A noncommutative de sitter space

The noncommutative nature of quantum mechanics and the geometrical nature of general relativity suggests noncommutative geometry as a possible meeting ground. In this work a version of a noncommutative de Sitter space is introduced. As a motivation for this some algebraic properties of dierential ge...

Full description

Autores:
Ariza Mejía, Juan Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/40367
Acceso en línea:
http://hdl.handle.net/1992/40367
Palabra clave:
Geometría diferencial
Teoría cuántica
Relatividad general (Física)
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:The noncommutative nature of quantum mechanics and the geometrical nature of general relativity suggests noncommutative geometry as a possible meeting ground. In this work a version of a noncommutative de Sitter space is introduced. As a motivation for this some algebraic properties of dierential geometry are discussed, and the classical de Sitter space and some of its properties are presented. The noncommutative catenoid of Arnlind and Holm is introduced as a guiding example for the noncommutative de Sitter space