Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment

Finite difference methods have been used to calculate the temperature distribution in the surrounding sediments of a salt diapir. In this model, results are in agreement with the work of Jensen, P.K. (1983). The temperature distribution around the salt diapir depends on the scale and its geometry; t...

Full description

Autores:
Arenas Pardo, Camilo Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2016
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39848
Acceso en línea:
http://hdl.handle.net/1992/39848
Palabra clave:
Cuencas sedimentarias
Trampas estratigráficas (Geología del petróleo)
Diapiros
Geociencias
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_b440d73c2fb8bf7f37c65c2d828a59e3
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/39848
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
title Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
spellingShingle Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
Cuencas sedimentarias
Trampas estratigráficas (Geología del petróleo)
Diapiros
Geociencias
title_short Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
title_full Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
title_fullStr Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
title_full_unstemmed Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
title_sort Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
dc.creator.fl_str_mv Arenas Pardo, Camilo Andrés
dc.contributor.advisor.none.fl_str_mv Jaramillo Mejía, José María
Pearse, Jillian
dc.contributor.author.none.fl_str_mv Arenas Pardo, Camilo Andrés
dc.contributor.jury.none.fl_str_mv Montes Rodríguez, Camilo
Blanco Quintero, Idael
González, Felipe
dc.subject.keyword.es_CO.fl_str_mv Cuencas sedimentarias
Trampas estratigráficas (Geología del petróleo)
Diapiros
topic Cuencas sedimentarias
Trampas estratigráficas (Geología del petróleo)
Diapiros
Geociencias
dc.subject.themes.none.fl_str_mv Geociencias
description Finite difference methods have been used to calculate the temperature distribution in the surrounding sediments of a salt diapir. In this model, results are in agreement with the work of Jensen, P.K. (1983). The temperature distribution around the salt diapir depends on the scale and its geometry; therefore, salt domes show a temperature gap above and beneath of them. The model presented here shows that the major positive anomaly of temperature above the salt dome is around 22-25°C, while the lowest anomaly varies from -20 to -25°C some meters beneath the bottom of the dome. Hence, in the presence of salt domes the maturity of the sequence changes, so hydrocarbons will be generated at a different time in the thermal history of the basin if salt domes are present. The case of Santos basin at Brazil shows the change in the rate of maturity; therefore, the potential reserves of oil increased in this country. Finally, it is important to study temperature anomalies because this phenomenon could explain the discoveries in ultra-deep water of Gulf of Mexico and some exploratory wells in Africa, allowing an increase of oil potential around the world
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-06-10T16:35:23Z
dc.date.available.none.fl_str_mv 2020-06-10T16:35:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/39848
dc.identifier.pdf.none.fl_str_mv u807284.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/39848
identifier_str_mv u807284.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 32 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Geociencias
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Geociencias
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/dd2daf2c-0da8-46f1-9f6f-9b19200cb646/download
https://repositorio.uniandes.edu.co/bitstreams/9a6f7973-3b69-4a03-8d8d-4d02aa0192de/download
https://repositorio.uniandes.edu.co/bitstreams/f514f567-029d-4c33-8cc3-8726bbd81b68/download
bitstream.checksum.fl_str_mv 923eca4b95aa2a0b0b09f15d2b4640c5
55e2fbe701fda024b14f7f6f5522fcf8
808e51715a04f2ac8b9ddb27087baa4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818112023288872960
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jaramillo Mejía, José Maríacb6c36ff-fca1-4aa7-ab6b-eb708aefd9a0600Pearse, Jillian32e2a8f0-1189-487e-ab71-cda91515551a600Arenas Pardo, Camilo Andrése2999f91-390a-42b2-910b-c96769b41ed2600Montes Rodríguez, CamiloBlanco Quintero, IdaelGonzález, Felipe2020-06-10T16:35:23Z2020-06-10T16:35:23Z2016http://hdl.handle.net/1992/39848u807284.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Finite difference methods have been used to calculate the temperature distribution in the surrounding sediments of a salt diapir. In this model, results are in agreement with the work of Jensen, P.K. (1983). The temperature distribution around the salt diapir depends on the scale and its geometry; therefore, salt domes show a temperature gap above and beneath of them. The model presented here shows that the major positive anomaly of temperature above the salt dome is around 22-25°C, while the lowest anomaly varies from -20 to -25°C some meters beneath the bottom of the dome. Hence, in the presence of salt domes the maturity of the sequence changes, so hydrocarbons will be generated at a different time in the thermal history of the basin if salt domes are present. The case of Santos basin at Brazil shows the change in the rate of maturity; therefore, the potential reserves of oil increased in this country. Finally, it is important to study temperature anomalies because this phenomenon could explain the discoveries in ultra-deep water of Gulf of Mexico and some exploratory wells in Africa, allowing an increase of oil potential around the worldLos métodos de diferencias finitas han sido usados para calcular la distribución de la temperatura en las capas sedimentarias alrededor de diapiros salinos. En este modelo los resultados concuerdan con los obtenidos por Jensen, P.K. (1983). La distribución de la temperatura en las vecindades de los diapiros salinos depende de la geometría y tamaño de los mismos, por lo tanto los domos salinos muestran algunas anomalias termicas tanto en la parte superior como inferior de estos. El modelo desarrollado en este trabajo muestra una anomalía positiva en la temperatura de 22-25°C, mientras que la anomalía negativa más baja es de -20 a 25°C algunos metros por debajo de la base del diapiro. Por lo tanto en la presencia de domos salinos la madurez de la secuencia sedimentaria cambia, lo que va a producir que los hidrocarburos se generen en un tiempo diferente de la historia termal de la cuenca si esta tiene capas y diapiros salinos. El caso de la cuenca de Santos en Brazil muestra los cambios descritos en la tasa de maduración de las rocas y por este fenómeno las reservas de petroleo han aumentado en este país. Finalmente es importante estudiar las anomalias termicas porqué este fenómeno puede explicar los descubrimientos en aguas ultra profundas en el golfo de México y otros pozos exploratorios en Africa, permitiendo un incremento en las reservas mundiales de petroleo.GeocientíficoPregrado32 hojasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de Geocienciasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaModelling of temperature distribution around salt diapirs :application to hydrocarbons assessmentTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCuencas sedimentariasTrampas estratigráficas (Geología del petróleo)DiapirosGeocienciasPublicationTEXTu807284.pdf.txtu807284.pdf.txtExtracted texttext/plain45019https://repositorio.uniandes.edu.co/bitstreams/dd2daf2c-0da8-46f1-9f6f-9b19200cb646/download923eca4b95aa2a0b0b09f15d2b4640c5MD54ORIGINALu807284.pdfapplication/pdf2528497https://repositorio.uniandes.edu.co/bitstreams/9a6f7973-3b69-4a03-8d8d-4d02aa0192de/download55e2fbe701fda024b14f7f6f5522fcf8MD51THUMBNAILu807284.pdf.jpgu807284.pdf.jpgIM Thumbnailimage/jpeg5930https://repositorio.uniandes.edu.co/bitstreams/f514f567-029d-4c33-8cc3-8726bbd81b68/download808e51715a04f2ac8b9ddb27087baa4aMD551992/39848oai:repositorio.uniandes.edu.co:1992/398482023-10-10 19:22:36.57http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co