deepfake
Security
Detection
Authentication
Artificial intelligence
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International
id |
UNIANDES2_ba24b1f40512ac00cac7bbf8f966ce64 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/76116 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Redefining identity and security: Spoofing in the age of artificial intelligence |
title |
Redefining identity and security: Spoofing in the age of artificial intelligence |
spellingShingle |
Redefining identity and security: Spoofing in the age of artificial intelligence Spoofing Deepfake Security Detection Authentication Artificial intelligence Ingeniería |
title_short |
Redefining identity and security: Spoofing in the age of artificial intelligence |
title_full |
Redefining identity and security: Spoofing in the age of artificial intelligence |
title_fullStr |
Redefining identity and security: Spoofing in the age of artificial intelligence |
title_full_unstemmed |
Redefining identity and security: Spoofing in the age of artificial intelligence |
title_sort |
Redefining identity and security: Spoofing in the age of artificial intelligence |
dc.creator.fl_str_mv |
Murillo Fonseca, Nicole |
dc.contributor.advisor.none.fl_str_mv |
Donoso Meisel, Yezyd Enrique |
dc.contributor.author.none.fl_str_mv |
Murillo Fonseca, Nicole |
dc.subject.keyword.eng.fl_str_mv |
Spoofing Deepfake Security Detection Authentication Artificial intelligence |
topic |
Spoofing Deepfake Security Detection Authentication Artificial intelligence Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
This research explores the growing threat of AI-driven deepfakes in the context of spoofing attacks. By systematically analyzing attack models, including facial reenactment, replacement, editing, and synthesis, as well as audio deepfake techniques, the study dissects both the creation mechanisms and detection methodologies underlying these sophisticated forms of edited media content. Leveraging insights from neural network architectures such as GANs, encoder-decoder models, and recurrent networks, alongside a comprehensive review of detection strategies ranging from motion and texture analysis to sensor-based and end-to-end deep learning approaches, the work provides a holistic perspective on the vulnerabilities inherent in current systems and underscores the urgency of developing more robust, adaptable security measures, as well as, clear policies and regulations regarding the use and availability of artificial intelligence tools. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-03-04T19:09:58Z |
dc.date.available.none.fl_str_mv |
2025-03-04T19:09:58Z |
dc.date.issued.none.fl_str_mv |
2025-02-05 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/76116 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/76116 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
M. Salko, A. Firc, and K. Malinka, “Security Implications of Deepfakes in Face Authentication,” Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. ACM, pp. 1376–1384, 2024. doi: 10.1145/3605098.3635953. Y. Mirsky and W. Lee, “The Creation and Detection of Deepfakes,” ACM Computing Surveys, vol. 54, no. 1. Association for Computing Machinery (ACM), pp. 1–41, 2021. doi: 10.1145/3425780. M. Borak, “Chinese government-run facial recognition system hacked by tax fraudsters: report,” 2021. Available: https://www.scmp.com/tech/tech-trends/article/3127645/chinese-government-run-facial-recognition-system-hacked-tax (accessed Nov. 03, 2024) [Online]. D. Prudký, A. Firc, and K. Malinka, “Assessing the Human Ability to Recognize Synthetic Speech in Ordinary Conversation,” 2023 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, pp. 1–5, 2023. doi: 10.1109/biosig58226.2023.10346006. Y. Li, X. Yang, P. Sun, H. Qi and S. Lyu, "Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 3204-3213, doi: 10.1109/CVPR42600.2020.00327. K. Liu, I. Perov, D. Gao, N. Chervoniy, W. Zhou, and W. Zhang, “Deepfacelab: Integrated, flexible and extensible face-swapping framework,” Pattern Recognition, vol. 141. Elsevier BV, p. 109628, Sep. 2023. doi: 10.1016/j.patcog.2023.109628. Z. Almutairi and H. Elgibreen, “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions,” Algorithms, vol. 15, no. 5. MDPI AG, p. 155, 2022. doi: 10.3390/a15050155. Y. L. Khaleel, M. A. Habeeb, and H. Alnabulsi, “Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches,” Applied Data Science and Analysis, vol. 2024. Mesopotamian Academic Press, pp. 121–147, 2024. doi: 10.58496/adsa/2024/011. S. H. Silva, M. Bethany, A. M. Votto, I. H. Scarff, N. Beebe, and P. Najafirad, “Deepfake forensics analysis: An explainable hierarchical ensemble of weakly supervised models,” Forensic Science International: Synergy, vol. 4. Elsevier BV, p. 100217, 2022. doi: 10.1016/j.fsisyn.2022.100217. Z. Almutairi and H. Elgibreen, “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions,” Algorithms, vol. 15, no. 5. MDPI AG, p. 155, 2022. doi: 10.3390/a15050155. K. Schäfer, J.-E. Choi, and S. Zmudzinski, “Explore the World of Audio Deepfakes: A Guide to Detection Techniques for Non-Experts,” 3rd ACM International Workshop on Multimedia AI against Disinformation. ACM, pp. 13–22, 2024. doi: 10.1145/3643491.3660289. J.E. Choi, K. Schäfer, and S. Zmudzinski, “Introduction to Audio Deepfake Generation: Academic Insights for Non-Experts,” 3rd ACM International Workshop on Multimedia AI against Disinformation. ACM, pp. 3–12, 2024. doi: 10.1145/3643491.3660286. P. Isola, J.-Y. Zhu, T. Zhou and A. A. Efros, "Image-to-Image Translation with Conditional Adversarial Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5967-5976, doi: 10.1109/CVPR.2017.632. S. R. Akhdan, R. Supriyanti, and A. S. Nugroho, “Face recognition with anti spoofing eye blink detection,” AIP Conference Proceedings, vol. 2562. AIP Publishing, p. 020006, 2023. doi: 10.1063/5.0113512. K. Kollreider, H. Fronthaler, M. I. Faraj and J. Bigun, "Real-Time Face Detection and Motion Analysis With Application in “Liveness” Assessment," in IEEE Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 548-558, 2007, doi: 10.1109/TIFS.2007.902037. S. Concas, S. M. La Cava, R. Casula, G. Orrù, G. Puglisi, and G. L. Marcialis, “Quality-based Artifact Modeling for Facial Deepfake Detection in Videos,” 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp. 3845–3854, 2024. doi: 10.1109/cvprw63382.2024.00389. M. R. Hasan, S. M. Hasan Mahmud, and X. Y. Li, “Face Anti-Spoofing Using Texture-Based Techniques and Filtering Methods,” Journal of Physics: Conference Series, vol. 1229, no. 1. IOP Publishing, p. 012044, 2019. doi: 10.1088/1742-6596/1229/1/012044. B. Xu, J. Liu, J. Liang, W. Lu, and Y. Zhang, “DeepFake Videos Detection Based on Texture Features,” Computers, Materials & Continua, vol. 68, no. 1. Tech Science Press, pp. 1375–1388, 2021. doi: 10.32604/cmc.2021.016760. S.-H. Kim, S.-M. Jeon, and E. C. Lee, “Face Biometric Spoof Detection Method Using a Remote Photoplethysmography Signal,” Sensors, vol. 22, no. 8. MDPI AG, p. 3070, 2022. doi: 10.3390/s22083070. G. Manoj, D. S. Yashas, K. P. Jeevan, M. Likith and Dr. Raghavendra R. J. “A Survey on Anti-Spoofing Methods for Facial Recognition,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Technoscience Academy, pp. 259–268, Apr. 15, 2022. doi: 10.32628/cseit228248. A. Neema, S. K. Sharma, and D. Sukheja, “Machine Learning Method for Face Spoofing: A Review,” Journal of Propulsion Technology , vol. 44, no. 4, 2023, (accessed Dec. 27, 2024) [Online]. Available: https://www.propulsiontechjournal.com/index.php/journal/article/view/5452/5531 Y. Atoum, Y. Liu, A. Jourabloo and X. Liu, "Face anti-spoofing using patch and depth-based CNNs," 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 2017, pp. 319-328, doi: 10.1109/BTAS.2017.8272713. L. Wu, Y. Xu, M. Jian, W. Cai, C. Yan, and Y. Ma, “Motion Analysis Based Cross-Database Voting for Face Spoofing Detection,” Lecture Notes in Computer Science. Springer International Publishing, pp. 528–536, 2017. doi: 10.1007/978-3-319-69923-3_57. J. Xiao, W. Wang, L. Zhang, and H. Liu, “A Mobile FaceNet-Based Face Anti-Spoofing Algorithm for Low-Quality Images,” Electronics, vol. 13, no. 14. MDPI AG, p. 2801, 2024. doi: 10.3390/electronics13142801. H. Hao, M. Pei, and M. Zhao, “Face Liveness Detection Based on Client Identity Using Siamese Network,” Lecture Notes in Computer Science. Springer International Publishing, pp. 172–180, 2019. doi: 10.1007/978-3-030-31654-9_15. G. Hua, A. B. J. Teoh, and H. Zhang, “Towards End-to-End Synthetic Speech Detection,” IEEE Signal Processing Letters, vol. 28. Institute of Electrical and Electronics Engineers (IEEE), pp. 1265–1269, 2021. doi: 10.1109/lsp.2021.3089437. T. J. Hong, “Uncovering the Real Voice: How to Detect and Verify Audio Deepfakes,” Medium, 2023. https://medium.com/htx-s-s-coe/uncovering-the-real-voice-how-to-detect-and-verify-audio-deepfakes-42e480d3f431 (accessed Jan. 04, 2024) [Online]. J. Khochare, C. Joshi, B. Yenarkar, S. Suratkar, and F. Kazi, “A Deep Learning Framework for Audio Deepfake Detection,” Arabian Journal for Science and Engineering, vol. 47, no. 3. Springer Science and Business Media LLC, pp. 3447–3458, 2021. doi: 10.1007/s13369-021-06297-w. F. Iqbal, A. Abbasi, A. R. Javed, Z. Jalil, and J. N. Al-Karaki, "Deepfake Audio Detection Via Feature Engineering And Machine Learning," in Proc. CIKM Workshops, 2022. P. Rahul, P. Aravind, C. Ranjith, U. Nechiyil, and N. Paramparambath, “Audio Spoofing Verification using Deep Convolutional Neural Networks by Transfer Learning,” 2020, arXiv. doi: 10.48550/ARXIV.2008.03464. C. B. Tan, M. H. Ahmad Hijazi, F. Kok, M. S. Mohamad, and P. N. Ellyza Nohuddin, “Artificial speech detection using image-based features and random forest classifier,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 11, no. 1. Institute of Advanced Engineering and Science, p. 161, 2022. doi: 10.11591/ijai.v11.i1.pp161-172. C. Wang, J. Yi, J. Tao, H. Sun, X. Chen, Z. Tian, H. Ma, C. Fan, and R. Fu, “Fully Automated End-to-End Fake Audio Detection,” Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia. ACM, pp. 27–33, 2022. doi: 10.1145/3552466.3556530. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
30 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/408c83e6-a08a-47b7-b32a-0ff6cc79db5e/download https://repositorio.uniandes.edu.co/bitstreams/c1b84ede-8e4c-4514-ad02-ab1873d2f8e3/download https://repositorio.uniandes.edu.co/bitstreams/16a2b3b8-691f-47e9-a195-880a31405748/download https://repositorio.uniandes.edu.co/bitstreams/d853d3b9-d8fd-433a-ab85-72a6b6c7b606/download https://repositorio.uniandes.edu.co/bitstreams/7d4552bb-2110-439b-9314-6989f1833b46/download https://repositorio.uniandes.edu.co/bitstreams/340f93ca-800d-4ac6-939f-55935592bad1/download https://repositorio.uniandes.edu.co/bitstreams/e3145a70-3146-4921-b5b2-5b95842f3c13/download https://repositorio.uniandes.edu.co/bitstreams/19aa7952-0d2c-45d6-80b7-894fc1a8318b/download |
bitstream.checksum.fl_str_mv |
e17c6f610d193f82267c0f51fc980a4c 69abdcfdd5d642bb500dafd00c70d6b0 ae9e573a68e7f92501b6913cc846c39f 24013099e9e6abb1575dc6ce0855efd5 1187165a1a692928e6d8455ae1c9386e 924886eb8107674fa227d92d400c8bb5 ec4d44aad966c7b239b11fbba3ac3d93 5cdae2ed7cbdb4fdd26c788c35a8750b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927759247507456 |
spelling |
Donoso Meisel, Yezyd Enriquevirtual::24001-1Murillo Fonseca, Nicole2025-03-04T19:09:58Z2025-03-04T19:09:58Z2025-02-05https://hdl.handle.net/1992/76116instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This research explores the growing threat of AI-driven deepfakes in the context of spoofing attacks. By systematically analyzing attack models, including facial reenactment, replacement, editing, and synthesis, as well as audio deepfake techniques, the study dissects both the creation mechanisms and detection methodologies underlying these sophisticated forms of edited media content. Leveraging insights from neural network architectures such as GANs, encoder-decoder models, and recurrent networks, alongside a comprehensive review of detection strategies ranging from motion and texture analysis to sensor-based and end-to-end deep learning approaches, the work provides a holistic perspective on the vulnerabilities inherent in current systems and underscores the urgency of developing more robust, adaptable security measures, as well as, clear policies and regulations regarding the use and availability of artificial intelligence tools.Pregrado30 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Redefining identity and security: Spoofing in the age of artificial intelligenceTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSpoofingDeepfakeSecurityDetectionAuthenticationArtificial intelligenceIngenieríaM. Salko, A. Firc, and K. Malinka, “Security Implications of Deepfakes in Face Authentication,” Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. ACM, pp. 1376–1384, 2024. doi: 10.1145/3605098.3635953.Y. Mirsky and W. Lee, “The Creation and Detection of Deepfakes,” ACM Computing Surveys, vol. 54, no. 1. Association for Computing Machinery (ACM), pp. 1–41, 2021. doi: 10.1145/3425780.M. Borak, “Chinese government-run facial recognition system hacked by tax fraudsters: report,” 2021. Available: https://www.scmp.com/tech/tech-trends/article/3127645/chinese-government-run-facial-recognition-system-hacked-tax (accessed Nov. 03, 2024) [Online].D. Prudký, A. Firc, and K. Malinka, “Assessing the Human Ability to Recognize Synthetic Speech in Ordinary Conversation,” 2023 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE, pp. 1–5, 2023. doi: 10.1109/biosig58226.2023.10346006.Y. Li, X. Yang, P. Sun, H. Qi and S. Lyu, "Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 3204-3213, doi: 10.1109/CVPR42600.2020.00327.K. Liu, I. Perov, D. Gao, N. Chervoniy, W. Zhou, and W. Zhang, “Deepfacelab: Integrated, flexible and extensible face-swapping framework,” Pattern Recognition, vol. 141. Elsevier BV, p. 109628, Sep. 2023. doi: 10.1016/j.patcog.2023.109628.Z. Almutairi and H. Elgibreen, “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions,” Algorithms, vol. 15, no. 5. MDPI AG, p. 155, 2022. doi: 10.3390/a15050155.Y. L. Khaleel, M. A. Habeeb, and H. Alnabulsi, “Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches,” Applied Data Science and Analysis, vol. 2024. Mesopotamian Academic Press, pp. 121–147, 2024. doi: 10.58496/adsa/2024/011.S. H. Silva, M. Bethany, A. M. Votto, I. H. Scarff, N. Beebe, and P. Najafirad, “Deepfake forensics analysis: An explainable hierarchical ensemble of weakly supervised models,” Forensic Science International: Synergy, vol. 4. Elsevier BV, p. 100217, 2022. doi: 10.1016/j.fsisyn.2022.100217.Z. Almutairi and H. Elgibreen, “A Review of Modern Audio Deepfake Detection Methods: Challenges and Future Directions,” Algorithms, vol. 15, no. 5. MDPI AG, p. 155, 2022. doi: 10.3390/a15050155.K. Schäfer, J.-E. Choi, and S. Zmudzinski, “Explore the World of Audio Deepfakes: A Guide to Detection Techniques for Non-Experts,” 3rd ACM International Workshop on Multimedia AI against Disinformation. ACM, pp. 13–22, 2024. doi: 10.1145/3643491.3660289.J.E. Choi, K. Schäfer, and S. Zmudzinski, “Introduction to Audio Deepfake Generation: Academic Insights for Non-Experts,” 3rd ACM International Workshop on Multimedia AI against Disinformation. ACM, pp. 3–12, 2024. doi: 10.1145/3643491.3660286.P. Isola, J.-Y. Zhu, T. Zhou and A. A. Efros, "Image-to-Image Translation with Conditional Adversarial Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 5967-5976, doi: 10.1109/CVPR.2017.632.S. R. Akhdan, R. Supriyanti, and A. S. Nugroho, “Face recognition with anti spoofing eye blink detection,” AIP Conference Proceedings, vol. 2562. AIP Publishing, p. 020006, 2023. doi: 10.1063/5.0113512.K. Kollreider, H. Fronthaler, M. I. Faraj and J. Bigun, "Real-Time Face Detection and Motion Analysis With Application in “Liveness” Assessment," in IEEE Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 548-558, 2007, doi: 10.1109/TIFS.2007.902037.S. Concas, S. M. La Cava, R. Casula, G. Orrù, G. Puglisi, and G. L. Marcialis, “Quality-based Artifact Modeling for Facial Deepfake Detection in Videos,” 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, pp. 3845–3854, 2024. doi: 10.1109/cvprw63382.2024.00389.M. R. Hasan, S. M. Hasan Mahmud, and X. Y. Li, “Face Anti-Spoofing Using Texture-Based Techniques and Filtering Methods,” Journal of Physics: Conference Series, vol. 1229, no. 1. IOP Publishing, p. 012044, 2019. doi: 10.1088/1742-6596/1229/1/012044.B. Xu, J. Liu, J. Liang, W. Lu, and Y. Zhang, “DeepFake Videos Detection Based on Texture Features,” Computers, Materials & Continua, vol. 68, no. 1. Tech Science Press, pp. 1375–1388, 2021. doi: 10.32604/cmc.2021.016760.S.-H. Kim, S.-M. Jeon, and E. C. Lee, “Face Biometric Spoof Detection Method Using a Remote Photoplethysmography Signal,” Sensors, vol. 22, no. 8. MDPI AG, p. 3070, 2022. doi: 10.3390/s22083070.G. Manoj, D. S. Yashas, K. P. Jeevan, M. Likith and Dr. Raghavendra R. J. “A Survey on Anti-Spoofing Methods for Facial Recognition,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Technoscience Academy, pp. 259–268, Apr. 15, 2022. doi: 10.32628/cseit228248.A. Neema, S. K. Sharma, and D. Sukheja, “Machine Learning Method for Face Spoofing: A Review,” Journal of Propulsion Technology , vol. 44, no. 4, 2023, (accessed Dec. 27, 2024) [Online]. Available: https://www.propulsiontechjournal.com/index.php/journal/article/view/5452/5531Y. Atoum, Y. Liu, A. Jourabloo and X. Liu, "Face anti-spoofing using patch and depth-based CNNs," 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 2017, pp. 319-328, doi: 10.1109/BTAS.2017.8272713.L. Wu, Y. Xu, M. Jian, W. Cai, C. Yan, and Y. Ma, “Motion Analysis Based Cross-Database Voting for Face Spoofing Detection,” Lecture Notes in Computer Science. Springer International Publishing, pp. 528–536, 2017. doi: 10.1007/978-3-319-69923-3_57.J. Xiao, W. Wang, L. Zhang, and H. Liu, “A Mobile FaceNet-Based Face Anti-Spoofing Algorithm for Low-Quality Images,” Electronics, vol. 13, no. 14. MDPI AG, p. 2801, 2024. doi: 10.3390/electronics13142801.H. Hao, M. Pei, and M. Zhao, “Face Liveness Detection Based on Client Identity Using Siamese Network,” Lecture Notes in Computer Science. Springer International Publishing, pp. 172–180, 2019. doi: 10.1007/978-3-030-31654-9_15.G. Hua, A. B. J. Teoh, and H. Zhang, “Towards End-to-End Synthetic Speech Detection,” IEEE Signal Processing Letters, vol. 28. Institute of Electrical and Electronics Engineers (IEEE), pp. 1265–1269, 2021. doi: 10.1109/lsp.2021.3089437.T. J. Hong, “Uncovering the Real Voice: How to Detect and Verify Audio Deepfakes,” Medium, 2023. https://medium.com/htx-s-s-coe/uncovering-the-real-voice-how-to-detect-and-verify-audio-deepfakes-42e480d3f431 (accessed Jan. 04, 2024) [Online].J. Khochare, C. Joshi, B. Yenarkar, S. Suratkar, and F. Kazi, “A Deep Learning Framework for Audio Deepfake Detection,” Arabian Journal for Science and Engineering, vol. 47, no. 3. Springer Science and Business Media LLC, pp. 3447–3458, 2021. doi: 10.1007/s13369-021-06297-w.F. Iqbal, A. Abbasi, A. R. Javed, Z. Jalil, and J. N. Al-Karaki, "Deepfake Audio Detection Via Feature Engineering And Machine Learning," in Proc. CIKM Workshops, 2022.P. Rahul, P. Aravind, C. Ranjith, U. Nechiyil, and N. Paramparambath, “Audio Spoofing Verification using Deep Convolutional Neural Networks by Transfer Learning,” 2020, arXiv. doi: 10.48550/ARXIV.2008.03464.C. B. Tan, M. H. Ahmad Hijazi, F. Kok, M. S. Mohamad, and P. N. Ellyza Nohuddin, “Artificial speech detection using image-based features and random forest classifier,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 11, no. 1. Institute of Advanced Engineering and Science, p. 161, 2022. doi: 10.11591/ijai.v11.i1.pp161-172.C. Wang, J. Yi, J. Tao, H. Sun, X. Chen, Z. Tian, H. Ma, C. Fan, and R. Fu, “Fully Automated End-to-End Fake Audio Detection,” Proceedings of the 1st International Workshop on Deepfake Detection for Audio Multimedia. ACM, pp. 27–33, 2022. doi: 10.1145/3552466.3556530.202025521Publicationhttps://scholar.google.es/citations?user=Razvs2MAAAAJvirtual::24001-10000-0003-1659-1522virtual::24001-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000094706virtual::24001-16b9d423b-11e8-4930-b0d2-061b34e9806bvirtual::24001-16b9d423b-11e8-4930-b0d2-061b34e9806bvirtual::24001-1ORIGINALProyecto de Grado.pdfProyecto de Grado.pdfapplication/pdf637648https://repositorio.uniandes.edu.co/bitstreams/408c83e6-a08a-47b7-b32a-0ff6cc79db5e/downloade17c6f610d193f82267c0f51fc980a4cMD51Formato Autorización Tesis.pdfFormato Autorización Tesis.pdfHIDEapplication/pdf392923https://repositorio.uniandes.edu.co/bitstreams/c1b84ede-8e4c-4514-ad02-ab1873d2f8e3/download69abdcfdd5d642bb500dafd00c70d6b0MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/16a2b3b8-691f-47e9-a195-880a31405748/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/d853d3b9-d8fd-433a-ab85-72a6b6c7b606/download24013099e9e6abb1575dc6ce0855efd5MD54TEXTProyecto de Grado.pdf.txtProyecto de Grado.pdf.txtExtracted texttext/plain62673https://repositorio.uniandes.edu.co/bitstreams/7d4552bb-2110-439b-9314-6989f1833b46/download1187165a1a692928e6d8455ae1c9386eMD56Formato Autorización Tesis.pdf.txtFormato Autorización Tesis.pdf.txtExtracted texttext/plain1983https://repositorio.uniandes.edu.co/bitstreams/340f93ca-800d-4ac6-939f-55935592bad1/download924886eb8107674fa227d92d400c8bb5MD58THUMBNAILProyecto de Grado.pdf.jpgProyecto de Grado.pdf.jpgGenerated Thumbnailimage/jpeg7269https://repositorio.uniandes.edu.co/bitstreams/e3145a70-3146-4921-b5b2-5b95842f3c13/downloadec4d44aad966c7b239b11fbba3ac3d93MD57Formato Autorización Tesis.pdf.jpgFormato Autorización Tesis.pdf.jpgGenerated Thumbnailimage/jpeg11032https://repositorio.uniandes.edu.co/bitstreams/19aa7952-0d2c-45d6-80b7-894fc1a8318b/download5cdae2ed7cbdb4fdd26c788c35a8750bMD591992/76116oai:repositorio.uniandes.edu.co:1992/761162025-03-05 10:02:34.245http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |