Predicting crime in Bogota using Kernel warping

Predicting crime is fundamental for an efficient use of the currently allocated police force resources. Using a kernel warping methodology developed by Zhou and Mattenson (2016) to predict ambulance demand in Melbourne, we predict crime in Bogota, Colombia. Exploiting the geometry of the city, this...

Full description

Autores:
Garrido Mejía, Sergio Hernán
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/34610
Acceso en línea:
http://hdl.handle.net/1992/34610
Palabra clave:
Crimen - Investigaciones - Bogotá (Colombia)
Crimen - Predicciones - Bogotá (Colombia)
Economía
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Predicting crime is fundamental for an efficient use of the currently allocated police force resources. Using a kernel warping methodology developed by Zhou and Mattenson (2016) to predict ambulance demand in Melbourne, we predict crime in Bogota, Colombia. Exploiting the geometry of the city, this methodology performs worse than the state of the art Kernel Density Estimation (KDE) methodology by a 100 basis points using the Area Under the Curve (AUC) of the Cumulative Accuracy Profile (CAP) metric. The results of this model are robust to changes in the training and testing period and different definitions of the adjacency and Laplacian matrices.