Predicting soccer match full time results in the English Premier League using artificial neural networks
The English Premier League (EPL) is the most-watched sports league worldwide. This paper will attempt to predict the results of the top 6 teams (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) in the 2016-2017 season. For this we developed an artificial neural network...
- Autores:
-
Namen León, Emil Camilo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/39612
- Acceso en línea:
- http://hdl.handle.net/1992/39612
- Palabra clave:
- Redes neurales (Computadores)
Teoría bayesiana de decisiones estadísticas
Fútbol
Juegos
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_b76e18430eccd6feaccb9871ade56c43 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/39612 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
title |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
spellingShingle |
Predicting soccer match full time results in the English Premier League using artificial neural networks Redes neurales (Computadores) Teoría bayesiana de decisiones estadísticas Fútbol Juegos Ingeniería |
title_short |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
title_full |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
title_fullStr |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
title_full_unstemmed |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
title_sort |
Predicting soccer match full time results in the English Premier League using artificial neural networks |
dc.creator.fl_str_mv |
Namen León, Emil Camilo |
dc.contributor.advisor.none.fl_str_mv |
Takahashi Rodríguez, Silvia |
dc.contributor.author.none.fl_str_mv |
Namen León, Emil Camilo |
dc.subject.keyword.es_CO.fl_str_mv |
Redes neurales (Computadores) Teoría bayesiana de decisiones estadísticas Fútbol Juegos |
topic |
Redes neurales (Computadores) Teoría bayesiana de decisiones estadísticas Fútbol Juegos Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
The English Premier League (EPL) is the most-watched sports league worldwide. This paper will attempt to predict the results of the top 6 teams (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) in the 2016-2017 season. For this we developed an artificial neural network using Matlab's Neural Network Toolbox. One of the key challenges was the construction of the input matrix using an own developed Python Web Scratcher App (https://github.com/EmilNamen/premierLeague). The input matrix uses statistics, that are based on the current as well as the past 13 seasons. The neural network was trained using the Bayesian Regularization algorithm. This has the advantage of a good generalization for small datasets, such as ours. This algorithm helps us determine the optimal weight of each input, in order to get the desired target. It would also neglect irrelevant inputs. Other algorithms such as Levenberg-Marquardt and Scaled Conjugate Gradient were also tested in the training stage, but the Bayesian Regularization returned the lowest error, and therefore was the optimal algorithm for training the neural network |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T16:23:09Z |
dc.date.available.none.fl_str_mv |
2020-06-10T16:23:09Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/39612 |
dc.identifier.pdf.none.fl_str_mv |
u806909.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/39612 |
identifier_str_mv |
u806909.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
21 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería de Sistemas y Computación |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería de Sistemas y Computación |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/417bbfe6-ea00-47dc-ab17-15e7e0b78034/download https://repositorio.uniandes.edu.co/bitstreams/75856044-611f-490f-a53a-3a963571bebc/download https://repositorio.uniandes.edu.co/bitstreams/2cb46565-1f8d-4aed-a8ef-9a6a2e4eb7c5/download |
bitstream.checksum.fl_str_mv |
a6791ef451e265db8f216f285880939e 5114fde868ff937d8d4e177828b76a4a 24a64273e69a9bca96820c9269857ad2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133837718683648 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Takahashi Rodríguez, Silviavirtual::2802-1Namen León, Emil Camilo9a690998-43e3-436c-8f71-256e335ffc505002020-06-10T16:23:09Z2020-06-10T16:23:09Z2017http://hdl.handle.net/1992/39612u806909.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The English Premier League (EPL) is the most-watched sports league worldwide. This paper will attempt to predict the results of the top 6 teams (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) in the 2016-2017 season. For this we developed an artificial neural network using Matlab's Neural Network Toolbox. One of the key challenges was the construction of the input matrix using an own developed Python Web Scratcher App (https://github.com/EmilNamen/premierLeague). The input matrix uses statistics, that are based on the current as well as the past 13 seasons. The neural network was trained using the Bayesian Regularization algorithm. This has the advantage of a good generalization for small datasets, such as ours. This algorithm helps us determine the optimal weight of each input, in order to get the desired target. It would also neglect irrelevant inputs. Other algorithms such as Levenberg-Marquardt and Scaled Conjugate Gradient were also tested in the training stage, but the Bayesian Regularization returned the lowest error, and therefore was the optimal algorithm for training the neural network"La liga inglesa tiene la mayor audiencia a nivel mundial. Este documento de investigación busca predecir los resultados de los 6 equipos más ganadores de la liga (Chelsea, Tottenham, Arsenal, Liverpool, Manchester United and Manchester City) para la temporada 2016-2017. Para lograr esta predicción construimos una red neuronal utilizando Matlab's Neural Network Toolbox©. Uno de los mayores retos fue la construcción de la matrix de entrada, para ello desarrollamos nuestro propia aplicación (https://github.com/EmilNamen/premierLeague). La matriz de entrada se basó en estadísticos de la temporada actual y de las 13 anteriores. La red neuronal fué entrenada utilizando el algoritmo Bayesian Regularization. Este algoritmo tiene la ventaja de realizar una buena generalización utilizando como entrada una pequeña cantidad de datos. De igual manera, este algoritmo nos permite determinar el peso óptimo que se le debe asignar a cada variable de entrada, para obtener el resultado deseado, de igual manera descarta las variables de entrada innecesarias. Otros algoritmos como Levenberg-Marquardt y Scaled Conjugate Gradient fueron probados en el estado inicial, pero el algoritmo Bayesian Regularization retornó el menor error, por esto fue el algoritmo que utilizamos para entrenar la red neuronal."--Tomado del Formato de Documento de GradoIngeniero de Sistemas y ComputaciónPregrado21 hojasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y Computacióninstname:Universidad de los Andesreponame:Repositorio Institucional SénecaPredicting soccer match full time results in the English Premier League using artificial neural networksTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPRedes neurales (Computadores)Teoría bayesiana de decisiones estadísticasFútbolJuegosIngenieríaPublicationhttps://scholar.google.es/citations?user=x7gjZ04AAAAJvirtual::2802-10000-0001-7971-8979virtual::2802-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143898virtual::2802-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::2802-17ab9a4e1-60f0-4e06-936b-39f2bf93d8a0virtual::2802-1TEXTu806909.pdf.txtu806909.pdf.txtExtracted texttext/plain20990https://repositorio.uniandes.edu.co/bitstreams/417bbfe6-ea00-47dc-ab17-15e7e0b78034/downloada6791ef451e265db8f216f285880939eMD54ORIGINALu806909.pdfapplication/pdf382288https://repositorio.uniandes.edu.co/bitstreams/75856044-611f-490f-a53a-3a963571bebc/download5114fde868ff937d8d4e177828b76a4aMD51THUMBNAILu806909.pdf.jpgu806909.pdf.jpgIM Thumbnailimage/jpeg5612https://repositorio.uniandes.edu.co/bitstreams/2cb46565-1f8d-4aed-a8ef-9a6a2e4eb7c5/download24a64273e69a9bca96820c9269857ad2MD551992/39612oai:repositorio.uniandes.edu.co:1992/396122024-03-13 12:17:11.038http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |