Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization

Given the characteristics of IoT devices and the growing trend in their number, the security of these devices is critical. In particular, this paper will focus on Denial of Service (DoS) attacks, which seek to overload a service or device by using a machine to render the device inactive. Two machine...

Full description

Autores:
Soto Parada, Erich Giusseppe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75191
Acceso en línea:
https://hdl.handle.net/1992/75191
Palabra clave:
DoS attacks
Machine Learning
Evolutionary algorithms
Inference times
Multi-objective optimization
Pseudo weights
Ingeniería
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_b97151eb8261be93300b9f861df89394
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75191
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
title Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
spellingShingle Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
DoS attacks
Machine Learning
Evolutionary algorithms
Inference times
Multi-objective optimization
Pseudo weights
Ingeniería
title_short Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
title_full Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
title_fullStr Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
title_full_unstemmed Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
title_sort Detection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective Optimization
dc.creator.fl_str_mv Soto Parada, Erich Giusseppe
dc.contributor.advisor.none.fl_str_mv Montoya Orozco, Germán Adolfo
Lozano Garzon, Carlos Andres
dc.contributor.author.none.fl_str_mv Soto Parada, Erich Giusseppe
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::COMIT - Comunicaciones y Tecnología de Información
dc.subject.keyword.eng.fl_str_mv DoS attacks
Machine Learning
Evolutionary algorithms
Inference times
Multi-objective optimization
Pseudo weights
topic DoS attacks
Machine Learning
Evolutionary algorithms
Inference times
Multi-objective optimization
Pseudo weights
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description Given the characteristics of IoT devices and the growing trend in their number, the security of these devices is critical. In particular, this paper will focus on Denial of Service (DoS) attacks, which seek to overload a service or device by using a machine to render the device inactive. Two machine learning models will be proposed: one from Random Forest, which has an F1 score of 0.99985 and an inference time of 0.457026 seconds for almost 500,000 records, and another from XGBoost, with an F1 score of 0.998989 and an inference time of 0.325767 seconds for the same 500,000 records. According to the methodologies explained, these models were the most suitable to meet the need for security in IoT devices.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-29T13:12:42Z
dc.date.issued.none.fl_str_mv 2024-10-28
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75191
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75191
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] A. Srhir, T. Mazri, and M. Benbrahim, “Security in the iot: State-of-the-art, issues, solutions, and challenges,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 14, no. 5, pp. 65–75, 2023.
[2] SonicWall, “Mid-year update 2023 sonicwall cyber threat report,” 2023, accessed: January 20, 2023. [Online]. Available: https://www.sonicwall.com
[3] T. G. Nguyen, T. V. Phan, B. T. Nguyen, C. So-In, Z. A. Baig, and S. Sanguanpong, “Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks,” IEEE Access, vol. 7, pp. 107 678–107 694, 2019.
[4] C. Kolias, G. Kambourakis, and A. Stavrou, “Ddos in the iot: Mirai and other botnets,” IEEE, vol. 50, no. 7, pp. 80–84, 2017.
[5] R. Hat, “Red hat,” January 2023, available: https://www.redhat.com/es/topics/internet-of-things/what-is-iot.
[6] J. Holdsworth and M. Scapicchio, “What is deep learning?” https://www.ibm.com/topics/deep-learning, 2024, updated: 17 June 2024.
[7] B. Gupta and O. P. Badve, “Taxonomy of dos and ddos attacks and desirable defense mechanism in a cloud computing environment,” Neural Computing and Applications, vol. 28, pp. 3655–3682, 2017.
[8] Cloudflare, “Cloudflare,” available: https://www.cloudflare.com/es-es/learning/ddos/glossary/denial-of-service/.
[9] J. Murel and E. Kavlakoglu, “Ibm,” January 2024, available: https://www.ibm.com/topics/confusion-matrix.
[10] J. D. Kelleher, B. Mac Namee, and A. D’Arcy, Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. Cambridge, MA: MIT Press, 2015.
[11] A. G´eron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-Flow, 3rd ed. Sebastopol, CA: O’Reilly Media, 2022.
[12] IBM, “Ibm,” December 2023, available: https://www.ibm.com/topics/principal-component-analysis#:∼:text=IBM,of%20variables%2C%20called%20principal%20components.
[13] H. Nelson, “Singular value decomposition: Image processing, natural language processing, and social media,” in Essential Math for AI. O’Reilly Media, 2023, ch. 6.
[14] IBM, “Linear discriminant analysis,” 2023, accessed: 2024-10-10. [Online]. Available: https://www.ibm.com/topics/linear-discriminant-analysis
[15] J. R. Turner and J. F. Thayer, “One-factor independent-groups analysis of variance,” in Introduction to Analysis of Variance. SAGE Publications, Inc., 2001, pp. 36–51. [Online]. Available: https://doi.org/10.4135/9781412984621
[16] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for network intrusion detection systems (unsw-nb15 network data set),” in Military Communications and Information Systems Conference (MilCIS). IEEE, 2015, pp. 1–6.
[17] ——, “The evaluation of network anomaly detection systems: Statistical analysis of the unsw-nb15 dataset and the comparison with the kdd99 dataset,” Information of the unsw-nb15 dataset and the comparison with the kdd99 dataset,” Information Security Journal: A Global Perspective, pp. 1–14, 2016.
[18] N. Moustafa et al., “Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks,” IEEE Transactions on Big Data, 2017.
[19] ——, “Big data analytics for intrusion detection system: Statistical decisionmaking using finite dirichlet mixture models,” in Data Analytics and Decision using finite dirichlet mixture models,” in Data Analytics and Decision Support for Cybersecurity. Springer, Cham, 2017, pp. 127–156.
[20] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Netflow datasets for machine learning-based network intrusion detection systems,” in Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020. Springer Nature, 2020, p. 117.
[21] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset,” Future Generation Computer Systems, vol. 100, pp. 896–915, 2019.
[22] J. G. Almaraz-Rivera, J. A. Perez-Diaz, J. A. Cantoral-Ceballos, J. F. Botero, and L. A. Trejo, “Latam-ddos-iot dataset,” 2022. [Online]. Available: Botero, and L. A. Trejo, “Latam-ddos-iot dataset,” 2022. [Online]. Available: https://dx.doi.org/10.21227/rwtj-dd43
[23] E. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. Ghorbani, “Ciciot2023: A real-time dataset and benchmark for large-scale attacks in iot environment,” Sensors, no. 5941, 2023.
[24] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001.
[25] Ookla. (2024, September) Speedtest global index. Accessed: 2024-10-21. [Online]. Available: https://www.speedtest.net/global-index
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
http://purl.org/coar/access_right/c_f1cf
dc.format.extent.none.fl_str_mv 34 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/0a649828-17f0-4ee0-bb17-c81aa9b4e9a9/download
https://repositorio.uniandes.edu.co/bitstreams/df9c5998-bc8d-4085-8e32-8cc0fa004c60/download
https://repositorio.uniandes.edu.co/bitstreams/8d48da6b-db88-4b58-b8bb-d8156ea3f78c/download
https://repositorio.uniandes.edu.co/bitstreams/3c2c2a23-ead1-4ab5-9d96-7c0e009acbfd/download
https://repositorio.uniandes.edu.co/bitstreams/a742d6b0-3664-4d15-9fc9-2089f2755816/download
https://repositorio.uniandes.edu.co/bitstreams/4e7d951a-686a-49cb-addf-9fc3a1b15fb2/download
https://repositorio.uniandes.edu.co/bitstreams/e8ae9116-9f7d-48b6-910c-3a434426d196/download
https://repositorio.uniandes.edu.co/bitstreams/08de7592-8067-431d-b4e1-59f79366741a/download
bitstream.checksum.fl_str_mv e750f829237cd4093a15f7855dfe3493
9bac5d01661cacf7262386dd16c6b38b
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
4cad7aa2312bbc552cf01ae0adb1ea4a
8a065e0aee5031f95d808e36de4bd0b0
d4084ea6f11494f46a0dd9b4ae5e2781
91fb58b544eccd1ac63e3918e283aad6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1831927817468641280
spelling Montoya Orozco, Germán Adolfovirtual::20113-1Lozano Garzon, Carlos Andresvirtual::23960-1Soto Parada, Erich GiusseppeFacultad de Ingeniería::COMIT - Comunicaciones y Tecnología de Información2024-10-29T13:12:42Z2024-10-28https://hdl.handle.net/1992/75191instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Given the characteristics of IoT devices and the growing trend in their number, the security of these devices is critical. In particular, this paper will focus on Denial of Service (DoS) attacks, which seek to overload a service or device by using a machine to render the device inactive. Two machine learning models will be proposed: one from Random Forest, which has an F1 score of 0.99985 and an inference time of 0.457026 seconds for almost 500,000 records, and another from XGBoost, with an F1 score of 0.998989 and an inference time of 0.325767 seconds for the same 500,000 records. According to the methodologies explained, these models were the most suitable to meet the need for security in IoT devices.Pregrado34 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_f1cf http://purl.org/coar/access_right/c_f1cfDetection of DoS Attacks in IoT Networks Using Machine Learning and Multi-Objective OptimizationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDoS attacksMachine LearningEvolutionary algorithmsInference timesMulti-objective optimizationPseudo weightsIngeniería[1] A. Srhir, T. Mazri, and M. Benbrahim, “Security in the iot: State-of-the-art, issues, solutions, and challenges,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 14, no. 5, pp. 65–75, 2023.[2] SonicWall, “Mid-year update 2023 sonicwall cyber threat report,” 2023, accessed: January 20, 2023. [Online]. Available: https://www.sonicwall.com[3] T. G. Nguyen, T. V. Phan, B. T. Nguyen, C. So-In, Z. A. Baig, and S. Sanguanpong, “Search: A collaborative and intelligent nids architecture for sdn-based cloud iot networks,” IEEE Access, vol. 7, pp. 107 678–107 694, 2019.[4] C. Kolias, G. Kambourakis, and A. Stavrou, “Ddos in the iot: Mirai and other botnets,” IEEE, vol. 50, no. 7, pp. 80–84, 2017.[5] R. Hat, “Red hat,” January 2023, available: https://www.redhat.com/es/topics/internet-of-things/what-is-iot.[6] J. Holdsworth and M. Scapicchio, “What is deep learning?” https://www.ibm.com/topics/deep-learning, 2024, updated: 17 June 2024.[7] B. Gupta and O. P. Badve, “Taxonomy of dos and ddos attacks and desirable defense mechanism in a cloud computing environment,” Neural Computing and Applications, vol. 28, pp. 3655–3682, 2017.[8] Cloudflare, “Cloudflare,” available: https://www.cloudflare.com/es-es/learning/ddos/glossary/denial-of-service/.[9] J. Murel and E. Kavlakoglu, “Ibm,” January 2024, available: https://www.ibm.com/topics/confusion-matrix.[10] J. D. Kelleher, B. Mac Namee, and A. D’Arcy, Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. Cambridge, MA: MIT Press, 2015.[11] A. G´eron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensor-Flow, 3rd ed. Sebastopol, CA: O’Reilly Media, 2022.[12] IBM, “Ibm,” December 2023, available: https://www.ibm.com/topics/principal-component-analysis#:∼:text=IBM,of%20variables%2C%20called%20principal%20components.[13] H. Nelson, “Singular value decomposition: Image processing, natural language processing, and social media,” in Essential Math for AI. O’Reilly Media, 2023, ch. 6.[14] IBM, “Linear discriminant analysis,” 2023, accessed: 2024-10-10. [Online]. Available: https://www.ibm.com/topics/linear-discriminant-analysis[15] J. R. Turner and J. F. Thayer, “One-factor independent-groups analysis of variance,” in Introduction to Analysis of Variance. SAGE Publications, Inc., 2001, pp. 36–51. [Online]. Available: https://doi.org/10.4135/9781412984621[16] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for network intrusion detection systems (unsw-nb15 network data set),” in Military Communications and Information Systems Conference (MilCIS). IEEE, 2015, pp. 1–6.[17] ——, “The evaluation of network anomaly detection systems: Statistical analysis of the unsw-nb15 dataset and the comparison with the kdd99 dataset,” Information of the unsw-nb15 dataset and the comparison with the kdd99 dataset,” Information Security Journal: A Global Perspective, pp. 1–14, 2016.[18] N. Moustafa et al., “Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks,” IEEE Transactions on Big Data, 2017.[19] ——, “Big data analytics for intrusion detection system: Statistical decisionmaking using finite dirichlet mixture models,” in Data Analytics and Decision using finite dirichlet mixture models,” in Data Analytics and Decision Support for Cybersecurity. Springer, Cham, 2017, pp. 127–156.[20] M. Sarhan, S. Layeghy, N. Moustafa, and M. Portmann, “Netflow datasets for machine learning-based network intrusion detection systems,” in Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference on Wireless Internet, WiCON 2020. Springer Nature, 2020, p. 117.[21] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset,” Future Generation Computer Systems, vol. 100, pp. 896–915, 2019.[22] J. G. Almaraz-Rivera, J. A. Perez-Diaz, J. A. Cantoral-Ceballos, J. F. Botero, and L. A. Trejo, “Latam-ddos-iot dataset,” 2022. [Online]. Available: Botero, and L. A. Trejo, “Latam-ddos-iot dataset,” 2022. [Online]. Available: https://dx.doi.org/10.21227/rwtj-dd43[23] E. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. Ghorbani, “Ciciot2023: A real-time dataset and benchmark for large-scale attacks in iot environment,” Sensors, no. 5941, 2023.[24] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. Chichester: John Wiley & Sons, 2001.[25] Ookla. (2024, September) Speedtest global index. Accessed: 2024-10-21. [Online]. Available: https://www.speedtest.net/global-index201818220Publicationhttps://scholar.google.es/citations?user=WRJlR-UAAAAJvirtual::23960-10000-0003-2920-6320virtual::23960-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000219541virtual::23960-1a197a9f7-96e5-47cb-a497-2ee4c9cdce71virtual::20113-1144aa5a0-592f-47a4-995b-a440d00b1658virtual::23960-1a197a9f7-96e5-47cb-a497-2ee4c9cdce71virtual::20113-1144aa5a0-592f-47a4-995b-a440d00b1658virtual::23960-1ORIGINALautorizacion tesis Erich Soto.pdfautorizacion tesis Erich Soto.pdfHIDEapplication/pdf232133https://repositorio.uniandes.edu.co/bitstreams/0a649828-17f0-4ee0-bb17-c81aa9b4e9a9/downloade750f829237cd4093a15f7855dfe3493MD52Detection of DoS attacks in IoT networks using Machine learning and multi-objective optimization.pdfDetection of DoS attacks in IoT networks using Machine learning and multi-objective optimization.pdfapplication/pdf434116https://repositorio.uniandes.edu.co/bitstreams/df9c5998-bc8d-4085-8e32-8cc0fa004c60/download9bac5d01661cacf7262386dd16c6b38bMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/8d48da6b-db88-4b58-b8bb-d8156ea3f78c/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/3c2c2a23-ead1-4ab5-9d96-7c0e009acbfd/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis Erich Soto.pdf.txtautorizacion tesis Erich Soto.pdf.txtExtracted texttext/plain1555https://repositorio.uniandes.edu.co/bitstreams/a742d6b0-3664-4d15-9fc9-2089f2755816/download4cad7aa2312bbc552cf01ae0adb1ea4aMD56Detection of DoS attacks in IoT networks using Machine learning and multi-objective optimization.pdf.txtDetection of DoS attacks in IoT networks using Machine learning and multi-objective optimization.pdf.txtExtracted texttext/plain58239https://repositorio.uniandes.edu.co/bitstreams/4e7d951a-686a-49cb-addf-9fc3a1b15fb2/download8a065e0aee5031f95d808e36de4bd0b0MD58THUMBNAILautorizacion tesis Erich Soto.pdf.jpgautorizacion tesis Erich Soto.pdf.jpgGenerated Thumbnailimage/jpeg11446https://repositorio.uniandes.edu.co/bitstreams/e8ae9116-9f7d-48b6-910c-3a434426d196/downloadd4084ea6f11494f46a0dd9b4ae5e2781MD57Detection of DoS attacks in IoT networks using Machine learning and multi-objective optimization.pdf.jpgDetection of DoS attacks in IoT networks using Machine learning and multi-objective optimization.pdf.jpgGenerated Thumbnailimage/jpeg6890https://repositorio.uniandes.edu.co/bitstreams/08de7592-8067-431d-b4e1-59f79366741a/download91fb58b544eccd1ac63e3918e283aad6MD591992/75191oai:repositorio.uniandes.edu.co:1992/751912025-02-17 15:32:20.319http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K