Predicting soccer match full time results in the English Premier League using artificial neural networks

The English Premier League (EPL) is the most-watched sports league worldwide. This paper will attempt to predict the results of the top 6 teams (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) in the 2016-2017 season. For this we developed an artificial neural network...

Full description

Autores:
Namen León, Emil Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39612
Acceso en línea:
http://hdl.handle.net/1992/39612
Palabra clave:
Redes neurales (Computadores)
Teoría bayesiana de decisiones estadísticas
Fútbol
Juegos
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_b76e18430eccd6feaccb9871ade56c43
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/39612
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Predicting soccer match full time results in the English Premier League using artificial neural networks
title Predicting soccer match full time results in the English Premier League using artificial neural networks
spellingShingle Predicting soccer match full time results in the English Premier League using artificial neural networks
Redes neurales (Computadores)
Teoría bayesiana de decisiones estadísticas
Fútbol
Juegos
Ingeniería
title_short Predicting soccer match full time results in the English Premier League using artificial neural networks
title_full Predicting soccer match full time results in the English Premier League using artificial neural networks
title_fullStr Predicting soccer match full time results in the English Premier League using artificial neural networks
title_full_unstemmed Predicting soccer match full time results in the English Premier League using artificial neural networks
title_sort Predicting soccer match full time results in the English Premier League using artificial neural networks
dc.creator.fl_str_mv Namen León, Emil Camilo
dc.contributor.advisor.none.fl_str_mv Takahashi Rodríguez, Silvia
dc.contributor.author.none.fl_str_mv Namen León, Emil Camilo
dc.subject.keyword.es_CO.fl_str_mv Redes neurales (Computadores)
Teoría bayesiana de decisiones estadísticas
Fútbol
Juegos
topic Redes neurales (Computadores)
Teoría bayesiana de decisiones estadísticas
Fútbol
Juegos
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description The English Premier League (EPL) is the most-watched sports league worldwide. This paper will attempt to predict the results of the top 6 teams (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) in the 2016-2017 season. For this we developed an artificial neural network using Matlab's Neural Network Toolbox. One of the key challenges was the construction of the input matrix using an own developed Python Web Scratcher App (https://github.com/EmilNamen/premierLeague). The input matrix uses statistics, that are based on the current as well as the past 13 seasons. The neural network was trained using the Bayesian Regularization algorithm. This has the advantage of a good generalization for small datasets, such as ours. This algorithm helps us determine the optimal weight of each input, in order to get the desired target. It would also neglect irrelevant inputs. Other algorithms such as Levenberg-Marquardt and Scaled Conjugate Gradient were also tested in the training stage, but the Bayesian Regularization returned the lowest error, and therefore was the optimal algorithm for training the neural network
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-06-10T16:23:09Z
dc.date.available.none.fl_str_mv 2020-06-10T16:23:09Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/39612
dc.identifier.pdf.none.fl_str_mv u806909.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/39612
identifier_str_mv u806909.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 21 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/417bbfe6-ea00-47dc-ab17-15e7e0b78034/download
https://repositorio.uniandes.edu.co/bitstreams/75856044-611f-490f-a53a-3a963571bebc/download
https://repositorio.uniandes.edu.co/bitstreams/2cb46565-1f8d-4aed-a8ef-9a6a2e4eb7c5/download
bitstream.checksum.fl_str_mv a6791ef451e265db8f216f285880939e
5114fde868ff937d8d4e177828b76a4a
24a64273e69a9bca96820c9269857ad2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133837718683648
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Takahashi Rodríguez, Silviavirtual::2802-1Namen León, Emil Camilo9a690998-43e3-436c-8f71-256e335ffc505002020-06-10T16:23:09Z2020-06-10T16:23:09Z2017http://hdl.handle.net/1992/39612u806909.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The English Premier League (EPL) is the most-watched sports league worldwide. This paper will attempt to predict the results of the top 6 teams (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) in the 2016-2017 season. For this we developed an artificial neural network using Matlab's Neural Network Toolbox. One of the key challenges was the construction of the input matrix using an own developed Python Web Scratcher App (https://github.com/EmilNamen/premierLeague). The input matrix uses statistics, that are based on the current as well as the past 13 seasons. The neural network was trained using the Bayesian Regularization algorithm. This has the advantage of a good generalization for small datasets, such as ours. This algorithm helps us determine the optimal weight of each input, in order to get the desired target. It would also neglect irrelevant inputs. Other algorithms such as Levenberg-Marquardt and Scaled Conjugate Gradient were also tested in the training stage, but the Bayesian Regularization returned the lowest error, and therefore was the optimal algorithm for training the neural network"La liga inglesa tiene la mayor audiencia a nivel mundial. Este documento de investigación busca predecir los resultados de los 6 equipos más ganadores de la liga (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) para la temporada 2016-2017. Para lograr esta predicción construimos una red neuronal utilizando Matlab's Neural Network Toolbox©. Uno de los mayores retos fue la construcción de la matrix de entrada, para ello desarrollamos nuestro propia aplicación (https://github.com/EmilNamen/premierLeague). La matriz de entrada se basó en estadísticos de la temporada actual y de las 13 anteriores. La red neuronal fué entrenada utilizando el algoritmo Bayesian Regularization. Este algoritmo tiene la ventaja de realizar una buena generalización utilizando como entrada una pequeña cantidad de datos. De igual manera, este algoritmo nos permite determinar el peso óptimo que se le debe asignar a cada variable de entrada, para obtener el resultado deseado, de igual manera descarta las variables de entrada innecesarias. Otros algoritmos como Levenberg-Marquardt y Scaled Conjugate Gradient fueron probados en el estado inicial, pero el algoritmo Bayesian Regularization retornó el menor error, por esto fue el algoritmo que utilizamos para entrenar la red neuronal."--Tomado del Formato de Documento de GradoIngeniero de Sistemas y ComputaciónPregrado21 hojasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y Computacióninstname:Universidad de los Andesreponame:Repositorio Institucional SénecaPredicting soccer match full time results in the English Premier League using artificial neural networksTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPRedes neurales (Computadores)Teoría bayesiana de decisiones estadísticasFútbolJuegosIngenieríaPublicationhttps://scholar.google.es/citations?user=x7gjZ04AAAAJvirtual::2802-10000-0001-7971-8979virtual::2802-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143898virtual::2802-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::2802-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::2802-1TEXTu806909.pdf.txtu806909.pdf.txtExtracted texttext/plain20990https://repositorio.uniandes.edu.co/bitstreams/417bbfe6-ea00-47dc-ab17-15e7e0b78034/downloada6791ef451e265db8f216f285880939eMD54ORIGINALu806909.pdfapplication/pdf382288https://repositorio.uniandes.edu.co/bitstreams/75856044-611f-490f-a53a-3a963571bebc/download5114fde868ff937d8d4e177828b76a4aMD51THUMBNAILu806909.pdf.jpgu806909.pdf.jpgIM Thumbnailimage/jpeg5612https://repositorio.uniandes.edu.co/bitstreams/2cb46565-1f8d-4aed-a8ef-9a6a2e4eb7c5/download24a64273e69a9bca96820c9269857ad2MD551992/39612oai:repositorio.uniandes.edu.co:1992/396122024-03-13 12:17:11.038http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co