Feature extraction from infrared sky images for solar energy estimation

In recent years, the shift towards renewable energy sources, particularly solar energy, has gained momentum due to its environmental benefits. Maximizing solar energy production requires accurate information on atmospheric conditions, notably incident solar radiation. While satellite images have tra...

Full description

Autores:
Hernández Vanegas, Rodrigo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74511
Acceso en línea:
https://hdl.handle.net/1992/74511
Palabra clave:
Optical Flow
Image Segmentation
Solar Power Forecasting
Feature Extraction
Infrared Sky Camera
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_b8451c7429fb9a14d3ffafca11301f83
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74511
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Feature extraction from infrared sky images for solar energy estimation
title Feature extraction from infrared sky images for solar energy estimation
spellingShingle Feature extraction from infrared sky images for solar energy estimation
Optical Flow
Image Segmentation
Solar Power Forecasting
Feature Extraction
Infrared Sky Camera
Ingeniería
title_short Feature extraction from infrared sky images for solar energy estimation
title_full Feature extraction from infrared sky images for solar energy estimation
title_fullStr Feature extraction from infrared sky images for solar energy estimation
title_full_unstemmed Feature extraction from infrared sky images for solar energy estimation
title_sort Feature extraction from infrared sky images for solar energy estimation
dc.creator.fl_str_mv Hernández Vanegas, Rodrigo
dc.contributor.advisor.none.fl_str_mv González Mancera, Andrés Leónardo
dc.contributor.author.none.fl_str_mv Hernández Vanegas, Rodrigo
dc.contributor.jury.none.fl_str_mv González Mancera, Andrés Leónardo
dc.subject.keyword.eng.fl_str_mv Optical Flow
Image Segmentation
Solar Power Forecasting
Feature Extraction
Infrared Sky Camera
topic Optical Flow
Image Segmentation
Solar Power Forecasting
Feature Extraction
Infrared Sky Camera
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description In recent years, the shift towards renewable energy sources, particularly solar energy, has gained momentum due to its environmental benefits. Maximizing solar energy production requires accurate information on atmospheric conditions, notably incident solar radiation. While satellite images have traditionally been used for this purpose, the emergence of sky cameras offers a promising technology for studying sky conditions with higher precision. This paper aims to extract features from panoramic sky images captured with an infrared camera to estimate intra-hour solar radiation. Leveraging classical techniques from image analysis and computer vision such as segmentation and optical flow algorithms, in conjunction with specialized photovoltaic energy systems libraries such as pvlib, a unified pipeline is developed to extract relevant data for input into solar prediction models. The integration of satellite images and sky camera data, combined with these sophisticated techniques, has shown effectiveness in short-term cloud prediction. This facilitates better adaptation of solar power plant operations to meteorological conditions and grid integration.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-11T21:50:54Z
dc.date.available.none.fl_str_mv 2024-07-11T21:50:54Z
dc.date.issued.none.fl_str_mv 2024-07-11
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74511
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74511
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Alonso-Montesinos, J. & Batlles, F. The use of a sky camera for solar radiation estimation based on digital image processing. Energy 90, 377–386. doi:https ://doi.org/10.1016/j.energy.2015.07.028 (2015).
Kazantzidis, A., Tzoumanikas, P., Bais, A., Fotopoulos, S. & Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmospheric research 113, 80–88. doi:https://doi.org/10.1016/j.atmosres.2012.05.005 (2012).
Rodríguez, F., Fleetwood, A., Galarza, A. & Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renewable energy 126, 855–864. doi:https://doi.org/10.1016/j.renene.2018.03.070 (2018).
The opencv reference manual 4.9.0. See: https://docs.opencv.org/4.x/d4/dee/tutorial_optical_flow.html. OpenCV team (2024).
Farnebäck, G. Two-frame motion estimation based on polynomial expansion in Image analysis (eds Bigun, J. & Gustavsson, T.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), 363–370.
Lucas, B. D. & Kanade, T. An iterative image registration technique with an application to stereo vision in Proceedings of the 7th international joint conference on artificial intelligence - volume 2 (Morgan Kaufmann Publishers Inc., Vancouver, BC, Canada, 1981), 674–679.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 32 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Mecánica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/700483b3-9b4d-44f2-a7f5-467410cf4be4/download
https://repositorio.uniandes.edu.co/bitstreams/27824c3f-1d2f-419e-ba8f-dc8915a95406/download
https://repositorio.uniandes.edu.co/bitstreams/f94ed2e4-45f5-481a-b55e-d0bcb533f1d1/download
https://repositorio.uniandes.edu.co/bitstreams/caaa22b1-0f3d-4ded-9537-e351b4a0d532/download
https://repositorio.uniandes.edu.co/bitstreams/ebd8caa9-97ac-4ba7-8627-3d5bd2a3d1f0/download
https://repositorio.uniandes.edu.co/bitstreams/e6ec8dbd-f75a-431c-8d7e-ba53fe541910/download
https://repositorio.uniandes.edu.co/bitstreams/c78c1bbb-57f7-491e-b244-e8850d7ed288/download
https://repositorio.uniandes.edu.co/bitstreams/005f6ea3-9f21-4bfd-8d16-bb6221673d28/download
bitstream.checksum.fl_str_mv 00aa349a6572deeff6400667c892cbb8
63e17c81adebf0eac1d07c918b854ce6
ae9e573a68e7f92501b6913cc846c39f
0175ea4a2d4caec4bbcc37e300941108
eb46bc9442abb0b61e4ff304ae385b38
f3ef1ffadfc08e2861ee94e8d4e3f8b3
9afcc3ee5b0360250dd53ee522c3f512
123b87b63eb0c69c254648dbaf956eaf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134041313345536
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoresAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leónardovirtual::18762-1Hernández Vanegas, RodrigoGonzález Mancera, Andrés Leónardovirtual::18763-12024-07-11T21:50:54Z2024-07-11T21:50:54Z2024-07-11https://hdl.handle.net/1992/74511instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In recent years, the shift towards renewable energy sources, particularly solar energy, has gained momentum due to its environmental benefits. Maximizing solar energy production requires accurate information on atmospheric conditions, notably incident solar radiation. While satellite images have traditionally been used for this purpose, the emergence of sky cameras offers a promising technology for studying sky conditions with higher precision. This paper aims to extract features from panoramic sky images captured with an infrared camera to estimate intra-hour solar radiation. Leveraging classical techniques from image analysis and computer vision such as segmentation and optical flow algorithms, in conjunction with specialized photovoltaic energy systems libraries such as pvlib, a unified pipeline is developed to extract relevant data for input into solar prediction models. The integration of satellite images and sky camera data, combined with these sophisticated techniques, has shown effectiveness in short-term cloud prediction. This facilitates better adaptation of solar power plant operations to meteorological conditions and grid integration.PregradoModelado y análisis de sistemas de conversión de energía32 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaFeature extraction from infrared sky images for solar energy estimationTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPOptical FlowImage SegmentationSolar Power ForecastingFeature ExtractionInfrared Sky CameraIngenieríaAlonso-Montesinos, J. & Batlles, F. The use of a sky camera for solar radiation estimation based on digital image processing. Energy 90, 377–386. doi:https ://doi.org/10.1016/j.energy.2015.07.028 (2015).Kazantzidis, A., Tzoumanikas, P., Bais, A., Fotopoulos, S. & Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmospheric research 113, 80–88. doi:https://doi.org/10.1016/j.atmosres.2012.05.005 (2012).Rodríguez, F., Fleetwood, A., Galarza, A. & Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renewable energy 126, 855–864. doi:https://doi.org/10.1016/j.renene.2018.03.070 (2018).The opencv reference manual 4.9.0. See: https://docs.opencv.org/4.x/d4/dee/tutorial_optical_flow.html. OpenCV team (2024).Farnebäck, G. Two-frame motion estimation based on polynomial expansion in Image analysis (eds Bigun, J. & Gustavsson, T.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), 363–370.Lucas, B. D. & Kanade, T. An iterative image registration technique with an application to stereo vision in Proceedings of the 7th international joint conference on artificial intelligence - volume 2 (Morgan Kaufmann Publishers Inc., Vancouver, BC, Canada, 1981), 674–679.201729698Publicationhttps://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::18762-1https://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::18763-1https://scholar.google.es/citations?user=6mPjKkQAAAAJhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::18762-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::18763-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18762-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18762-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18763-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::18763-1ORIGINALFeature extraction from infrared sky images for solar energy estimation.pdfFeature extraction from infrared sky images for solar energy estimation.pdfapplication/pdf2169909https://repositorio.uniandes.edu.co/bitstreams/700483b3-9b4d-44f2-a7f5-467410cf4be4/download00aa349a6572deeff6400667c892cbb8MD51autorizacion_tesis_firmada.pdfautorizacion_tesis_firmada.pdfHIDEapplication/pdf337459https://repositorio.uniandes.edu.co/bitstreams/27824c3f-1d2f-419e-ba8f-dc8915a95406/download63e17c81adebf0eac1d07c918b854ce6MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/f94ed2e4-45f5-481a-b55e-d0bcb533f1d1/downloadae9e573a68e7f92501b6913cc846c39fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/caaa22b1-0f3d-4ded-9537-e351b4a0d532/download0175ea4a2d4caec4bbcc37e300941108MD55TEXTFeature extraction from infrared sky images for solar energy estimation.pdf.txtFeature extraction from infrared sky images for solar energy estimation.pdf.txtExtracted texttext/plain34059https://repositorio.uniandes.edu.co/bitstreams/ebd8caa9-97ac-4ba7-8627-3d5bd2a3d1f0/downloadeb46bc9442abb0b61e4ff304ae385b38MD56autorizacion_tesis_firmada.pdf.txtautorizacion_tesis_firmada.pdf.txtExtracted texttext/plain2012https://repositorio.uniandes.edu.co/bitstreams/e6ec8dbd-f75a-431c-8d7e-ba53fe541910/downloadf3ef1ffadfc08e2861ee94e8d4e3f8b3MD58THUMBNAILFeature extraction from infrared sky images for solar energy estimation.pdf.jpgFeature extraction from infrared sky images for solar energy estimation.pdf.jpgGenerated Thumbnailimage/jpeg5747https://repositorio.uniandes.edu.co/bitstreams/c78c1bbb-57f7-491e-b244-e8850d7ed288/download9afcc3ee5b0360250dd53ee522c3f512MD57autorizacion_tesis_firmada.pdf.jpgautorizacion_tesis_firmada.pdf.jpgGenerated Thumbnailimage/jpeg10937https://repositorio.uniandes.edu.co/bitstreams/005f6ea3-9f21-4bfd-8d16-bb6221673d28/download123b87b63eb0c69c254648dbaf956eafMD591992/74511oai:repositorio.uniandes.edu.co:1992/745112024-07-12 03:12:45.668http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K