Feature extraction from infrared sky images for solar energy estimation
In recent years, the shift towards renewable energy sources, particularly solar energy, has gained momentum due to its environmental benefits. Maximizing solar energy production requires accurate information on atmospheric conditions, notably incident solar radiation. While satellite images have tra...
- Autores:
-
Hernández Vanegas, Rodrigo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/74511
- Acceso en línea:
- https://hdl.handle.net/1992/74511
- Palabra clave:
- Optical Flow
Image Segmentation
Solar Power Forecasting
Feature Extraction
Infrared Sky Camera
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_b8451c7429fb9a14d3ffafca11301f83 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/74511 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Feature extraction from infrared sky images for solar energy estimation |
title |
Feature extraction from infrared sky images for solar energy estimation |
spellingShingle |
Feature extraction from infrared sky images for solar energy estimation Optical Flow Image Segmentation Solar Power Forecasting Feature Extraction Infrared Sky Camera Ingeniería |
title_short |
Feature extraction from infrared sky images for solar energy estimation |
title_full |
Feature extraction from infrared sky images for solar energy estimation |
title_fullStr |
Feature extraction from infrared sky images for solar energy estimation |
title_full_unstemmed |
Feature extraction from infrared sky images for solar energy estimation |
title_sort |
Feature extraction from infrared sky images for solar energy estimation |
dc.creator.fl_str_mv |
Hernández Vanegas, Rodrigo |
dc.contributor.advisor.none.fl_str_mv |
González Mancera, Andrés Leónardo |
dc.contributor.author.none.fl_str_mv |
Hernández Vanegas, Rodrigo |
dc.contributor.jury.none.fl_str_mv |
González Mancera, Andrés Leónardo |
dc.subject.keyword.eng.fl_str_mv |
Optical Flow Image Segmentation Solar Power Forecasting Feature Extraction Infrared Sky Camera |
topic |
Optical Flow Image Segmentation Solar Power Forecasting Feature Extraction Infrared Sky Camera Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
In recent years, the shift towards renewable energy sources, particularly solar energy, has gained momentum due to its environmental benefits. Maximizing solar energy production requires accurate information on atmospheric conditions, notably incident solar radiation. While satellite images have traditionally been used for this purpose, the emergence of sky cameras offers a promising technology for studying sky conditions with higher precision. This paper aims to extract features from panoramic sky images captured with an infrared camera to estimate intra-hour solar radiation. Leveraging classical techniques from image analysis and computer vision such as segmentation and optical flow algorithms, in conjunction with specialized photovoltaic energy systems libraries such as pvlib, a unified pipeline is developed to extract relevant data for input into solar prediction models. The integration of satellite images and sky camera data, combined with these sophisticated techniques, has shown effectiveness in short-term cloud prediction. This facilitates better adaptation of solar power plant operations to meteorological conditions and grid integration. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-11T21:50:54Z |
dc.date.available.none.fl_str_mv |
2024-07-11T21:50:54Z |
dc.date.issued.none.fl_str_mv |
2024-07-11 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/74511 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/74511 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Alonso-Montesinos, J. & Batlles, F. The use of a sky camera for solar radiation estimation based on digital image processing. Energy 90, 377–386. doi:https ://doi.org/10.1016/j.energy.2015.07.028 (2015). Kazantzidis, A., Tzoumanikas, P., Bais, A., Fotopoulos, S. & Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmospheric research 113, 80–88. doi:https://doi.org/10.1016/j.atmosres.2012.05.005 (2012). Rodríguez, F., Fleetwood, A., Galarza, A. & Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renewable energy 126, 855–864. doi:https://doi.org/10.1016/j.renene.2018.03.070 (2018). The opencv reference manual 4.9.0. See: https://docs.opencv.org/4.x/d4/dee/tutorial_optical_flow.html. OpenCV team (2024). Farnebäck, G. Two-frame motion estimation based on polynomial expansion in Image analysis (eds Bigun, J. & Gustavsson, T.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), 363–370. Lucas, B. D. & Kanade, T. An iterative image registration technique with an application to stereo vision in Proceedings of the 7th international joint conference on artificial intelligence - volume 2 (Morgan Kaufmann Publishers Inc., Vancouver, BC, Canada, 1981), 674–679. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
32 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Mecánica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/700483b3-9b4d-44f2-a7f5-467410cf4be4/download https://repositorio.uniandes.edu.co/bitstreams/27824c3f-1d2f-419e-ba8f-dc8915a95406/download https://repositorio.uniandes.edu.co/bitstreams/f94ed2e4-45f5-481a-b55e-d0bcb533f1d1/download https://repositorio.uniandes.edu.co/bitstreams/caaa22b1-0f3d-4ded-9537-e351b4a0d532/download https://repositorio.uniandes.edu.co/bitstreams/ebd8caa9-97ac-4ba7-8627-3d5bd2a3d1f0/download https://repositorio.uniandes.edu.co/bitstreams/e6ec8dbd-f75a-431c-8d7e-ba53fe541910/download https://repositorio.uniandes.edu.co/bitstreams/c78c1bbb-57f7-491e-b244-e8850d7ed288/download https://repositorio.uniandes.edu.co/bitstreams/005f6ea3-9f21-4bfd-8d16-bb6221673d28/download |
bitstream.checksum.fl_str_mv |
00aa349a6572deeff6400667c892cbb8 63e17c81adebf0eac1d07c918b854ce6 ae9e573a68e7f92501b6913cc846c39f 0175ea4a2d4caec4bbcc37e300941108 eb46bc9442abb0b61e4ff304ae385b38 f3ef1ffadfc08e2861ee94e8d4e3f8b3 9afcc3ee5b0360250dd53ee522c3f512 123b87b63eb0c69c254648dbaf956eaf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134041313345536 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoresAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leónardovirtual::18762-1Hernández Vanegas, RodrigoGonzález Mancera, Andrés Leónardovirtual::18763-12024-07-11T21:50:54Z2024-07-11T21:50:54Z2024-07-11https://hdl.handle.net/1992/74511instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In recent years, the shift towards renewable energy sources, particularly solar energy, has gained momentum due to its environmental benefits. Maximizing solar energy production requires accurate information on atmospheric conditions, notably incident solar radiation. While satellite images have traditionally been used for this purpose, the emergence of sky cameras offers a promising technology for studying sky conditions with higher precision. This paper aims to extract features from panoramic sky images captured with an infrared camera to estimate intra-hour solar radiation. Leveraging classical techniques from image analysis and computer vision such as segmentation and optical flow algorithms, in conjunction with specialized photovoltaic energy systems libraries such as pvlib, a unified pipeline is developed to extract relevant data for input into solar prediction models. The integration of satellite images and sky camera data, combined with these sophisticated techniques, has shown effectiveness in short-term cloud prediction. This facilitates better adaptation of solar power plant operations to meteorological conditions and grid integration.PregradoModelado y análisis de sistemas de conversión de energía32 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaFeature extraction from infrared sky images for solar energy estimationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPOptical FlowImage SegmentationSolar Power ForecastingFeature ExtractionInfrared Sky CameraIngenieríaAlonso-Montesinos, J. & Batlles, F. The use of a sky camera for solar radiation estimation based on digital image processing. Energy 90, 377–386. doi:https ://doi.org/10.1016/j.energy.2015.07.028 (2015).Kazantzidis, A., Tzoumanikas, P., Bais, A., Fotopoulos, S. & Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmospheric research 113, 80–88. doi:https://doi.org/10.1016/j.atmosres.2012.05.005 (2012).Rodríguez, F., Fleetwood, A., Galarza, A. & Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renewable energy 126, 855–864. doi:https://doi.org/10.1016/j.renene.2018.03.070 (2018).The opencv reference manual 4.9.0. See: https://docs.opencv.org/4.x/d4/dee/tutorial_optical_flow.html. OpenCV team (2024).Farnebäck, G. Two-frame motion estimation based on polynomial expansion in Image analysis (eds Bigun, J. & Gustavsson, T.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), 363–370.Lucas, B. D. & Kanade, T. An iterative image registration technique with an application to stereo vision in Proceedings of the 7th international joint conference on artificial intelligence - volume 2 (Morgan Kaufmann Publishers Inc., Vancouver, BC, Canada, 1981), 674–679.201729698Publicationhttps://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::18762-1https://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::18763-1https://scholar.google.es/citations?user=6mPjKkQAAAAJhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::18762-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::18763-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18762-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18762-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18763-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18763-1ORIGINALFeature extraction from infrared sky images for solar energy estimation.pdfFeature extraction from infrared sky images for solar energy estimation.pdfapplication/pdf2169909https://repositorio.uniandes.edu.co/bitstreams/700483b3-9b4d-44f2-a7f5-467410cf4be4/download00aa349a6572deeff6400667c892cbb8MD51autorizacion_tesis_firmada.pdfautorizacion_tesis_firmada.pdfHIDEapplication/pdf337459https://repositorio.uniandes.edu.co/bitstreams/27824c3f-1d2f-419e-ba8f-dc8915a95406/download63e17c81adebf0eac1d07c918b854ce6MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f94ed2e4-45f5-481a-b55e-d0bcb533f1d1/downloadae9e573a68e7f92501b6913cc846c39fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/caaa22b1-0f3d-4ded-9537-e351b4a0d532/download0175ea4a2d4caec4bbcc37e300941108MD55TEXTFeature extraction from infrared sky images for solar energy estimation.pdf.txtFeature extraction from infrared sky images for solar energy estimation.pdf.txtExtracted texttext/plain34059https://repositorio.uniandes.edu.co/bitstreams/ebd8caa9-97ac-4ba7-8627-3d5bd2a3d1f0/downloadeb46bc9442abb0b61e4ff304ae385b38MD56autorizacion_tesis_firmada.pdf.txtautorizacion_tesis_firmada.pdf.txtExtracted texttext/plain2012https://repositorio.uniandes.edu.co/bitstreams/e6ec8dbd-f75a-431c-8d7e-ba53fe541910/downloadf3ef1ffadfc08e2861ee94e8d4e3f8b3MD58THUMBNAILFeature extraction from infrared sky images for solar energy estimation.pdf.jpgFeature extraction from infrared sky images for solar energy estimation.pdf.jpgGenerated Thumbnailimage/jpeg5747https://repositorio.uniandes.edu.co/bitstreams/c78c1bbb-57f7-491e-b244-e8850d7ed288/download9afcc3ee5b0360250dd53ee522c3f512MD57autorizacion_tesis_firmada.pdf.jpgautorizacion_tesis_firmada.pdf.jpgGenerated Thumbnailimage/jpeg10937https://repositorio.uniandes.edu.co/bitstreams/005f6ea3-9f21-4bfd-8d16-bb6221673d28/download123b87b63eb0c69c254648dbaf956eafMD591992/74511oai:repositorio.uniandes.edu.co:1992/745112024-07-12 03:12:45.668http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |