Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment
Finite difference methods have been used to calculate the temperature distribution in the surrounding sediments of a salt diapir. In this model, results are in agreement with the work of Jensen, P.K. (1983). The temperature distribution around the salt diapir depends on the scale and its geometry; t...
- Autores:
-
Arenas Pardo, Camilo Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/39848
- Acceso en línea:
- http://hdl.handle.net/1992/39848
- Palabra clave:
- Cuencas sedimentarias
Trampas estratigráficas (Geología del petróleo)
Diapiros
Geociencias
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_b440d73c2fb8bf7f37c65c2d828a59e3 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/39848 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
title |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
spellingShingle |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment Cuencas sedimentarias Trampas estratigráficas (Geología del petróleo) Diapiros Geociencias |
title_short |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
title_full |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
title_fullStr |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
title_full_unstemmed |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
title_sort |
Modelling of temperature distribution around salt diapirs :application to hydrocarbons assessment |
dc.creator.fl_str_mv |
Arenas Pardo, Camilo Andrés |
dc.contributor.advisor.none.fl_str_mv |
Jaramillo Mejía, José María Pearse, Jillian |
dc.contributor.author.none.fl_str_mv |
Arenas Pardo, Camilo Andrés |
dc.contributor.jury.none.fl_str_mv |
Montes Rodríguez, Camilo Blanco Quintero, Idael González, Felipe |
dc.subject.keyword.es_CO.fl_str_mv |
Cuencas sedimentarias Trampas estratigráficas (Geología del petróleo) Diapiros |
topic |
Cuencas sedimentarias Trampas estratigráficas (Geología del petróleo) Diapiros Geociencias |
dc.subject.themes.none.fl_str_mv |
Geociencias |
description |
Finite difference methods have been used to calculate the temperature distribution in the surrounding sediments of a salt diapir. In this model, results are in agreement with the work of Jensen, P.K. (1983). The temperature distribution around the salt diapir depends on the scale and its geometry; therefore, salt domes show a temperature gap above and beneath of them. The model presented here shows that the major positive anomaly of temperature above the salt dome is around 22-25°C, while the lowest anomaly varies from -20 to -25°C some meters beneath the bottom of the dome. Hence, in the presence of salt domes the maturity of the sequence changes, so hydrocarbons will be generated at a different time in the thermal history of the basin if salt domes are present. The case of Santos basin at Brazil shows the change in the rate of maturity; therefore, the potential reserves of oil increased in this country. Finally, it is important to study temperature anomalies because this phenomenon could explain the discoveries in ultra-deep water of Gulf of Mexico and some exploratory wells in Africa, allowing an increase of oil potential around the world |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-06-10T16:35:23Z |
dc.date.available.none.fl_str_mv |
2020-06-10T16:35:23Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/39848 |
dc.identifier.pdf.none.fl_str_mv |
u807284.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/39848 |
identifier_str_mv |
u807284.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
32 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Geociencias |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Geociencias |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/dd2daf2c-0da8-46f1-9f6f-9b19200cb646/download https://repositorio.uniandes.edu.co/bitstreams/9a6f7973-3b69-4a03-8d8d-4d02aa0192de/download https://repositorio.uniandes.edu.co/bitstreams/f514f567-029d-4c33-8cc3-8726bbd81b68/download |
bitstream.checksum.fl_str_mv |
923eca4b95aa2a0b0b09f15d2b4640c5 55e2fbe701fda024b14f7f6f5522fcf8 808e51715a04f2ac8b9ddb27087baa4a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818112023288872960 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jaramillo Mejía, José Maríacb6c36ff-fca1-4aa7-ab6b-eb708aefd9a0600Pearse, Jillian32e2a8f0-1189-487e-ab71-cda91515551a600Arenas Pardo, Camilo Andrése2999f91-390a-42b2-910b-c96769b41ed2600Montes Rodríguez, CamiloBlanco Quintero, IdaelGonzález, Felipe2020-06-10T16:35:23Z2020-06-10T16:35:23Z2016http://hdl.handle.net/1992/39848u807284.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Finite difference methods have been used to calculate the temperature distribution in the surrounding sediments of a salt diapir. In this model, results are in agreement with the work of Jensen, P.K. (1983). The temperature distribution around the salt diapir depends on the scale and its geometry; therefore, salt domes show a temperature gap above and beneath of them. The model presented here shows that the major positive anomaly of temperature above the salt dome is around 22-25°C, while the lowest anomaly varies from -20 to -25°C some meters beneath the bottom of the dome. Hence, in the presence of salt domes the maturity of the sequence changes, so hydrocarbons will be generated at a different time in the thermal history of the basin if salt domes are present. The case of Santos basin at Brazil shows the change in the rate of maturity; therefore, the potential reserves of oil increased in this country. Finally, it is important to study temperature anomalies because this phenomenon could explain the discoveries in ultra-deep water of Gulf of Mexico and some exploratory wells in Africa, allowing an increase of oil potential around the worldLos métodos de diferencias finitas han sido usados para calcular la distribución de la temperatura en las capas sedimentarias alrededor de diapiros salinos. En este modelo los resultados concuerdan con los obtenidos por Jensen, P.K. (1983). La distribución de la temperatura en las vecindades de los diapiros salinos depende de la geometría y tamaño de los mismos, por lo tanto los domos salinos muestran algunas anomalias termicas tanto en la parte superior como inferior de estos. El modelo desarrollado en este trabajo muestra una anomalía positiva en la temperatura de 22-25°C, mientras que la anomalía negativa más baja es de -20 a 25°C algunos metros por debajo de la base del diapiro. Por lo tanto en la presencia de domos salinos la madurez de la secuencia sedimentaria cambia, lo que va a producir que los hidrocarburos se generen en un tiempo diferente de la historia termal de la cuenca si esta tiene capas y diapiros salinos. El caso de la cuenca de Santos en Brazil muestra los cambios descritos en la tasa de maduración de las rocas y por este fenómeno las reservas de petroleo han aumentado en este país. Finalmente es importante estudiar las anomalias termicas porqué este fenómeno puede explicar los descubrimientos en aguas ultra profundas en el golfo de México y otros pozos exploratorios en Africa, permitiendo un incremento en las reservas mundiales de petroleo.GeocientíficoPregrado32 hojasapplication/pdfengUniversidad de los AndesGeocienciasFacultad de CienciasDepartamento de Geocienciasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaModelling of temperature distribution around salt diapirs :application to hydrocarbons assessmentTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPCuencas sedimentariasTrampas estratigráficas (Geología del petróleo)DiapirosGeocienciasPublicationTEXTu807284.pdf.txtu807284.pdf.txtExtracted texttext/plain45019https://repositorio.uniandes.edu.co/bitstreams/dd2daf2c-0da8-46f1-9f6f-9b19200cb646/download923eca4b95aa2a0b0b09f15d2b4640c5MD54ORIGINALu807284.pdfapplication/pdf2528497https://repositorio.uniandes.edu.co/bitstreams/9a6f7973-3b69-4a03-8d8d-4d02aa0192de/download55e2fbe701fda024b14f7f6f5522fcf8MD51THUMBNAILu807284.pdf.jpgu807284.pdf.jpgIM Thumbnailimage/jpeg5930https://repositorio.uniandes.edu.co/bitstreams/f514f567-029d-4c33-8cc3-8726bbd81b68/download808e51715a04f2ac8b9ddb27087baa4aMD551992/39848oai:repositorio.uniandes.edu.co:1992/398482023-10-10 19:22:36.57http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |