Kronecker states: a powerful source of multipartite maximally entangled states in quantum information

In quantum information theory, maximally entangled states are essential for well-known protocols like quantum teleportation or quantum key distribution. While many of these protocols focus on bipartite entanglement, other applications, such as quantum error correction or multiparty quantum secret sh...

Full description

Autores:
González Olaya, Walther Leónardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73974
Acceso en línea:
https://hdl.handle.net/1992/73974
Palabra clave:
Entanglement
Quantum information
Multipartite entanglement
Kronecker states
Física
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_aea98cd99777825a5a4d57d75cdc9a67
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73974
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
title Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
spellingShingle Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
Entanglement
Quantum information
Multipartite entanglement
Kronecker states
Física
title_short Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
title_full Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
title_fullStr Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
title_full_unstemmed Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
title_sort Kronecker states: a powerful source of multipartite maximally entangled states in quantum information
dc.creator.fl_str_mv González Olaya, Walther Leónardo
dc.contributor.advisor.none.fl_str_mv Botero Mejía, Alonso
dc.contributor.author.none.fl_str_mv González Olaya, Walther Leónardo
dc.contributor.jury.none.fl_str_mv Bagan Capella, Emili
Jiménez Rincón, José Julián
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Óptica Cuántica Experimental
dc.subject.keyword.none.fl_str_mv Entanglement
Quantum information
Multipartite entanglement
Kronecker states
topic Entanglement
Quantum information
Multipartite entanglement
Kronecker states
Física
dc.subject.themes.spa.fl_str_mv Física
description In quantum information theory, maximally entangled states are essential for well-known protocols like quantum teleportation or quantum key distribution. While many of these protocols focus on bipartite entanglement, other applications, such as quantum error correction or multiparty quantum secret sharing, are based on multipartite entanglement, precisely, on the so-called locally maximally entangled (LME) multipartite states, where each part is maximally entangled with their complement. Such LME states appear naturally in the invariant subspaces of tensor products of irreducible representations of the symmetric group Sn, which we term Kronecker subspaces, given that their dimensions are the so-called Kronecker coefficients. A Kronecker subspace is a vector space of LME multipartite states that we call Kronecker states, which entangle Hilbert spaces of large dimensions. Although such states can in principle be obtained from the Clebsch-Gordan coefficients of the symmetric group, the known methods to compute these coefficients tend to be inefficient even for small values of n. An alternative quantum-information-based approach is inspired by entanglement concentration protocols, where Kronecker subspaces appear naturally in the isotypic decomposition of tensor products of copies of multipartite entangled states. In this context, closed expressions have been obtained for a limited class of Kronecker states, associated with states in the so-called multiqubit Wclass. Our aim in this thesis is to extend this approach to build bases for Kronecker subspaces associated with any multiqubit system. For developing our method we first propose a graphical construction that we call “W-state Stitching”, where multiqubit entangled states are obtained as tensor networks built from W states. Analyzing the isotypic decomposition of copies of the graph state, an analogous set of graph Kronecker states, made from W-Kronecker states, can be obtained. In particular, the graph states of generic multiqubit states can generate any Kronecker subspace completely. Using this method, we show how to build any Kronecker subspace corresponding to systems of three and four qubits. Independently of the Kronecker state construction, the W-stitching technique has proven to be a powerful method for multiqubit entanglement classification. We hope the results of this work motivate the study of applications of Kronecker states in quantum information, and serve as a starting point for a resource theory of multipartite entanglement, with bipartite states and tripartite W states as building blocks, where the asymptotic analysis is based on Kronecker states.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-14T13:30:45Z
dc.date.available.none.fl_str_mv 2024-02-14T13:30:45Z
dc.date.issued.none.fl_str_mv 2024-01-31
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73974
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73974
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv [1] Charles H. Bennett et al. “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”. In: Physical Review Letters 70.13 (Mar. 29, 1993), pp. 1895–1899.
[2] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key distribution and coin tossing”. In: Theoretical Computer Science 560 (Dec. 2014), pp. 7–11.
[3] Simon J. Devitt, Kae Nemoto, and William J. Munro. “Quantum error correction for beginners”. In: Reports on Progress in Physics 76.7 (July 1, 2013), p. 076001.
[4] Charles H. Bennett and Stephen J. Wiesner. “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states”. In: Physical Review Letters 69.20 (Nov. 16, 1992), pp. 2881–2884.
[5] Yue Yu. “Advancements in applications of quantum entanglement”. In: Journal of Physics: Conference Series 2012.1 (Sept. 1, 2021), p. 012113.
[6] Michael Walter, David Gross, and Jens Eisert. Multi-partite entanglement. Feb. 5, 2017.
[7] Isaac Chuang and Aram Harrow. Applications of the Schur basis to quantum algorithms: Fort Belvoir, VA: Defense Technical Information Center, Jan. 10, 2011.
[8] E. Schrödinger. “Discussion of probability relations between separated systems”. In: Mathematical Proceedings of the Cambridge Philosophical Society 31.4 (Oct. 1935), pp. 555–
[9] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Physics Physique Fizika 1 (3Nov. 1964), pp. 195–200.
[10] Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Physical Review Letters 67.6 (Aug. 5, 1991), pp. 661–663.
[11] Peter W. Shor. “Scheme for reducing decoherence in quantum computer memory”. In: Physical Review A 52.4 (Oct. 1, 1995), R2493–R2496.
[12] A. M. Steane. “Error correcting codes in quantum theory”. In: Physical Review Letters 77.5 (July 29, 1996), pp. 793–797.
[13] Richard Jozsa and Noah Linden. “On the role of entanglement in quantum computational speed-up”. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459.2036 (Aug. 8, 2003), pp. 2011–2032.
[14] H.-J. Briegel et al. “Quantum repeaters: The role of imperfect local operations in quantum communication”. In: Physical Review Letters 81.26 (Dec. 28, 1998), pp. 5932–5935.
[15] Ma Hai-Qiang et al. “A random number generator based on quantum entangled photon pairs”. In: Chinese Physics Letters 21.10 (Oct. 2004), pp. 1961–1964.
[16] Tamas Vertesi, Stefano Pironio, and Nicolas Brunner. “Closing the detection loophole in Bell experiments using qudits”. In: Physical Review Letters 104.6 (Feb. 11, 2010), p. 060401.
[17] Mohamed Bourennane et al. “Quantum key distribution using multilevel encoding: security analysis”. In: Journal of Physics A: Mathematical and General 35.47 (Nov. 29, 2002), pp. 10065–10076.
[18] Helle Bechmann-Pasquinucci and Asher Peres. “Quantum cryptography with 3-state systems”. In: Physical Review Letters 85.15 (Oct. 9, 2000), pp. 3313–3316.
[19] Ke-jia Zhang et al. “A new n-party quantum secret sharing model based on multiparty entangled states”. In: Quantum Information Processing 18.3 (Mar. 2019), p. 81.
[20] Keith Shannon, Elias Towe, and Ozan K. Tonguz. On the use of quantum entanglement in secure communications: A Survey. 2020.
[21] S. Ghose, A. Kumar, and A. M. Hamel. “Multiparty quantum communication using multiqubit entanglement and teleportation”. In: Physics Research International 2014 (Aug. 11, 2014), pp. 1–8.
[22] Xiyuan Ma et al. “Multi-party quantum key distribution protocol with new Bell states encoding mode”. In: International Journal of Theoretical Physics 60.4 (Apr. 1, 2021), pp. 1328–1338.
[23] Clément Meignant. “Multipartite communications over quantum networks”. Theses. Sorbonne Université, Dec. 2021.
[24] Luigi Amico et al. “Entanglement in many-body systems”. In: Rev. Mod. Phys. 80 (2 May 2008), pp. 517–576.
[25] Markus Johansson et al. “Topological phases and multiqubit entanglement”. In: Physical Review A 85.3 (Mar. 12, 2012), p. 032112.
[26] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. “Local unitary transformation, longrange quantum entanglement, wave function renormalization, and topological order”. In: Physical Review B 82.15 (Oct. 2010).
[27] Pasquale Calabrese and John Cardy. “Entanglement entropy and quantum field theory”. In: Journal of Statistical Mechanics: Theory and Experiment 2004.6 (June 12, 2004), P06002.
[28] Matthew Headrick. Lectures on entanglement entropy in field theory and holography. July 18, 2019.
[29] A Sawicki, M Walter, and M Kuś. “When is a pure state of three qubits determined by its single-particle reduced density matrices?” In: Journal of Physics A: Mathematical and Theoretical 46.5 (Feb. 8, 2013), p. 055304.
[30] Martin Bodo Plenio and Shashank Virmani. “An introduction to entanglement measures”. In: Quantum Inf. Comput. 7 (2005), pp. 1–51.
[31] A. Einstein, B. Podolsky, and N. Rosen. “Can quantum-mechanical description of physical reality be considered complete?” In: Physical Review 47.10 (May 15, 1935). Publisher: American Physical Society, pp. 777–780.
[32] W. Dür, G. Vidal, and J. I. Cirac. “Three qubits can be entangled in two inequivalentways”. In: Physical Review A 62.6 (Nov. 14, 2000), p. 062314.
[33] Gonçalo M. Quinta and Rui André. “Classifying quantum entanglement through topological links”. In: Physical Review A 97.4 (Apr. 5, 2018), p. 042307.
[34] Frank Verstraete, Jeroen Dehaene, and Bart De Moor. “Normal forms and entanglement measures for multipartite quantum states”. In: Physical Review A 68.1 (July 15, 2003), p. 012103.
[35] Frédéric Holweck, Jean-Gabriel Luque, and Jean-Yves Thibon. “Entanglement of four qubit systems: A geometric atlas with polynomial compass I (the finite world)”. In: Journal of Mathematical Physics 55.1 (Jan. 2014), p. 012202.
[36] Jim Bryan, Zinovy Reichstein, and Mark Van Raamsdonk. “Existence of locally maximally entangled quantum states via geometric invariant theory”. In: Annales Henri Poincaré 19.8 (Aug. 2018), pp. 2491–2511.
[37] Oskar Słowik et al. “A link between symmetries of critical states and the structure of SLOCC classes in multipartite systems”. In: Quantum 4 (July 20, 2020), p. 300.
[38] Oskar Słowik, Adam Sawicki, and Tomasz Maciążek. “Designing locally maximally entangled quantum states with arbitrary local symmetries”. In: Quantum 5 (May 2021), p. 450.
[39] William Fulton and Joe Harris. Representation Theory. Vol. 129. Graduate Texts in Mathematics. New York, NY: Springer New York, 2004.
[40] Jim Bryan et al. “Locally maximally entangled states of multipart quantum systems”. In: Quantum 3 (Jan. 2019), p. 115.
[41] Felix Huber and Markus Grassl. “Quantum codes of maximal distance and highly entangled subspaces”. In: Quantum 4 (June 18, 2020), p. 284.
[42] Keiji Matsumoto and Masahito Hayashi. “Universal entanglement concentration”. In: Physical Review A 75.6 (June 29, 2007), p. 062338.
[43] G Sahasrabudhe, K V Dinesha, and C R Sarma. “Clebsch-Gordan coefficients for the permutation group”. In: Journal of Physics A: Mathematical and General 14.1 (Jan. 1, 1981), pp. 85–96.
[44] Salah Doma and Mohamed Hammad. “Classification, selection rules, and symmetry properties of the Clebsch-Gordan coefficients of symmetric group”. In: Journal of Mathematical Physics 53 (Mar. 2012), p. 033511.
[45] Mei-Juan Gao and Jin-Quan Chen. “The Clebsch-Gordan coefficients of permutation groups S(2)-S(6)”. In: Journal of Physics A: Mathematical and General 18.2 (Feb. 1985), p. 189.
[46] Alonso Botero and José Mejía. “Universal and distortion-free entanglement concentration of multiqubit quantum states in the W class”. In: Phys. Rev. A 98 (3 Sept. 2018), p. 032326.
[47] Jean-Gabriel Luque, Jean-Yves Thibon, and Frédéric Toumazet. “Unitary invariants of qubit systems”. In: Mathematical Structures in Computer Science 17.6 (2007), pp. 1133–1151.
[48] Michael Walter et al. “Entanglement polytopes: multiparticle entanglement from singleparticle information”. In: Science 340.6137 (June 7, 2013), pp. 1205–1208.
[49] Jean-Gabriel Luque and Jean-Yves Thibon. “Algebraic invariants of five qubits”. In: Journal of Physics A: Mathematical and General 39.2 (Dec. 2005), p. 371.
[50] F. Verstraete et al. “Four qubits can be entangled in nine different ways”. In: Physical Review A 65.5 (Apr. 25, 2002), p. 052112.
[51] Ryszard Horodecki et al. “Quantum entanglement”. In: Reviews of Modern Physics 81.2 (June 2009), pp. 865–942.
[52] Charles H. Bennett et al. “Exact and asymptotic measures of multipartite pure state entanglement”. In: Physical Review A 63.1 (Dec. 12, 2000), p. 012307.
[53] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum Information. Cambridge University Press, 2000.
[54] Eric Chitambar et al. “Everything you always wanted to know about LOCC (but were afraid to ask)”. In: Communications in Mathematical Physics 328.1 (May 2014), pp. 303– 326.
[55] K. Kraus et al. States, effects, and operations: Fundamental notions of quantum theory. Lecture Notes in Physics. Springer Berlin Heidelberg, 1983.
[56] Charles H. Bennett et al. “Concentrating partial entanglement by local operations”. In: Physical Review A 53.4 (Apr. 1, 1996), pp. 2046–2052.
[57] Scott Hill and William K. Wootters. “Entanglement of a pair of quantum bits”. In: Physical Review Letters 78.26 (June 30, 1997), pp. 5022–5025.
[58] Valerie Coffman, Joydip Kundu, and William K. Wootters. “Distributed entanglement”. In: Physical Review A 61.5 (Apr. 10, 2000), p. 052306.
[59] Alba Cervera-Lierta et al. “Multipartite entanglement in spin chains and the Hyperdeterminant”. In: Journal of Physics A: Mathematical and Theoretical 51.50 (Dec. 14, 2018), p. 505301.
[60] Ansh Mishra et al. Geometric genuine multipartite entanglement for four-qubit systems. Aug. 11, 2023.
[61] Meng-Li Guo et al. “Tetrahedron genuine entanglement measure of four-qubit systems”. In: Journal of Physics A: Mathematical and Theoretical 56.31 (Aug. 4, 2023), p. 315302.
[62] Artur Ekert and Peter L. Knight. “Entangled quantum systems and the Schmidt decomposition”. In: American Journal of Physics 63.5 (May 1, 1995), pp. 415–423.
[63] A. Acin et al. “Three-qubit pure-state canonical forms”. In: Journal of Physics A: Mathematical and General 34.35 (Sept. 7, 2001), pp. 6725–6739.
[64] B. Kraus. “Local unitary equivalence and entanglement of multipartite pure states”. In: Physical Review A 82.3 (Sept. 30, 2010), p. 032121.
[65] Frédéric Holweck. “On the projective geometry of entanglement and contextuality”. Habilitation à diriger des recherches. Université Bourgogne Franche-Comté, Sept. 2019.
[66] Gilad Gour and Nolan R. Wallach. “Necessary and sufficient conditions for local manipulation of multipartite pure quantum states”. In: New Journal of Physics 13.7 (July 11, 2011), p. 073013.
[67] Peter J. Olver. Classical invariant theory. 1st ed. Cambridge University Press, Jan. 13, 1999.
[68] Maximilian Zimmermann. “Towards a covariant classification of nilpotent four-qubit states”. PhD thesis. Imperial College London Department of Physics, 2014.
[69] L. Borsten et al. “Freudenthal triple classification of three-qubit entanglement”. In: Physical Review A 80.3 (Sept. 22, 2009), p. 032326.
[70] Oleg Chterental and Dragomir Ž. Djoković. “Normal Forms and Tensor Ranks of Pure States of Four Qubits”. In: arXiv: Quantum Physics (2006).
[71] Frédéric Holweck, Jean-Gabriel Luque, and Jean-Yves Thibon. “Entanglement of fourqubit systems: A geometric atlas with polynomial compass II (the tame world)”. In: Journal of Mathematical Physics 58.2 (Feb. 2017), p. 022201.
[72] J.Q. Chen, J. Ping, and F. Wang. Group representation theory for physicists. World Scientific, 2002.
[73] B.E. Sagan. The symmetric group: Representations, combinatorial algorithms, and symmetric functions. Graduate Texts in Mathematics. Springer New York, 2013.
[74] Judith M Alcock-Zeilinger. Lectures notes: The symmetric group, its representations, and combinatorics. universität tübingen, 2018.
[75] J.C. Baez and J.P. Muniain. Gauge fields, knots and gravity. Series On Knots And Everything. World Scientific Publishing Company, 1994.
[76] P. Woit. Quantum theory, groups and representations: An introduction. Springer International Publishing, 2017.
[77] Stefan Keppeler. Lecture notes: Group representations in physics. Universität Tübingen, Fachbereich Mathematik, 2017.
[78] Jaydeep Chipalkatti and Tagreed Mohammed. “Standard tableaux and Kronecker projections of Specht modules”. In: International Electronic Journal of Algebra 10.10 (2011), pp. 123–150.
[79] A.P. Balachandran and C.G. Trahern. Lectures on group theory for physicists. Monographs and textbooks in physical science. Bibliopolis, 1984.
[80] Harry Tamvakis. “The theory of Schur polynomials revisited”. In: L’Enseignement Mathematique 58.1 (2012), pp. 147–163.
[81] S. Wilson and I. Hubač. “On the representation matrices for the symmetric group adapted to electron-pair and electron-group wave functions using graphical methods of spin algebras”. In: International Journal of Quantum Chemistry 112.18 (2012), pp. 3098–3109.
[82] D.J. Griffiths. Introduction to quantum mechanics. Pearson international edition. Pearson Prentice Hall, 2005.
[83] Giovanni Costa and Gianluigi Fogli. Symmetries and group theory in particle physics: An introduction to space-time and internal symmetries. Vol. 823. Lecture Notes in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
[84] M. Keyl and R. F. Werner. “Estimating the spectrum of a density operator”. In: Physical Review A 64.5 (Oct. 15, 2001), p. 052311.
[85] Dave Bacon, Isaac L. Chuang, and Aram Wettroth Harrow. “The Quantum Schur Transform: I. Efficient Qudit Circuits”. In: arXiv: Quantum Physics (2005).
[86] Matthias Christandl and Graeme Mitchison. “The spectra of density operators and the Kronecker coefficients of the symmetric group”. In: Communications in Mathematical Physics 261.3 (Feb. 2006), pp. 789–797.
[87] Reinhard F. Werner. “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model”. In: Physical Review A 40.8 (Oct. 1, 1989), pp. 4277– 4281.
[88] Tilo Eggeling. “On multipartite symmetric states in Quantum Information Theory”. en. PhD thesis. Apr. 2003.
[89] Jinhyoung Lee and M. S. Kim. “Entanglement teleportation via Werner states”. In: Physical Review Letters 84.18 (May 1, 2000), pp. 4236–4239.
[90] Peter W. Shor, John A. Smolin, and Barbara M. Terhal. “Nonadditivity of bipartite distillable entanglement follows from conjecture on bound entangled Werner states”. In: Physical Review Letters 86.12 (Mar. 19, 2001), pp. 2681–2684.
[91] M. Mucha and T. Lulek. “Permutational symmetry of Clebsch-Gordan coefficients for the metacyclic groups”. In: Linear Algebra and its Applications 51 (June 1983), pp. 49–71.
[92] Lianrong Dai, Feng Pan, and J P Draayer. “Analytical expressions for some multiplicityfree isoscalar factors of Sf¤SfÀ”. In: J. Math. Phys. 43.12 (2002).
[93] Nengkun Yu. “Multipartite W -type state is determined by its single-particle reduced density matrices among all W -type states”. In: Physical Review A 87.5 (May 13, 2013), p. 052310.
[94] Michael Walter et al. “Entanglement polytopes: multiparticle entanglement from singleparticle information”. In: Science 340.6137 (June 7, 2013), pp. 1205–1208.
[95] Alexander A. Klyachko. “Quantum marginal problem and representations of the symmetric group”. In: arXiv: Quantum Physics (2004).
[96] A. Higuchi, A. Sudbery, and J. Szulc. “One-qubit reduced states of a pure many-qubit state: polygon inequalities”. In: Physical Review Letters 90.10 (Mar. 13, 2003), p. 107902.
[97] Y.-J. Han, Y.-S. Zhang, and G.-C. Guo. “Compatible conditions, entanglement, and invariants”. In: Physical Review A 70.4 (Oct. 14, 2004), p. 042309.
[98] Matthias Christandl, Aram W. Harrow, and Graeme Mitchison. “Nonzero Kronecker coefficients and what they tell us about spectra”. In: Communications in Mathematical Physics 270.3 (Jan. 31, 2007), pp. 575–585.
[99] Marc Hein et al. “Entanglement in graph states and its applications”. In: arXiv: Quantum Physics (2006).
[100] Amar Hadzihasanovic. “A diagrammatic axiomatisation for qubit entanglement”. In: 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (2015), pp. 573– 584.
[101] Boldizsár Poór et al. “Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus”. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). June 26, 2023, pp. 1–14.
[102] Kang Feng Ng. “Completeness of the ZW and ZX calculi”. PhD thesis. University of Oxford, UK, 2018.
[103] Géza Tóth and Otfried Gühne. “Entanglement detection in the stabilizer formalism”. In: Physical Review A 72.2 (Aug. 29, 2005), p. 022340.
[104] L. Lamata et al. “Inductive entanglement classification of four qubits under stochastic local operations and classical communication”. In: Physical Review A 75.2 (Feb. 2007).
[105] Mercedes H. Rosas. “The Kronecker product of Schur functions indexed by two-row shapes or Hook shapes”. In: Journal of Algebraic Combinatorics 14.2 (Sept. 1, 2001), pp. 153–173.
[106] Andreas Osterloh and Dragomir Z. Djokovic. “On polynomial invariants of several qubits”. In: Journal of Mathematical Physics 50.3 (Mar. 2009).
[107] Gael Sentí s et al. “Unsupervised classification of quantum data”. In: Physical Review X 9.4 (Nov. 2019).
[108] Bob Coecke. Lecture notes:Basic ZX-calculus for students and professionals. Mathematical Institute of Oxford University, 2023.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 216 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias - Física
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Física
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/229e6f83-4a36-4af7-b408-49d545ab6fed/download
https://repositorio.uniandes.edu.co/bitstreams/3c3fe35d-d073-41b0-9773-6f7f93fde708/download
https://repositorio.uniandes.edu.co/bitstreams/5e5fe229-1074-4fa0-806c-b3816d044091/download
https://repositorio.uniandes.edu.co/bitstreams/ae656372-ba89-4786-995f-a50e64621a0a/download
https://repositorio.uniandes.edu.co/bitstreams/6c4ac297-bee6-4c34-a0a9-0e5010655e23/download
https://repositorio.uniandes.edu.co/bitstreams/4a2f48cf-9c49-472b-ae22-0c21a3bdb254/download
https://repositorio.uniandes.edu.co/bitstreams/a6dd3d13-21db-4570-bcb1-8d10bee8bf9d/download
https://repositorio.uniandes.edu.co/bitstreams/b6ed133f-ec90-4da2-8002-5d6a51d91c93/download
bitstream.checksum.fl_str_mv 4b8ec06d9f0554658f2b48116d74dfc4
476c2a804d2b4958f9e446f7b6785fd8
0175ea4a2d4caec4bbcc37e300941108
ae9e573a68e7f92501b6913cc846c39f
e35f40c2c01b36d513bd4eff92c5b25e
bbbe36c0460a9ed5585f075299c5066f
adbc7f262c30b10404b1fe8abfd1ad22
0b37b97d2ccfc4ce6fa8c01618ed4449
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390320707076096
spelling Botero Mejía, Alonsovirtual::420-1González Olaya, Walther LeónardoBagan Capella, EmiliJiménez Rincón, José JuliánFacultad de Ciencias::Óptica Cuántica Experimental2024-02-14T13:30:45Z2024-02-14T13:30:45Z2024-01-31https://hdl.handle.net/1992/73974instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/In quantum information theory, maximally entangled states are essential for well-known protocols like quantum teleportation or quantum key distribution. While many of these protocols focus on bipartite entanglement, other applications, such as quantum error correction or multiparty quantum secret sharing, are based on multipartite entanglement, precisely, on the so-called locally maximally entangled (LME) multipartite states, where each part is maximally entangled with their complement. Such LME states appear naturally in the invariant subspaces of tensor products of irreducible representations of the symmetric group Sn, which we term Kronecker subspaces, given that their dimensions are the so-called Kronecker coefficients. A Kronecker subspace is a vector space of LME multipartite states that we call Kronecker states, which entangle Hilbert spaces of large dimensions. Although such states can in principle be obtained from the Clebsch-Gordan coefficients of the symmetric group, the known methods to compute these coefficients tend to be inefficient even for small values of n. An alternative quantum-information-based approach is inspired by entanglement concentration protocols, where Kronecker subspaces appear naturally in the isotypic decomposition of tensor products of copies of multipartite entangled states. In this context, closed expressions have been obtained for a limited class of Kronecker states, associated with states in the so-called multiqubit Wclass. Our aim in this thesis is to extend this approach to build bases for Kronecker subspaces associated with any multiqubit system. For developing our method we first propose a graphical construction that we call “W-state Stitching”, where multiqubit entangled states are obtained as tensor networks built from W states. Analyzing the isotypic decomposition of copies of the graph state, an analogous set of graph Kronecker states, made from W-Kronecker states, can be obtained. In particular, the graph states of generic multiqubit states can generate any Kronecker subspace completely. Using this method, we show how to build any Kronecker subspace corresponding to systems of three and four qubits. Independently of the Kronecker state construction, the W-stitching technique has proven to be a powerful method for multiqubit entanglement classification. We hope the results of this work motivate the study of applications of Kronecker states in quantum information, and serve as a starting point for a resource theory of multipartite entanglement, with bipartite states and tripartite W states as building blocks, where the asymptotic analysis is based on Kronecker states.Doctor en Ciencias - FísicaDoctoradoEnredamiento multipartito216 páginasapplication/pdfengUniversidad de los AndesDoctorado en Ciencias - FísicaFacultad de CienciasDepartamento de FísicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kronecker states: a powerful source of multipartite maximally entangled states in quantum informationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDEntanglementQuantum informationMultipartite entanglementKronecker statesFísica[1] Charles H. Bennett et al. “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”. In: Physical Review Letters 70.13 (Mar. 29, 1993), pp. 1895–1899.[2] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key distribution and coin tossing”. In: Theoretical Computer Science 560 (Dec. 2014), pp. 7–11.[3] Simon J. Devitt, Kae Nemoto, and William J. Munro. “Quantum error correction for beginners”. In: Reports on Progress in Physics 76.7 (July 1, 2013), p. 076001.[4] Charles H. Bennett and Stephen J. Wiesner. “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states”. In: Physical Review Letters 69.20 (Nov. 16, 1992), pp. 2881–2884.[5] Yue Yu. “Advancements in applications of quantum entanglement”. In: Journal of Physics: Conference Series 2012.1 (Sept. 1, 2021), p. 012113.[6] Michael Walter, David Gross, and Jens Eisert. Multi-partite entanglement. Feb. 5, 2017.[7] Isaac Chuang and Aram Harrow. Applications of the Schur basis to quantum algorithms: Fort Belvoir, VA: Defense Technical Information Center, Jan. 10, 2011.[8] E. Schrödinger. “Discussion of probability relations between separated systems”. In: Mathematical Proceedings of the Cambridge Philosophical Society 31.4 (Oct. 1935), pp. 555–[9] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Physics Physique Fizika 1 (3Nov. 1964), pp. 195–200.[10] Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Physical Review Letters 67.6 (Aug. 5, 1991), pp. 661–663.[11] Peter W. Shor. “Scheme for reducing decoherence in quantum computer memory”. In: Physical Review A 52.4 (Oct. 1, 1995), R2493–R2496.[12] A. M. Steane. “Error correcting codes in quantum theory”. In: Physical Review Letters 77.5 (July 29, 1996), pp. 793–797.[13] Richard Jozsa and Noah Linden. “On the role of entanglement in quantum computational speed-up”. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459.2036 (Aug. 8, 2003), pp. 2011–2032.[14] H.-J. Briegel et al. “Quantum repeaters: The role of imperfect local operations in quantum communication”. In: Physical Review Letters 81.26 (Dec. 28, 1998), pp. 5932–5935.[15] Ma Hai-Qiang et al. “A random number generator based on quantum entangled photon pairs”. In: Chinese Physics Letters 21.10 (Oct. 2004), pp. 1961–1964.[16] Tamas Vertesi, Stefano Pironio, and Nicolas Brunner. “Closing the detection loophole in Bell experiments using qudits”. In: Physical Review Letters 104.6 (Feb. 11, 2010), p. 060401.[17] Mohamed Bourennane et al. “Quantum key distribution using multilevel encoding: security analysis”. In: Journal of Physics A: Mathematical and General 35.47 (Nov. 29, 2002), pp. 10065–10076.[18] Helle Bechmann-Pasquinucci and Asher Peres. “Quantum cryptography with 3-state systems”. In: Physical Review Letters 85.15 (Oct. 9, 2000), pp. 3313–3316.[19] Ke-jia Zhang et al. “A new n-party quantum secret sharing model based on multiparty entangled states”. In: Quantum Information Processing 18.3 (Mar. 2019), p. 81.[20] Keith Shannon, Elias Towe, and Ozan K. Tonguz. On the use of quantum entanglement in secure communications: A Survey. 2020.[21] S. Ghose, A. Kumar, and A. M. Hamel. “Multiparty quantum communication using multiqubit entanglement and teleportation”. In: Physics Research International 2014 (Aug. 11, 2014), pp. 1–8.[22] Xiyuan Ma et al. “Multi-party quantum key distribution protocol with new Bell states encoding mode”. In: International Journal of Theoretical Physics 60.4 (Apr. 1, 2021), pp. 1328–1338.[23] Clément Meignant. “Multipartite communications over quantum networks”. Theses. Sorbonne Université, Dec. 2021.[24] Luigi Amico et al. “Entanglement in many-body systems”. In: Rev. Mod. Phys. 80 (2 May 2008), pp. 517–576.[25] Markus Johansson et al. “Topological phases and multiqubit entanglement”. In: Physical Review A 85.3 (Mar. 12, 2012), p. 032112.[26] Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen. “Local unitary transformation, longrange quantum entanglement, wave function renormalization, and topological order”. In: Physical Review B 82.15 (Oct. 2010).[27] Pasquale Calabrese and John Cardy. “Entanglement entropy and quantum field theory”. In: Journal of Statistical Mechanics: Theory and Experiment 2004.6 (June 12, 2004), P06002.[28] Matthew Headrick. Lectures on entanglement entropy in field theory and holography. July 18, 2019.[29] A Sawicki, M Walter, and M Kuś. “When is a pure state of three qubits determined by its single-particle reduced density matrices?” In: Journal of Physics A: Mathematical and Theoretical 46.5 (Feb. 8, 2013), p. 055304.[30] Martin Bodo Plenio and Shashank Virmani. “An introduction to entanglement measures”. In: Quantum Inf. Comput. 7 (2005), pp. 1–51.[31] A. Einstein, B. Podolsky, and N. Rosen. “Can quantum-mechanical description of physical reality be considered complete?” In: Physical Review 47.10 (May 15, 1935). Publisher: American Physical Society, pp. 777–780.[32] W. Dür, G. Vidal, and J. I. Cirac. “Three qubits can be entangled in two inequivalentways”. In: Physical Review A 62.6 (Nov. 14, 2000), p. 062314.[33] Gonçalo M. Quinta and Rui André. “Classifying quantum entanglement through topological links”. In: Physical Review A 97.4 (Apr. 5, 2018), p. 042307.[34] Frank Verstraete, Jeroen Dehaene, and Bart De Moor. “Normal forms and entanglement measures for multipartite quantum states”. In: Physical Review A 68.1 (July 15, 2003), p. 012103.[35] Frédéric Holweck, Jean-Gabriel Luque, and Jean-Yves Thibon. “Entanglement of four qubit systems: A geometric atlas with polynomial compass I (the finite world)”. In: Journal of Mathematical Physics 55.1 (Jan. 2014), p. 012202.[36] Jim Bryan, Zinovy Reichstein, and Mark Van Raamsdonk. “Existence of locally maximally entangled quantum states via geometric invariant theory”. In: Annales Henri Poincaré 19.8 (Aug. 2018), pp. 2491–2511.[37] Oskar Słowik et al. “A link between symmetries of critical states and the structure of SLOCC classes in multipartite systems”. In: Quantum 4 (July 20, 2020), p. 300.[38] Oskar Słowik, Adam Sawicki, and Tomasz Maciążek. “Designing locally maximally entangled quantum states with arbitrary local symmetries”. In: Quantum 5 (May 2021), p. 450.[39] William Fulton and Joe Harris. Representation Theory. Vol. 129. Graduate Texts in Mathematics. New York, NY: Springer New York, 2004.[40] Jim Bryan et al. “Locally maximally entangled states of multipart quantum systems”. In: Quantum 3 (Jan. 2019), p. 115.[41] Felix Huber and Markus Grassl. “Quantum codes of maximal distance and highly entangled subspaces”. In: Quantum 4 (June 18, 2020), p. 284.[42] Keiji Matsumoto and Masahito Hayashi. “Universal entanglement concentration”. In: Physical Review A 75.6 (June 29, 2007), p. 062338.[43] G Sahasrabudhe, K V Dinesha, and C R Sarma. “Clebsch-Gordan coefficients for the permutation group”. In: Journal of Physics A: Mathematical and General 14.1 (Jan. 1, 1981), pp. 85–96.[44] Salah Doma and Mohamed Hammad. “Classification, selection rules, and symmetry properties of the Clebsch-Gordan coefficients of symmetric group”. In: Journal of Mathematical Physics 53 (Mar. 2012), p. 033511.[45] Mei-Juan Gao and Jin-Quan Chen. “The Clebsch-Gordan coefficients of permutation groups S(2)-S(6)”. In: Journal of Physics A: Mathematical and General 18.2 (Feb. 1985), p. 189.[46] Alonso Botero and José Mejía. “Universal and distortion-free entanglement concentration of multiqubit quantum states in the W class”. In: Phys. Rev. A 98 (3 Sept. 2018), p. 032326.[47] Jean-Gabriel Luque, Jean-Yves Thibon, and Frédéric Toumazet. “Unitary invariants of qubit systems”. In: Mathematical Structures in Computer Science 17.6 (2007), pp. 1133–1151.[48] Michael Walter et al. “Entanglement polytopes: multiparticle entanglement from singleparticle information”. In: Science 340.6137 (June 7, 2013), pp. 1205–1208.[49] Jean-Gabriel Luque and Jean-Yves Thibon. “Algebraic invariants of five qubits”. In: Journal of Physics A: Mathematical and General 39.2 (Dec. 2005), p. 371.[50] F. Verstraete et al. “Four qubits can be entangled in nine different ways”. In: Physical Review A 65.5 (Apr. 25, 2002), p. 052112.[51] Ryszard Horodecki et al. “Quantum entanglement”. In: Reviews of Modern Physics 81.2 (June 2009), pp. 865–942.[52] Charles H. Bennett et al. “Exact and asymptotic measures of multipartite pure state entanglement”. In: Physical Review A 63.1 (Dec. 12, 2000), p. 012307.[53] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum Information. Cambridge University Press, 2000.[54] Eric Chitambar et al. “Everything you always wanted to know about LOCC (but were afraid to ask)”. In: Communications in Mathematical Physics 328.1 (May 2014), pp. 303– 326.[55] K. Kraus et al. States, effects, and operations: Fundamental notions of quantum theory. Lecture Notes in Physics. Springer Berlin Heidelberg, 1983.[56] Charles H. Bennett et al. “Concentrating partial entanglement by local operations”. In: Physical Review A 53.4 (Apr. 1, 1996), pp. 2046–2052.[57] Scott Hill and William K. Wootters. “Entanglement of a pair of quantum bits”. In: Physical Review Letters 78.26 (June 30, 1997), pp. 5022–5025.[58] Valerie Coffman, Joydip Kundu, and William K. Wootters. “Distributed entanglement”. In: Physical Review A 61.5 (Apr. 10, 2000), p. 052306.[59] Alba Cervera-Lierta et al. “Multipartite entanglement in spin chains and the Hyperdeterminant”. In: Journal of Physics A: Mathematical and Theoretical 51.50 (Dec. 14, 2018), p. 505301.[60] Ansh Mishra et al. Geometric genuine multipartite entanglement for four-qubit systems. Aug. 11, 2023.[61] Meng-Li Guo et al. “Tetrahedron genuine entanglement measure of four-qubit systems”. In: Journal of Physics A: Mathematical and Theoretical 56.31 (Aug. 4, 2023), p. 315302.[62] Artur Ekert and Peter L. Knight. “Entangled quantum systems and the Schmidt decomposition”. In: American Journal of Physics 63.5 (May 1, 1995), pp. 415–423.[63] A. Acin et al. “Three-qubit pure-state canonical forms”. In: Journal of Physics A: Mathematical and General 34.35 (Sept. 7, 2001), pp. 6725–6739.[64] B. Kraus. “Local unitary equivalence and entanglement of multipartite pure states”. In: Physical Review A 82.3 (Sept. 30, 2010), p. 032121.[65] Frédéric Holweck. “On the projective geometry of entanglement and contextuality”. Habilitation à diriger des recherches. Université Bourgogne Franche-Comté, Sept. 2019.[66] Gilad Gour and Nolan R. Wallach. “Necessary and sufficient conditions for local manipulation of multipartite pure quantum states”. In: New Journal of Physics 13.7 (July 11, 2011), p. 073013.[67] Peter J. Olver. Classical invariant theory. 1st ed. Cambridge University Press, Jan. 13, 1999.[68] Maximilian Zimmermann. “Towards a covariant classification of nilpotent four-qubit states”. PhD thesis. Imperial College London Department of Physics, 2014.[69] L. Borsten et al. “Freudenthal triple classification of three-qubit entanglement”. In: Physical Review A 80.3 (Sept. 22, 2009), p. 032326.[70] Oleg Chterental and Dragomir Ž. Djoković. “Normal Forms and Tensor Ranks of Pure States of Four Qubits”. In: arXiv: Quantum Physics (2006).[71] Frédéric Holweck, Jean-Gabriel Luque, and Jean-Yves Thibon. “Entanglement of fourqubit systems: A geometric atlas with polynomial compass II (the tame world)”. In: Journal of Mathematical Physics 58.2 (Feb. 2017), p. 022201.[72] J.Q. Chen, J. Ping, and F. Wang. Group representation theory for physicists. World Scientific, 2002.[73] B.E. Sagan. The symmetric group: Representations, combinatorial algorithms, and symmetric functions. Graduate Texts in Mathematics. Springer New York, 2013.[74] Judith M Alcock-Zeilinger. Lectures notes: The symmetric group, its representations, and combinatorics. universität tübingen, 2018.[75] J.C. Baez and J.P. Muniain. Gauge fields, knots and gravity. Series On Knots And Everything. World Scientific Publishing Company, 1994.[76] P. Woit. Quantum theory, groups and representations: An introduction. Springer International Publishing, 2017.[77] Stefan Keppeler. Lecture notes: Group representations in physics. Universität Tübingen, Fachbereich Mathematik, 2017.[78] Jaydeep Chipalkatti and Tagreed Mohammed. “Standard tableaux and Kronecker projections of Specht modules”. In: International Electronic Journal of Algebra 10.10 (2011), pp. 123–150.[79] A.P. Balachandran and C.G. Trahern. Lectures on group theory for physicists. Monographs and textbooks in physical science. Bibliopolis, 1984.[80] Harry Tamvakis. “The theory of Schur polynomials revisited”. In: L’Enseignement Mathematique 58.1 (2012), pp. 147–163.[81] S. Wilson and I. Hubač. “On the representation matrices for the symmetric group adapted to electron-pair and electron-group wave functions using graphical methods of spin algebras”. In: International Journal of Quantum Chemistry 112.18 (2012), pp. 3098–3109.[82] D.J. Griffiths. Introduction to quantum mechanics. Pearson international edition. Pearson Prentice Hall, 2005.[83] Giovanni Costa and Gianluigi Fogli. Symmetries and group theory in particle physics: An introduction to space-time and internal symmetries. Vol. 823. Lecture Notes in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.[84] M. Keyl and R. F. Werner. “Estimating the spectrum of a density operator”. In: Physical Review A 64.5 (Oct. 15, 2001), p. 052311.[85] Dave Bacon, Isaac L. Chuang, and Aram Wettroth Harrow. “The Quantum Schur Transform: I. Efficient Qudit Circuits”. In: arXiv: Quantum Physics (2005).[86] Matthias Christandl and Graeme Mitchison. “The spectra of density operators and the Kronecker coefficients of the symmetric group”. In: Communications in Mathematical Physics 261.3 (Feb. 2006), pp. 789–797.[87] Reinhard F. Werner. “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model”. In: Physical Review A 40.8 (Oct. 1, 1989), pp. 4277– 4281.[88] Tilo Eggeling. “On multipartite symmetric states in Quantum Information Theory”. en. PhD thesis. Apr. 2003.[89] Jinhyoung Lee and M. S. Kim. “Entanglement teleportation via Werner states”. In: Physical Review Letters 84.18 (May 1, 2000), pp. 4236–4239.[90] Peter W. Shor, John A. Smolin, and Barbara M. Terhal. “Nonadditivity of bipartite distillable entanglement follows from conjecture on bound entangled Werner states”. In: Physical Review Letters 86.12 (Mar. 19, 2001), pp. 2681–2684.[91] M. Mucha and T. Lulek. “Permutational symmetry of Clebsch-Gordan coefficients for the metacyclic groups”. In: Linear Algebra and its Applications 51 (June 1983), pp. 49–71.[92] Lianrong Dai, Feng Pan, and J P Draayer. “Analytical expressions for some multiplicityfree isoscalar factors of Sf¤SfÀ”. In: J. Math. Phys. 43.12 (2002).[93] Nengkun Yu. “Multipartite W -type state is determined by its single-particle reduced density matrices among all W -type states”. In: Physical Review A 87.5 (May 13, 2013), p. 052310.[94] Michael Walter et al. “Entanglement polytopes: multiparticle entanglement from singleparticle information”. In: Science 340.6137 (June 7, 2013), pp. 1205–1208.[95] Alexander A. Klyachko. “Quantum marginal problem and representations of the symmetric group”. In: arXiv: Quantum Physics (2004).[96] A. Higuchi, A. Sudbery, and J. Szulc. “One-qubit reduced states of a pure many-qubit state: polygon inequalities”. In: Physical Review Letters 90.10 (Mar. 13, 2003), p. 107902.[97] Y.-J. Han, Y.-S. Zhang, and G.-C. Guo. “Compatible conditions, entanglement, and invariants”. In: Physical Review A 70.4 (Oct. 14, 2004), p. 042309.[98] Matthias Christandl, Aram W. Harrow, and Graeme Mitchison. “Nonzero Kronecker coefficients and what they tell us about spectra”. In: Communications in Mathematical Physics 270.3 (Jan. 31, 2007), pp. 575–585.[99] Marc Hein et al. “Entanglement in graph states and its applications”. In: arXiv: Quantum Physics (2006).[100] Amar Hadzihasanovic. “A diagrammatic axiomatisation for qubit entanglement”. In: 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (2015), pp. 573– 584.[101] Boldizsár Poór et al. “Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus”. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). June 26, 2023, pp. 1–14.[102] Kang Feng Ng. “Completeness of the ZW and ZX calculi”. PhD thesis. University of Oxford, UK, 2018.[103] Géza Tóth and Otfried Gühne. “Entanglement detection in the stabilizer formalism”. In: Physical Review A 72.2 (Aug. 29, 2005), p. 022340.[104] L. Lamata et al. “Inductive entanglement classification of four qubits under stochastic local operations and classical communication”. In: Physical Review A 75.2 (Feb. 2007).[105] Mercedes H. Rosas. “The Kronecker product of Schur functions indexed by two-row shapes or Hook shapes”. In: Journal of Algebraic Combinatorics 14.2 (Sept. 1, 2001), pp. 153–173.[106] Andreas Osterloh and Dragomir Z. Djokovic. “On polynomial invariants of several qubits”. In: Journal of Mathematical Physics 50.3 (Mar. 2009).[107] Gael Sentí s et al. “Unsupervised classification of quantum data”. In: Physical Review X 9.4 (Nov. 2019).[108] Bob Coecke. Lecture notes:Basic ZX-calculus for students and professionals. Mathematical Institute of Oxford University, 2023.201627469Publicationhttps://scholar.google.es/citations?user=e06A7mUAAAAJvirtual::420-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155721virtual::420-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::420-1da9a3753-fd45-4cc7-8177-ee7bb8a61399virtual::420-1ORIGINALKronecker states.pdfKronecker states.pdfapplication/pdf65080123https://repositorio.uniandes.edu.co/bitstreams/229e6f83-4a36-4af7-b408-49d545ab6fed/download4b8ec06d9f0554658f2b48116d74dfc4MD51autorizacion tesis (1).pdfautorizacion tesis (1).pdfHIDEapplication/pdf413201https://repositorio.uniandes.edu.co/bitstreams/3c3fe35d-d073-41b0-9773-6f7f93fde708/download476c2a804d2b4958f9e446f7b6785fd8MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/5e5fe229-1074-4fa0-806c-b3816d044091/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/ae656372-ba89-4786-995f-a50e64621a0a/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTKronecker states.pdf.txtKronecker states.pdf.txtExtracted texttext/plain102493https://repositorio.uniandes.edu.co/bitstreams/6c4ac297-bee6-4c34-a0a9-0e5010655e23/downloade35f40c2c01b36d513bd4eff92c5b25eMD55autorizacion tesis (1).pdf.txtautorizacion tesis (1).pdf.txtExtracted texttext/plain2082https://repositorio.uniandes.edu.co/bitstreams/4a2f48cf-9c49-472b-ae22-0c21a3bdb254/downloadbbbe36c0460a9ed5585f075299c5066fMD57THUMBNAILKronecker states.pdf.jpgKronecker states.pdf.jpgGenerated Thumbnailimage/jpeg7573https://repositorio.uniandes.edu.co/bitstreams/a6dd3d13-21db-4570-bcb1-8d10bee8bf9d/downloadadbc7f262c30b10404b1fe8abfd1ad22MD56autorizacion tesis (1).pdf.jpgautorizacion tesis (1).pdf.jpgGenerated Thumbnailimage/jpeg10978https://repositorio.uniandes.edu.co/bitstreams/b6ed133f-ec90-4da2-8002-5d6a51d91c93/download0b37b97d2ccfc4ce6fa8c01618ed4449MD581992/73974oai:repositorio.uniandes.edu.co:1992/739742024-07-18 10:30:45.922http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K