Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4

Fusarium oxysporum f. sp. cubense Tropical Race 4 is a plant pathogen of massive importance, as it can infect Cavendish banana and leave devastation behind in any plantation it reaches. As of today, the pathogen is managed via cultural practises and biocontrol strategies; and Colombia is a great exa...

Full description

Autores:
Díaz Millán, Fabián Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75666
Acceso en línea:
https://hdl.handle.net/1992/75666
Palabra clave:
Fusarium oxysporum f. sp. cubense Tropical Race 4
Gamma-ray irradiation
Direct antagonism tests
Biocontrol
Fusarium wilt of Banana
Radiosensitivity
Molecular markers
Agrosavia
Microbiología
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_b6effc31a371891abc9085db7d70ca6d
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75666
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
title Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
spellingShingle Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
Fusarium oxysporum f. sp. cubense Tropical Race 4
Gamma-ray irradiation
Direct antagonism tests
Biocontrol
Fusarium wilt of Banana
Radiosensitivity
Molecular markers
Agrosavia
Microbiología
title_short Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
title_full Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
title_fullStr Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
title_full_unstemmed Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
title_sort Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4
dc.creator.fl_str_mv Díaz Millán, Fabián Santiago
dc.contributor.advisor.none.fl_str_mv Soto Suárez, Mauricio
Bernal Giraldo, Adriana Jimena
dc.contributor.author.none.fl_str_mv Díaz Millán, Fabián Santiago
dc.contributor.jury.none.fl_str_mv Reyes Muñoz, Alejandro
dc.subject.keyword.eng.fl_str_mv Fusarium oxysporum f. sp. cubense Tropical Race 4
Gamma-ray irradiation
Direct antagonism tests
Biocontrol
Fusarium wilt of Banana
Radiosensitivity
Molecular markers
Agrosavia
topic Fusarium oxysporum f. sp. cubense Tropical Race 4
Gamma-ray irradiation
Direct antagonism tests
Biocontrol
Fusarium wilt of Banana
Radiosensitivity
Molecular markers
Agrosavia
Microbiología
dc.subject.themes.spa.fl_str_mv Microbiología
description Fusarium oxysporum f. sp. cubense Tropical Race 4 is a plant pathogen of massive importance, as it can infect Cavendish banana and leave devastation behind in any plantation it reaches. As of today, the pathogen is managed via cultural practises and biocontrol strategies; and Colombia is a great example for both. Thanks to cultural practises and biosafety measures, the pathogen has been contained in a small number of farms in La Guajira and Magdalena departments, and Agrosavia (Corporación Colombiana de Investigación Agropecuaria) has been investing considerable effort into effective biocontrol strategies. One of these uses gamma-ray irradiation as a promising strategy for improvement of biocontrol activity, with direct in vitro antagonism tests against the pathogen, comparing direct antagonism capabilities between mutated microorganisms. Therefore, in this project, radiosensitivity assays were performed on biocontrol microorganisms, as well as antagonism tests to compare the antagonistic performance of irradiated microorganisms with their wild type counterparts. As a result, there were several irradiated colonies which outperformed their respective wild type colonies, and a library of primers for suggested molecular markers associated with antagonism processes was constructed. However, it was not possible to obtain lethal doses for any of the irradiated strains.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-27T14:43:06Z
dc.date.available.none.fl_str_mv 2025-01-27T14:43:06Z
dc.date.issued.none.fl_str_mv 2025-01-25
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75666
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75666
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Ahmad, Z., Wu, J., Chen, L., & Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports, 7(1), 1777. https://doi.org/10.1038/s41598-017-01940-9
Ambrosi, C., Leoni, L., Putignani, L., Orsi, N., & Visca, P. (2000). Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas strain B10: identification and functional analysis of the L-ornithine N(5)-oxygenase (psbA) gene. Journal of bacteriology, 182(21), 6233–6238. https://doi.org/10.1128/JB.182.21.6233-6238.2000
Boucher, J. C., Schurr, M. J., & Deretic, V. (2000). Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Molecular microbiology, 36(2), 341-351.
Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237-246.
Carpenter, M. A., Ridgway, H. J., Stringer, A. M., Hay, A. J., & Stewart, A. (2008). Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Current Genetics, 53, 193-205.
Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780
Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., & Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in plant science, 9, 1468.
Duan, K., Dammel, C., Stein, J., Rabin, H., & Surette, M. G. (2003). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular microbiology, 50(5), 1477-1491.
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical reviews in food science and nutrition, 59(9), 1498-1513.
Fang, W., & Bidochka, M. J. (2006). Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycological research, 110(10), 1165-1171.
Hing, J. N., Jong, B. C., Liew, P. W. Y., Ellyna , R. E., & Shamsudin , S. (2022). Gamma Radiation Dose Response of Gram Positive and Gram Negative Bacteria. Malaysian Applied Biology , 51(5), 107 112.
Llauger, R., Peralta, E. L., López, V., López, D., Brunel, S., & Dusunceli, F. (2022). Estrategia y Plan de Acción Regional para la Preparación, Prevención, Detección, Respuesta y Recuperación de América Latina y el Caribe a la Marchitez por Fusarium de las Musáceas–Raza 4 Tropical. Food & Agriculture Organization.
Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385.
Meng, L., Cao, X., Li, C., Li, J., Xie, H., Shi, J., ... & Liu, C. (2023). Housekeeping gene stability in Pseudomonas aeruginosa PAO1 under the pressure of commonly used antibiotics in molecular microbiology assays. Frontiers in Microbiology, 14, 1140515.
Mirmajlessi, S. M., Mostafavi, H. A., Loit, E., Najdabbasi, N., & Mänd, M. (2018). Application of radiation and genetic engineering techniques to improve biocontrol agent performance: A short review. Use of Gamma Radiation Techniques in Peaceful Applications.
Pachauri, S., Sherkhane, P. D., Kumar, V., & Mukherjee, P. K. (2020). Whole genome sequencing reveals major deletions in the genome of M7, a gamma ray-induced mutant of Trichoderma virens that is repressed in conidiation, secondary metabolism, and mycoparasitism. Frontiers in Microbiology, 11, 1030.
Panchalingam, H., Powell, D., Adra, C., Foster, K., Tomlin, R., Quigley, B. L., Nyari, S., Hayes, R. A., Shapcott, A., & Kurtböke, D. İ. (2022). Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. Journal of fungi (Basel, Switzerland), 8(10), 1105. https://doi.org/10.3390/jof8101105
Rostami, M., Ghorbani, A., & Shahbazi, S. (2024). Gamma radiation-induced enhancement of biocontrol agents for plant disease management. Current research in microbial sciences, 7, 100308. https://doi.org/10.1016/j.crmicr.2024.100308
Ruangwong, O. U., Pornsuriya, C., Pitija, K., & Sunpapao, A. (2021). Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi, 7(4), 276.
Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Défago, G., Haas, D., & Keel, C. (2000). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of bacteriology, 182(5), 1215–1225. https://doi.org/10.1128/JB.182.5.1215-1225.2000
Siasou , E., Johnson, D., & Willey, N. J. (2017). An extended dose response model for microbial responses to ionizing radiation. Frontiers in Environmental Science , 5, 6.
Su, Z., Liu, G., Liu, X., Li, S., Lu, X., Wang, P., Zhao, W., Zhang, X., Dong, L., Qu, Y., Zhang, J., Mo, S., Guo, Q., & Ma, P. (2023). Functional Analyses of the Bacillus velezensis HMB26553 Genome Provide Evidence That Its Genes Are Potentially Related to the Promotion of Plant Growth and Prevention of Cotton Rhizoctonia Damping-Off. Cells, 12(9), 1301. https://doi.org/10.3390/cells12091301
Ugbenyen , A. M., & Ikhimalo , O. P. (2021). Strain Improvement and Mass Production of Beneficial Microorganisms for Their Environmental and Agricultural Benefit. Microbial Rejuvenation of Polluted Environment : Volume 3, 1 19.
Xia, H., Li, Y. Y., Liu, Z. C., Li, Y. Q., & Chen, J. (2018). Transgenic expression of chit42 gene from Metarhizium anisopliae in Trichoderma harzianum enhances antagonistic activity against Botrytis cinerea. Molecular Biology, 52, 668-675.
Xu, S., Xie, X., Shi, Y., Chai, A., Li, B., & Li, L. (2022). Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms, 10(6), 1216. https://doi.org/10.3390/microorganisms 10061216
Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., & Zhang, R. (2019). Bacillus velezensis Wall Teichoic Acids Are Required for Biofilm Formation and Root Colonization. Applied and environmental microbiology, 85(5), e02116-18. https://doi.org/10.1128/AEM.02116-18
Yang, Y., Chen, R., Rahman, M. U., Wei, C., & Fan, B. (2023). The sprT Gene of Bacillus velezensis FZB42 Is Involved in Biofilm Formation and Bacilysin Production. International journal of molecular sciences, 24(23), 16815. https://doi.org/10.3390/ijms242316815
Zhao, J., Zhang, C., Lu, J., & Lu, Z. (2016). Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Canadian Journal of Microbiology, 62(5), 431-436.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 29 págnias
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Microbiología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/922ddec6-4b7f-4caa-85c2-d4dcc11a3051/download
https://repositorio.uniandes.edu.co/bitstreams/e5a058ee-8694-484b-974b-feb4f83e52a8/download
https://repositorio.uniandes.edu.co/bitstreams/55ca1663-b7e8-4d4d-bcd2-f067ceeb4398/download
https://repositorio.uniandes.edu.co/bitstreams/d0c24773-90fb-40f1-b805-68769e61dab0/download
https://repositorio.uniandes.edu.co/bitstreams/75eee151-5b78-44d6-8bef-d4efb9c60080/download
https://repositorio.uniandes.edu.co/bitstreams/4484b4ec-007d-43d9-b2e2-abf040ff5893/download
https://repositorio.uniandes.edu.co/bitstreams/f43cd10b-5f5a-4e02-bb19-5eaaa1251299/download
https://repositorio.uniandes.edu.co/bitstreams/1d2bcd72-8dba-4df7-a564-fc64d0f3a496/download
bitstream.checksum.fl_str_mv 840793a10dfe36793360e0cea00a7727
13d168ac44a82527acd132979f6dc420
4460e5956bc1d1639be9ae6146a50347
ae9e573a68e7f92501b6913cc846c39f
7a93c490863de770ee688d900d8d2d00
2eaa0abd1b2020414104245f4b447c65
a48cc7ad73fcf4bb2e5214f8db78e23e
6c01d9faed504207c5ad9d6a659a9201
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159189316272128
spelling Soto Suárez, MauricioBernal Giraldo, Adriana Jimenavirtual::22598-1Díaz Millán, Fabián SantiagoReyes Muñoz, Alejandro2025-01-27T14:43:06Z2025-01-27T14:43:06Z2025-01-25https://hdl.handle.net/1992/75666instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Fusarium oxysporum f. sp. cubense Tropical Race 4 is a plant pathogen of massive importance, as it can infect Cavendish banana and leave devastation behind in any plantation it reaches. As of today, the pathogen is managed via cultural practises and biocontrol strategies; and Colombia is a great example for both. Thanks to cultural practises and biosafety measures, the pathogen has been contained in a small number of farms in La Guajira and Magdalena departments, and Agrosavia (Corporación Colombiana de Investigación Agropecuaria) has been investing considerable effort into effective biocontrol strategies. One of these uses gamma-ray irradiation as a promising strategy for improvement of biocontrol activity, with direct in vitro antagonism tests against the pathogen, comparing direct antagonism capabilities between mutated microorganisms. Therefore, in this project, radiosensitivity assays were performed on biocontrol microorganisms, as well as antagonism tests to compare the antagonistic performance of irradiated microorganisms with their wild type counterparts. As a result, there were several irradiated colonies which outperformed their respective wild type colonies, and a library of primers for suggested molecular markers associated with antagonism processes was constructed. However, it was not possible to obtain lethal doses for any of the irradiated strains.International Atomic Energy AgencyPregrado29 págniasapplication/pdfengUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias BiológicasAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFusarium oxysporum f. sp. cubense Tropical Race 4Gamma-ray irradiationDirect antagonism testsBiocontrolFusarium wilt of BananaRadiosensitivityMolecular markersAgrosaviaMicrobiologíaAhmad, Z., Wu, J., Chen, L., & Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports, 7(1), 1777. https://doi.org/10.1038/s41598-017-01940-9Ambrosi, C., Leoni, L., Putignani, L., Orsi, N., & Visca, P. (2000). Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas strain B10: identification and functional analysis of the L-ornithine N(5)-oxygenase (psbA) gene. Journal of bacteriology, 182(21), 6233–6238. https://doi.org/10.1128/JB.182.21.6233-6238.2000Boucher, J. C., Schurr, M. J., & Deretic, V. (2000). Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism. Molecular microbiology, 36(2), 341-351.Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 117, 237-246.Carpenter, M. A., Ridgway, H. J., Stringer, A. M., Hay, A. J., & Stewart, A. (2008). Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Current Genetics, 53, 193-205.Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in microbiology, 6, 780. https://doi.org/10.3389/fmicb.2015.00780Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., & Staver, C. P. (2018). Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in plant science, 9, 1468.Duan, K., Dammel, C., Stein, J., Rabin, H., & Surette, M. G. (2003). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular microbiology, 50(5), 1477-1491.Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical reviews in food science and nutrition, 59(9), 1498-1513.Fang, W., & Bidochka, M. J. (2006). Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycological research, 110(10), 1165-1171.Hing, J. N., Jong, B. C., Liew, P. W. Y., Ellyna , R. E., & Shamsudin , S. (2022). Gamma Radiation Dose Response of Gram Positive and Gram Negative Bacteria. Malaysian Applied Biology , 51(5), 107 112.Llauger, R., Peralta, E. L., López, V., López, D., Brunel, S., & Dusunceli, F. (2022). Estrategia y Plan de Acción Regional para la Preparación, Prevención, Detección, Respuesta y Recuperación de América Latina y el Caribe a la Marchitez por Fusarium de las Musáceas–Raza 4 Tropical. Food & Agriculture Organization.Lorito, M., Farkas, V., Rebuffat, S., Bodo, B., & Kubicek, C. P. (1996). Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. Journal of Bacteriology, 178(21), 6382-6385.Meng, L., Cao, X., Li, C., Li, J., Xie, H., Shi, J., ... & Liu, C. (2023). Housekeeping gene stability in Pseudomonas aeruginosa PAO1 under the pressure of commonly used antibiotics in molecular microbiology assays. Frontiers in Microbiology, 14, 1140515.Mirmajlessi, S. M., Mostafavi, H. A., Loit, E., Najdabbasi, N., & Mänd, M. (2018). Application of radiation and genetic engineering techniques to improve biocontrol agent performance: A short review. Use of Gamma Radiation Techniques in Peaceful Applications.Pachauri, S., Sherkhane, P. D., Kumar, V., & Mukherjee, P. K. (2020). Whole genome sequencing reveals major deletions in the genome of M7, a gamma ray-induced mutant of Trichoderma virens that is repressed in conidiation, secondary metabolism, and mycoparasitism. Frontiers in Microbiology, 11, 1030.Panchalingam, H., Powell, D., Adra, C., Foster, K., Tomlin, R., Quigley, B. L., Nyari, S., Hayes, R. A., Shapcott, A., & Kurtböke, D. İ. (2022). Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. Journal of fungi (Basel, Switzerland), 8(10), 1105. https://doi.org/10.3390/jof8101105Rostami, M., Ghorbani, A., & Shahbazi, S. (2024). Gamma radiation-induced enhancement of biocontrol agents for plant disease management. Current research in microbial sciences, 7, 100308. https://doi.org/10.1016/j.crmicr.2024.100308Ruangwong, O. U., Pornsuriya, C., Pitija, K., & Sunpapao, A. (2021). Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi, 7(4), 276.Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Défago, G., Haas, D., & Keel, C. (2000). Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. Journal of bacteriology, 182(5), 1215–1225. https://doi.org/10.1128/JB.182.5.1215-1225.2000Siasou , E., Johnson, D., & Willey, N. J. (2017). An extended dose response model for microbial responses to ionizing radiation. Frontiers in Environmental Science , 5, 6.Su, Z., Liu, G., Liu, X., Li, S., Lu, X., Wang, P., Zhao, W., Zhang, X., Dong, L., Qu, Y., Zhang, J., Mo, S., Guo, Q., & Ma, P. (2023). Functional Analyses of the Bacillus velezensis HMB26553 Genome Provide Evidence That Its Genes Are Potentially Related to the Promotion of Plant Growth and Prevention of Cotton Rhizoctonia Damping-Off. Cells, 12(9), 1301. https://doi.org/10.3390/cells12091301Ugbenyen , A. M., & Ikhimalo , O. P. (2021). Strain Improvement and Mass Production of Beneficial Microorganisms for Their Environmental and Agricultural Benefit. Microbial Rejuvenation of Polluted Environment : Volume 3, 1 19.Xia, H., Li, Y. Y., Liu, Z. C., Li, Y. Q., & Chen, J. (2018). Transgenic expression of chit42 gene from Metarhizium anisopliae in Trichoderma harzianum enhances antagonistic activity against Botrytis cinerea. Molecular Biology, 52, 668-675.Xu, S., Xie, X., Shi, Y., Chai, A., Li, B., & Li, L. (2022). Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms, 10(6), 1216. https://doi.org/10.3390/microorganisms 10061216Xu, Z., Zhang, H., Sun, X., Liu, Y., Yan, W., Xun, W., Shen, Q., & Zhang, R. (2019). Bacillus velezensis Wall Teichoic Acids Are Required for Biofilm Formation and Root Colonization. Applied and environmental microbiology, 85(5), e02116-18. https://doi.org/10.1128/AEM.02116-18Yang, Y., Chen, R., Rahman, M. U., Wei, C., & Fan, B. (2023). The sprT Gene of Bacillus velezensis FZB42 Is Involved in Biofilm Formation and Bacilysin Production. International journal of molecular sciences, 24(23), 16815. https://doi.org/10.3390/ijms242316815Zhao, J., Zhang, C., Lu, J., & Lu, Z. (2016). Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Canadian Journal of Microbiology, 62(5), 431-436.202011977Publicationhttps://scholar.google.es/citations?user=vQ9yFZoAAAAJvirtual::22598-10000-0002-3557-697Xvirtual::22598-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000622354virtual::22598-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22598-14e93f81c-d517-4226-80b7-2c5d693a24f4virtual::22598-1ORIGINALAutorización Práctica.pdfAutorización Práctica.pdfHIDEapplication/pdf319047https://repositorio.uniandes.edu.co/bitstreams/922ddec6-4b7f-4caa-85c2-d4dcc11a3051/download840793a10dfe36793360e0cea00a7727MD51Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdfHulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdfapplication/pdf1697442https://repositorio.uniandes.edu.co/bitstreams/e5a058ee-8694-484b-974b-feb4f83e52a8/download13d168ac44a82527acd132979f6dc420MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/55ca1663-b7e8-4d4d-bcd2-f067ceeb4398/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/d0c24773-90fb-40f1-b805-68769e61dab0/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTAutorización Práctica.pdf.txtAutorización Práctica.pdf.txtExtracted texttext/plain2125https://repositorio.uniandes.edu.co/bitstreams/75eee151-5b78-44d6-8bef-d4efb9c60080/download7a93c490863de770ee688d900d8d2d00MD54Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.txtHulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.txtExtracted texttext/plain44066https://repositorio.uniandes.edu.co/bitstreams/4484b4ec-007d-43d9-b2e2-abf040ff5893/download2eaa0abd1b2020414104245f4b447c65MD56THUMBNAILAutorización Práctica.pdf.jpgAutorización Práctica.pdf.jpgGenerated Thumbnailimage/jpeg11161https://repositorio.uniandes.edu.co/bitstreams/f43cd10b-5f5a-4e02-bb19-5eaaa1251299/downloada48cc7ad73fcf4bb2e5214f8db78e23eMD55Hulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.jpgHulking out : Potentiating in vitro biocontrol activity against Fusarium oxysporum f. sp. cubense Tropical Race 4.pdf.jpgGenerated Thumbnailimage/jpeg5394https://repositorio.uniandes.edu.co/bitstreams/1d2bcd72-8dba-4df7-a564-fc64d0f3a496/download6c01d9faed504207c5ad9d6a659a9201MD571992/75666oai:repositorio.uniandes.edu.co:1992/756662025-03-05 09:39:03.096http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K