Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
Fusarium oxysporum f. sp. cubense Tropical Race 4 is a plant pathogen of massive importance, as it can infect Cavendish banana and leave devastation behind in any plantation it reaches. As of today, the pathogen is managed via cultural practises and biocontrol strategies; and Colombia is a great exa...
- Autores:
-
Díaz Millán, Fabián Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75666
- Acceso en línea:
- https://hdl.handle.net/1992/75666
- Palabra clave:
- Fusarium oxysporum f. sp. cubense Tropical Race 4
Gamma-ray irradiation
Direct antagonism tests
Biocontrol
Fusarium wilt of Banana
Radiosensitivity
Molecular markers
Agrosavia
Microbiología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_b6effc31a371891abc9085db7d70ca6d |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75666 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
title |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
spellingShingle |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 Fusarium oxysporum f. sp. cubense Tropical Race 4 Gamma-ray irradiation Direct antagonism tests Biocontrol Fusarium wilt of Banana Radiosensitivity Molecular markers Agrosavia Microbiología |
title_short |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
title_full |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
title_fullStr |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
title_full_unstemmed |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
title_sort |
Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4 |
dc.creator.fl_str_mv |
Díaz Millán, Fabián Santiago |
dc.contributor.advisor.none.fl_str_mv |
Soto Suárez, Mauricio Bernal Giraldo, Adriana Jimena |
dc.contributor.author.none.fl_str_mv |
Díaz Millán, Fabián Santiago |
dc.contributor.jury.none.fl_str_mv |
Reyes Muñoz, Alejandro |
dc.subject.keyword.eng.fl_str_mv |
Fusarium oxysporum f. sp. cubense Tropical Race 4 Gamma-ray irradiation Direct antagonism tests Biocontrol Fusarium wilt of Banana Radiosensitivity Molecular markers Agrosavia |
topic |
Fusarium oxysporum f. sp. cubense Tropical Race 4 Gamma-ray irradiation Direct antagonism tests Biocontrol Fusarium wilt of Banana Radiosensitivity Molecular markers Agrosavia Microbiología |
dc.subject.themes.spa.fl_str_mv |
Microbiología |
description |
Fusarium oxysporum f. sp. cubense Tropical Race 4 is a plant pathogen of massive importance, as it can infect Cavendish banana and leave devastation behind in any plantation it reaches. As of today, the pathogen is managed via cultural practises and biocontrol strategies; and Colombia is a great example for both. Thanks to cultural practises and biosafety measures, the pathogen has been contained in a small number of farms in La Guajira and Magdalena departments, and Agrosavia (Corporación Colombiana de Investigación Agropecuaria) has been investing considerable effort into effective biocontrol strategies. One of these uses gamma-ray irradiation as a promising strategy for improvement of biocontrol activity, with direct in vitro antagonism tests against the pathogen, comparing direct antagonism capabilities between mutated microorganisms. Therefore, in this project, radiosensitivity assays were performed on biocontrol microorganisms, as well as antagonism tests to compare the antagonistic performance of irradiated microorganisms with their wild type counterparts. As a result, there were several irradiated colonies which outperformed their respective wild type colonies, and a library of primers for suggested molecular markers associated with antagonism processes was constructed. However, it was not possible to obtain lethal doses for any of the irradiated strains. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-27T14:43:06Z |
dc.date.available.none.fl_str_mv |
2025-01-27T14:43:06Z |
dc.date.issued.none.fl_str_mv |
2025-01-25 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75666 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75666 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Ahmad, Z., Wu, J., Chen, L., & Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports, 7(1), 1777. https://doi.org/10.1038/s41598-017-01940-9 Ambrosi, C., Leoni, L., Putignani, L., Orsi, N., & Visca, P. (2000). Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas strain B10: identification and functional analysis of the L-ornithine N(5)-oxygenase (psbA) gene. Journal of bacteriology, 182(21), 6233–6238. https://doi.org/10.1128/JB.182.21.6233-6238.2000 Boucher, J. C., Schurr, M. J., & Deretic, V. (2000). Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Molecular microbiology, 36(2), 341-351. Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237-246. Carpenter, M. A., Ridgway, H. J., Stringer, A. M., Hay, A. J., & Stewart, A. (2008). Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Current Genetics, 53, 193-205. Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780 Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., & Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in plant science, 9, 1468. Duan, K., Dammel, C., Stein, J., Rabin, H., & Surette, M. G. (2003). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular microbiology, 50(5), 1477-1491. Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical reviews in food science and nutrition, 59(9), 1498-1513. Fang, W., & Bidochka, M. J. (2006). Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycological research, 110(10), 1165-1171. Hing, J. N., Jong, B. C., Liew, P. W. Y., Ellyna , R. E., & Shamsudin , S. (2022). Gamma Radiation Dose Response of Gram Positive and Gram Negative Bacteria. Malaysian Applied Biology , 51(5), 107 112. Llauger, R., Peralta, E. L., López, V., López, D., Brunel, S., & Dusunceli, F. (2022). Estrategia y Plan de Acción Regional para la Preparación, Prevención, Detección, Respuesta y Recuperación de América Latina y el Caribe a la Marchitez por Fusarium de las Musáceas–Raza 4 Tropical. Food & Agriculture Organization. Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385. Meng, L., Cao, X., Li, C., Li, J., Xie, H., Shi, J., ... & Liu, C. (2023). Housekeeping gene stability in Pseudomonas aeruginosa PAO1 under the pressure of commonly used antibiotics in molecular microbiology assays. Frontiers in Microbiology, 14, 1140515. Mirmajlessi, S. M., Mostafavi, H. A., Loit, E., Najdabbasi, N., & Mänd, M. (2018). Application of radiation and genetic engineering techniques to improve biocontrol agent performance: A short review. Use of Gamma Radiation Techniques in Peaceful Applications. Pachauri, S., Sherkhane, P. D., Kumar, V., & Mukherjee, P. K. (2020). Whole genome sequencing reveals major deletions in the genome of M7, a gamma ray-induced mutant of Trichoderma virens that is repressed in conidiation, secondary metabolism, and mycoparasitism. Frontiers in Microbiology, 11, 1030. Panchalingam, H., Powell, D., Adra, C., Foster, K., Tomlin, R., Quigley, B. L., Nyari, S., Hayes, R. A., Shapcott, A., & Kurtböke, D. İ. (2022). Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. Journal of fungi (Basel, Switzerland), 8(10), 1105. https://doi.org/10.3390/jof8101105 Rostami, M., Ghorbani, A., & Shahbazi, S. (2024). Gamma radiation-induced enhancement of biocontrol agents for plant disease management. Current research in microbial sciences, 7, 100308. https://doi.org/10.1016/j.crmicr.2024.100308 Ruangwong, O. U., Pornsuriya, C., Pitija, K., & Sunpapao, A. (2021). Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi, 7(4), 276. Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Défago, G., Haas, D., & Keel, C. (2000). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of bacteriology, 182(5), 1215–1225. https://doi.org/10.1128/JB.182.5.1215-1225.2000 Siasou , E., Johnson, D., & Willey, N. J. (2017). An extended dose response model for microbial responses to ionizing radiation. Frontiers in Environmental Science , 5, 6. Su, Z., Liu, G., Liu, X., Li, S., Lu, X., Wang, P., Zhao, W., Zhang, X., Dong, L., Qu, Y., Zhang, J., Mo, S., Guo, Q., & Ma, P. (2023). Functional Analyses of the Bacillus velezensis HMB26553 Genome Provide Evidence That Its Genes Are Potentially Related to the Promotion of Plant Growth and Prevention of Cotton Rhizoctonia Damping-Off. Cells, 12(9), 1301. https://doi.org/10.3390/cells12091301 Ugbenyen , A. M., & Ikhimalo , O. P. (2021). Strain Improvement and Mass Production of Beneficial Microorganisms for Their Environmental and Agricultural Benefit. Microbial Rejuvenation of Polluted Environment : Volume 3, 1 19. Xia, H., Li, Y. Y., Liu, Z. C., Li, Y. Q., & Chen, J. (2018). Transgenic expression of chit42 gene from Metarhizium anisopliae in Trichoderma harzianum enhances antagonistic activity against Botrytis cinerea. Molecular Biology, 52, 668-675. Xu, S., Xie, X., Shi, Y., Chai, A., Li, B., & Li, L. (2022). Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms, 10(6), 1216. https://doi.org/10.3390/microorganisms 10061216 Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., & Zhang, R. (2019). Bacillus velezensis Wall Teichoic Acids Are Required for Biofilm Formation and Root Colonization. Applied and environmental microbiology, 85(5), e02116-18. https://doi.org/10.1128/AEM.02116-18 Yang, Y., Chen, R., Rahman, M. U., Wei, C., & Fan, B. (2023). The sprT Gene of Bacillus velezensis FZB42 Is Involved in Biofilm Formation and Bacilysin Production. International journal of molecular sciences, 24(23), 16815. https://doi.org/10.3390/ijms242316815 Zhao, J., Zhang, C., Lu, J., & Lu, Z. (2016). Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Canadian Journal of Microbiology, 62(5), 431-436. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
29 págnias |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Microbiología |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.none.fl_str_mv |
Departamento de Ciencias Biológicas |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/922ddec6-4b7f-4caa-85c2-d4dcc11a3051/download https://repositorio.uniandes.edu.co/bitstreams/e5a058ee-8694-484b-974b-feb4f83e52a8/download https://repositorio.uniandes.edu.co/bitstreams/55ca1663-b7e8-4d4d-bcd2-f067ceeb4398/download https://repositorio.uniandes.edu.co/bitstreams/d0c24773-90fb-40f1-b805-68769e61dab0/download https://repositorio.uniandes.edu.co/bitstreams/75eee151-5b78-44d6-8bef-d4efb9c60080/download https://repositorio.uniandes.edu.co/bitstreams/4484b4ec-007d-43d9-b2e2-abf040ff5893/download https://repositorio.uniandes.edu.co/bitstreams/f43cd10b-5f5a-4e02-bb19-5eaaa1251299/download https://repositorio.uniandes.edu.co/bitstreams/1d2bcd72-8dba-4df7-a564-fc64d0f3a496/download |
bitstream.checksum.fl_str_mv |
840793a10dfe36793360e0cea00a7727 13d168ac44a82527acd132979f6dc420 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f 7a93c490863de770ee688d900d8d2d00 2eaa0abd1b2020414104245f4b447c65 a48cc7ad73fcf4bb2e5214f8db78e23e 6c01d9faed504207c5ad9d6a659a9201 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1828159189316272128 |
spelling |
Soto Suárez, MauricioBernal Giraldo, Adriana Jimenavirtual::22598-1Díaz Millán, Fabián SantiagoReyes Muñoz, Alejandro2025-01-27T14:43:06Z2025-01-27T14:43:06Z2025-01-25https://hdl.handle.net/1992/75666instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Fusarium oxysporum f. sp. cubense Tropical Race 4 is a plant pathogen of massive importance, as it can infect Cavendish banana and leave devastation behind in any plantation it reaches. As of today, the pathogen is managed via cultural practises and biocontrol strategies; and Colombia is a great example for both. Thanks to cultural practises and biosafety measures, the pathogen has been contained in a small number of farms in La Guajira and Magdalena departments, and Agrosavia (Corporación Colombiana de Investigación Agropecuaria) has been investing considerable effort into effective biocontrol strategies. One of these uses gamma-ray irradiation as a promising strategy for improvement of biocontrol activity, with direct in vitro antagonism tests against the pathogen, comparing direct antagonism capabilities between mutated microorganisms. Therefore, in this project, radiosensitivity assays were performed on biocontrol microorganisms, as well as antagonism tests to compare the antagonistic performance of irradiated microorganisms with their wild type counterparts. As a result, there were several irradiated colonies which outperformed their respective wild type colonies, and a library of primers for suggested molecular markers associated with antagonism processes was constructed. However, it was not possible to obtain lethal doses for any of the irradiated strains.International Atomic Energy AgencyPregrado29 págniasapplication/pdfengUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFusarium oxysporum f. sp. cubense Tropical Race 4Gamma-ray irradiationDirect antagonism testsBiocontrolFusarium wilt of BananaRadiosensitivityMolecular markersAgrosaviaMicrobiologíaAhmad, Z., Wu, J., Chen, L., & Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports, 7(1), 1777. https://doi.org/10.1038/s41598-017-01940-9Ambrosi, C., Leoni, L., Putignani, L., Orsi, N., & Visca, P. (2000). Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas strain B10: identification and functional analysis of the L-ornithine N(5)-oxygenase (psbA) gene. Journal of bacteriology, 182(21), 6233–6238. https://doi.org/10.1128/JB.182.21.6233-6238.2000Boucher, J. C., Schurr, M. J., & Deretic, V. (2000). Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Molecular microbiology, 36(2), 341-351.Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237-246.Carpenter, M. A., Ridgway, H. J., Stringer, A. M., Hay, A. J., & Stewart, A. (2008). Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Current Genetics, 53, 193-205.Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., & Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in plant science, 9, 1468.Duan, K., Dammel, C., Stein, J., Rabin, H., & Surette, M. G. (2003). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular microbiology, 50(5), 1477-1491.Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical reviews in food science and nutrition, 59(9), 1498-1513.Fang, W., & Bidochka, M. J. (2006). Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycological research, 110(10), 1165-1171.Hing, J. N., Jong, B. C., Liew, P. W. Y., Ellyna , R. E., & Shamsudin , S. (2022). Gamma Radiation Dose Response of Gram Positive and Gram Negative Bacteria. Malaysian Applied Biology , 51(5), 107 112.Llauger, R., Peralta, E. L., López, V., López, D., Brunel, S., & Dusunceli, F. (2022). Estrategia y Plan de Acción Regional para la Preparación, Prevención, Detección, Respuesta y Recuperación de América Latina y el Caribe a la Marchitez por Fusarium de las Musáceas–Raza 4 Tropical. Food & Agriculture Organization.Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385.Meng, L., Cao, X., Li, C., Li, J., Xie, H., Shi, J., ... & Liu, C. (2023). Housekeeping gene stability in Pseudomonas aeruginosa PAO1 under the pressure of commonly used antibiotics in molecular microbiology assays. Frontiers in Microbiology, 14, 1140515.Mirmajlessi, S. M., Mostafavi, H. A., Loit, E., Najdabbasi, N., & Mänd, M. (2018). Application of radiation and genetic engineering techniques to improve biocontrol agent performance: A short review. Use of Gamma Radiation Techniques in Peaceful Applications.Pachauri, S., Sherkhane, P. D., Kumar, V., & Mukherjee, P. K. (2020). Whole genome sequencing reveals major deletions in the genome of M7, a gamma ray-induced mutant of Trichoderma virens that is repressed in conidiation, secondary metabolism, and mycoparasitism. Frontiers in Microbiology, 11, 1030.Panchalingam, H., Powell, D., Adra, C., Foster, K., Tomlin, R., Quigley, B. L., Nyari, S., Hayes, R. A., Shapcott, A., & Kurtböke, D. İ. (2022). Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. Journal of fungi (Basel, Switzerland), 8(10), 1105. https://doi.org/10.3390/jof8101105Rostami, M., Ghorbani, A., & Shahbazi, S. (2024). Gamma radiation-induced enhancement of biocontrol agents for plant disease management. Current research in microbial sciences, 7, 100308. https://doi.org/10.1016/j.crmicr.2024.100308Ruangwong, O. U., Pornsuriya, C., Pitija, K., & Sunpapao, A. (2021). Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi, 7(4), 276.Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Défago, G., Haas, D., & Keel, C. (2000). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of bacteriology, 182(5), 1215–1225. https://doi.org/10.1128/JB.182.5.1215-1225.2000Siasou , E., Johnson, D., & Willey, N. J. (2017). An extended dose response model for microbial responses to ionizing radiation. Frontiers in Environmental Science , 5, 6.Su, Z., Liu, G., Liu, X., Li, S., Lu, X., Wang, P., Zhao, W., Zhang, X., Dong, L., Qu, Y., Zhang, J., Mo, S., Guo, Q., & Ma, P. (2023). Functional Analyses of the Bacillus velezensis HMB26553 Genome Provide Evidence That Its Genes Are Potentially Related to the Promotion of Plant Growth and Prevention of Cotton Rhizoctonia Damping-Off. Cells, 12(9), 1301. https://doi.org/10.3390/cells12091301Ugbenyen , A. M., & Ikhimalo , O. P. (2021). Strain Improvement and Mass Production of Beneficial Microorganisms for Their Environmental and Agricultural Benefit. Microbial Rejuvenation of Polluted Environment : Volume 3, 1 19.Xia, H., Li, Y. Y., Liu, Z. C., Li, Y. Q., & Chen, J. (2018). Transgenic expression of chit42 gene from Metarhizium anisopliae in Trichoderma harzianum enhances antagonistic activity against Botrytis cinerea. Molecular Biology, 52, 668-675.Xu, S., Xie, X., Shi, Y., Chai, A., Li, B., & Li, L. (2022). Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms, 10(6), 1216. https://doi.org/10.3390/microorganisms 10061216Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., & Zhang, R. (2019). Bacillus velezensis Wall Teichoic Acids Are Required for Biofilm Formation and Root Colonization. Applied and environmental microbiology, 85(5), e02116-18. https://doi.org/10.1128/AEM.02116-18Yang, Y., Chen, R., Rahman, M. U., Wei, C., & Fan, B. (2023). The sprT Gene of Bacillus velezensis FZB42 Is Involved in Biofilm Formation and Bacilysin Production. International journal of molecular sciences, 24(23), 16815. https://doi.org/10.3390/ijms242316815Zhao, J., Zhang, C., Lu, J., & Lu, Z. (2016). Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Canadian Journal of Microbiology, 62(5), 431-436.202011977Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::22598-10000-0002-3557-697Xvirtual::22598-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::22598-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22598-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22598-1ORIGINALAutorización Práctica.pdfAutorización Práctica.pdfHIDEapplication/pdf319047https://repositorio.uniandes.edu.co/bitstreams/922ddec6-4b7f-4caa-85c2-d4dcc11a3051/download840793a10dfe36793360e0cea00a7727MD51Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdfHulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdfapplication/pdf1697442https://repositorio.uniandes.edu.co/bitstreams/e5a058ee-8694-484b-974b-feb4f83e52a8/download13d168ac44a82527acd132979f6dc420MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/55ca1663-b7e8-4d4d-bcd2-f067ceeb4398/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d0c24773-90fb-40f1-b805-68769e61dab0/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTAutorización Práctica.pdf.txtAutorización Práctica.pdf.txtExtracted texttext/plain2125https://repositorio.uniandes.edu.co/bitstreams/75eee151-5b78-44d6-8bef-d4efb9c60080/download7a93c490863de770ee688d900d8d2d00MD54Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.txtHulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.txtExtracted texttext/plain44066https://repositorio.uniandes.edu.co/bitstreams/4484b4ec-007d-43d9-b2e2-abf040ff5893/download2eaa0abd1b2020414104245f4b447c65MD56THUMBNAILAutorización Práctica.pdf.jpgAutorización Práctica.pdf.jpgGenerated Thumbnailimage/jpeg11161https://repositorio.uniandes.edu.co/bitstreams/f43cd10b-5f5a-4e02-bb19-5eaaa1251299/downloada48cc7ad73fcf4bb2e5214f8db78e23eMD55Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.jpgHulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.jpgGenerated Thumbnailimage/jpeg5394https://repositorio.uniandes.edu.co/bitstreams/1d2bcd72-8dba-4df7-a564-fc64d0f3a496/download6c01d9faed504207c5ad9d6a659a9201MD571992/75666oai:repositorio.uniandes.edu.co:1992/756662025-03-05 09:39:03.096http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |