A noncommutative de sitter space
The noncommutative nature of quantum mechanics and the geometrical nature of general relativity suggests noncommutative geometry as a possible meeting ground. In this work a version of a noncommutative de Sitter space is introduced. As a motivation for this some algebraic properties of dierential ge...
- Autores:
-
Ariza Mejía, Juan Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/40367
- Acceso en línea:
- http://hdl.handle.net/1992/40367
- Palabra clave:
- Geometría diferencial
Teoría cuántica
Relatividad general (Física)
Física
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Summary: | The noncommutative nature of quantum mechanics and the geometrical nature of general relativity suggests noncommutative geometry as a possible meeting ground. In this work a version of a noncommutative de Sitter space is introduced. As a motivation for this some algebraic properties of dierential geometry are discussed, and the classical de Sitter space and some of its properties are presented. The noncommutative catenoid of Arnlind and Holm is introduced as a guiding example for the noncommutative de Sitter space |
---|