Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)

Las actividades antropogénicas, que abarcan vastas operaciones agrícolas e industriales en todo el mundo, ejercen presiones sustanciales sobre el medio ambiente, culminando en profundos impactos ecológicos. Es preocupante, el problema creciente de la contaminación del suelo, una amenaza emergente qu...

Full description

Autores:
Vargas Beltrán, Alejandra
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74276
Acceso en línea:
https://hdl.handle.net/1992/74276
Palabra clave:
Fitorremediación
Biorremediación de suelos
Phaseolus vulgaris
Mercurio
Clorpirifos
Biochar
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_ae0b78e863836f80ec2cdae1f89f9039
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74276
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
title Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
spellingShingle Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
Fitorremediación
Biorremediación de suelos
Phaseolus vulgaris
Mercurio
Clorpirifos
Biochar
Ingeniería
title_short Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
title_full Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
title_fullStr Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
title_full_unstemmed Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
title_sort Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)
dc.creator.fl_str_mv Vargas Beltrán, Alejandra
dc.contributor.advisor.none.fl_str_mv Saldarriaga Elorza, Juan Fernando
López Correa, Julián Esteban
dc.contributor.author.none.fl_str_mv Vargas Beltrán, Alejandra
dc.subject.keyword.none.fl_str_mv Fitorremediación
Biorremediación de suelos
Phaseolus vulgaris
Mercurio
Clorpirifos
Biochar
topic Fitorremediación
Biorremediación de suelos
Phaseolus vulgaris
Mercurio
Clorpirifos
Biochar
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description Las actividades antropogénicas, que abarcan vastas operaciones agrícolas e industriales en todo el mundo, ejercen presiones sustanciales sobre el medio ambiente, culminando en profundos impactos ecológicos. Es preocupante, el problema creciente de la contaminación del suelo, una amenaza emergente que surge de la descarga desenfrenada de contaminantes en los ecosistemas terrestres. Entre estos contaminantes, los metales pesados como el mercurio (Hg) y los agroquímicos como el clorpirifos (CPF) destacan por su amplia presencia y efectos perjudiciales. Su acumulación en los suelos ha alcanzado ahora niveles críticos, poniendo en peligro la fertilidad del suelo y planteando consecuencias significativas tanto para los ecosistemas como para el bienestar humano. En respuesta a este desafío, el estudio actual se embarca en una investigación sobre el potencial de remediación de Phaseolus vulgaris L. (frijol común), explorando la eficacia de mejorar sus capacidades de remediación mediante la integración de enmiendas de biocarbón, compost y micorrizas. Este enfoque innovador de fitorremediación promete ser una solución sostenible para mitigar la contaminación del suelo por Hg y CPF, ofreciendo una estrategia multifacética que aborda tanto los contaminantes orgánicos como los inorgánicos. A través de experimentación y análisis meticulosos, el estudio tiene como objetivo investigar la interacción entre Phaseolus vulgaris L. y estas enmiendas de remediación, buscando proporcionar conocimientos valiosos que informen el desarrollo de estrategias efectivas de remediación del suelo, contribuyendo así a la preservación de la integridad ambiental y la protección de la salud.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-11T14:29:00Z
dc.date.available.none.fl_str_mv 2024-06-11T14:29:00Z
dc.date.issued.none.fl_str_mv 2024-06-10
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74276
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74276
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Acosta-Luque M, López J, Henao N, et al (2022) Remediation of Pb-contaminated soil using Biochar-Based Slow- Release P Fertilizer and biomonitoring employing bioindicators. Sci Rep. https://doi.org/10.21203/RS.3.RS-2289314/V1
Ahmad F, Saeed Q, Shah SMU, et al (2022) Environmental sustainability: Challenges and approaches. Natural Resources Conservation and Advances for Sustainability 243–270. https://doi.org/10.1016/B978-0-12-822976-7.00019-3
Ajermoun N, Aghris S, Ettadili F, et al (2022) Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. Environ Res 214:113794. https://doi.org/10.1016/J.ENVRES.2022.113794
Alamgir M (2016) The Effects of Soil Properties to the Extent of Soil Contamination with Metals. Environmental Remediation Technologies for Metal-Contaminated Soils 1–19. https://doi.org/10.1007/978-4-431-55759-3_1
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, Vol 9, Page 42 9:42. https://doi.org/10.3390/TOXICS9030042
ASTM (2019) Standard test methods for pH of soils
Azaizeh H, Castro PML, Kidd P (2011) Biodegradation of Organic Xenobiotic Pollutants in the Rhizosphere. 191–215. https://doi.org/10.1007/978-90-481-9852-8_9
Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: A biological perspective. Geoderma 147:159–171. https://doi.org/10.1016/J.GEODERMA.2008.08.007
Becerra-Agudelo E, López JE, Betancur-García H, et al (2022) Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon 8:e10221. https://doi.org/10.1016/J.HELIYON.2022.E10221
Bishop K, Shanley JB, Riscassi A, et al (2020) Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of The Total Environment 721:137647. https://doi.org/10.1016/J.SCITOTENV.2020.137647
Butnan S, Deenik JL, Toomsan B, et al (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237–238:105–116. https://doi.org/10.1016/J.GEODERMA.2014.08.010
Chambers HW, Meek EC, Chambers JE (2010) Chemistry of Organophosphorus Insecticides. Hayes’ Handbook of Pesticide Toxicology, Third Edition: Volume 1 1:1395–1398. https://doi.org/10.1016/B978-0-12-374367-1.00064-1
Chen J, Guo J, Li Z, et al (2022) Effects of an Arbuscular Mycorrhizal Fungus on the Growth of and Cadmium Uptake in Maize Grown on Polluted Wasteland, Farmland and Slopeland Soils in a Lead-Zinc Mining Area. Toxics 10:359. https://doi.org/10.3390/TOXICS10070359/S1
Chintala R, Mollinedo J, Schumacher TE, et al (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404. https://doi.org/10.1080/03650340.2013.789870
Cooke CA, Martínez-Cortizas A, Bindler R, Sexauer Gustin M (2020) Environmental archives of atmospheric Hg deposition – A review. Science of The Total Environment 709:134800. https://doi.org/10.1016/J.SCITOTENV.2019.134800
Cruz Y, Camargo G, Gallego JL, Saldarriaga JF (2019) A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays. Chem Eng Trans 74:1441–1446. https://doi.org/10.3303/CET1974241
Cruz Y, Villar S, Gutiérrez K, et al (2021) Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd2+) and mercury (Hg2+). Sci Rep 11:11257. https://doi.org/10.1038/s41598-021-90826-y
Dar MA, Kaushik G, Villarreal-Chiu JF (2019) Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. J Environ Manage 239:124–136. https://doi.org/10.1016/J.JENVMAN.2019.03.048
Deng S, Zhang X, Zhu Y, Zhuo R (2024) Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 72:108337. https://doi.org/10.1016/J.BIOTECHADV.2024.108337
Dhananjayan V, Jayakumar S, Ravichandran B (2020) Conventional Methods of Pesticide Application in Agricultural Field and Fate of the Pesticides in the Environment and Human Health. Controlled Release of Pesticides for Sustainable Agriculture 1–39. https://doi.org/10.1007/978-3-030-23396-9_1
Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127. https://doi.org/10.1016/S0167-8809(01)00246-8
Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15:3–11. https://doi.org/10.1016/S0929-1393(00)00067-6
Doula MK, Sarris A (2016) Soil Environment. Environment and Development 213–286. https://doi.org/10.1016/B978-0-444-62733-9.00004-6
Eaton DL, Daroff RB, Autrup H, et al (2008) Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 38:1–125. https://doi.org/10.1080/10408440802272158
Ecobichon DJ, Joy RM (1993) OrganophosphorusEsterInsecticides. Pesticides and Neurological Diseases 183–262. https://doi.org/10.1201/9781439805459-7
Fernandes C, Figueira E, Tauler R, Bedia C (2018) Exposure to chlorpyrifos induces morphometric, biochemical and lipidomic alterations in green beans (Phaseolus vulgaris). Ecotoxicol Environ Saf 156:25–33. https://doi.org/10.1016/J.ECOENV.2018.03.005
Foong SY, Ma NL, Lam SS, et al (2020) A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J Hazard Mater 400:123006. https://doi.org/10.1016/J.JHAZMAT.2020.123006
Garcia C, Nannipieri P, Hernandez T (2018) The Future of Soil Carbon. The Future of Soil Carbon: Its Conservation and Formation 239–267. https://doi.org/10.1016/B978-0-12-811687-6.00009-2
Gómez-Sagasti MT, Alkorta I, Becerril JM, et al (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut 223:3249–3262. https://doi.org/10.1007/S11270-012-1106-8/METRICS
Graeme KA, Pollack C V. (1998) Heavy Metal Toxicity, Part I: Arsenic and Mercury. J Emerg Med 16:45–56. https://doi.org/10.1016/S0736-4679(97)00241-2
Gworek B, Dmuchowski W, Baczewska-Dąbrowska AH (2020) Mercury in the terrestrial environment: a review. Environmental Sciences Europe 2020 32:1 32:1–19. https://doi.org/10.1186/S12302-020-00401-X
Hagemann N, Joseph S, Schmidt HP, et al (2017) Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications 2017 8:1 8:1–11. https://doi.org/10.1038/s41467-017-01123-0
Hasnain M, Munir N, Abideen Z, et al (2023) Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. Ecotoxicol Environ Saf 249:114408. https://doi.org/10.1016/J.ECOENV.2022.114408
Hassan S, Bhadwal SS, Khan M, et al (2024) Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. Chemosphere 356:141889. https://doi.org/10.1016/J.CHEMOSPHERE.2024.141889
He S, He Z, Yang X, et al (2015) Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy 134:135–225. https://doi.org/10.1016/BS.AGRON.2015.06.005
HEAL (2019) Chlorpyrifos residues in fruits | PAN Europe. In: Pesticide Action Network, Europe. https://www.pan-europe.info/resources/briefings/2019/06/chlorpyrifos-residues-fruits. Accessed 8 May 2024
Herrera K, Morales LF, López JE, et al (2023) Biochar production from tannery waste pyrolysis as a circular economy strategy for the removal of emerging compounds in polluted waters. Biomass Convers Biorefin 1:1–14. https://doi.org/10.1007/S13399-023-04261-2/FIGURES/5
Herrera K, Morales LF, Tarazona NA, et al (2022) Use of Biochar from Rice Husk Pyrolysis: Part A: Recovery as an Adsorbent in the Removal of Emerging Compounds. ACS Omega 7:7625–7637. https://doi.org/10.1021/ACSOMEGA.1C06147/ASSET/IMAGES/MEDIUM/AO1C06147_M005.GIF
Hossain MS, Rahman GKMM, Solaiman ARM, et al (2020) Estimating Electrical Conductivity for Soil Salinity Monitoring Using Various Soil-Water Ratios Depending on Soil Texture. Commun Soil Sci Plant Anal 51:635–644. https://doi.org/10.1080/00103624.2020.1729378
ISO (1994) Soil quality — Determination of the specific electrical conductivity
Jha AB, Misra AN, Sharma P (2017) Phytoremediation of Heavy Metal-Contaminated Soil Using Bioenergy Crops. Phytoremediation Potential of Bioenergy Plants 63–96. https://doi.org/10.1007/978-981-10-3084-0_3
John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13:269–291. https://doi.org/10.1007/S10311-015-0513-7/METRICS
Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385. https://doi.org/10.1016/J.JHAZMAT.2015.11.031
Kumar KSA, Karthika KS (2020) Abiotic and Biotic Factors Influencing Soil Health and/or Soil Degradation. 145–161. https://doi.org/10.1007/978-3-030-44364-1_9
Landmeyer JE (2012) Site Assessment and Characterization. Introduction to Phytoremediation of Contaminated Groundwater 131–154. https://doi.org/10.1007/978-94-007-1957-6_6
Lehmann J, Rillig MC, Thies J, et al (2011) Biochar effects on soil biota – A review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/J.SOILBIO.2011.04.022
Leudo AM, Cruz Y, Montoya-Ruiz C, et al (2020) Mercury Phytoremediation with Lolium perenne-Mycorrhizae in Contaminated Soils. Sustainability 12:3795. https://doi.org/10.3390/su12093795
López JE, Saldarriaga JF (2023a) Surface Co-application of Dolomitic Lime with Either Biochar or Compost Changes the Fractionation of Cd in the Soil and Its Uptake by Cacao Seedlings. J Soil Sci Plant Nutr 23:4926–4936. https://doi.org/10.1007/S42729-023-01469-Z/FIGURES/5
López JE, Saldarriaga JF (2023b) Surface Co-application of Dolomitic Lime with Either Biochar or Compost Changes the Fractionation of Cd in the Soil and Its Uptake by Cacao Seedlings. J Soil Sci Plant Nutr 1:1–11. https://doi.org/10.1007/S42729-023-01469-Z/FIGURES/5
López JE, Zapata D, Saldarriaga JF (2023) Evaluation of different composting systems on an industrial scale as a contribution to the circular economy and its impact on human health. J Air Waste Manage Assoc 73:679–694. https://doi.org/10.1080/10962247.2023.2235299
Lund ED (2015) Soil Electrical Conductivity. Soil Science: Step-by-Step Field Analysis 137–146. https://doi.org/10.2136/2008.SOILSCIENCESTEPBYSTEP.C11
Luo Y, Durenkamp M, De Nobili M, et al (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314. https://doi.org/10.1016/J.SOILBIO.2011.07.020
Masciandaro G, Macci C, Peruzzi E, et al (2013) Organic matter-microorganism-plant in soil bioremediation: A synergic approach. Rev Environ Sci Biotechnol 12:399–419. https://doi.org/10.1007/S11157-013-9313-3/METRICS
Morales LF, Herrera K, López JE, Saldarriaga JF (2021) Use of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes. Heliyon 7:e08423. https://doi.org/10.1016/J.HELIYON.2021.E08423
Muñoz Romero JH, Sepúlveda Cadavid CA, Cortés N, et al (2019) Inactivation of Fusarium oxysporum Conidia in Soil with Gaseous Ozone – Preliminary Studies. https://doi-org.ezproxy.uniandes.edu.co/101080/0191951220191608810 42:36–42. https://doi.org/10.1080/01919512.2019.1608810
Nandi NK, Vyas A, Akhtar MJ, Kumar B (2022) The growing concern of chlorpyrifos exposures on human and environmental health. Pestic Biochem Physiol 185:105138. https://doi.org/10.1016/J.PESTBP.2022.105138
Nanjundappa A, Bagyaraj DJ, Saxena AK, et al (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. In soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:1–10. https://doi.org/10.1186/S40694-019-0086-5/TABLES/3
Navarro L, Camacho R, López JE, Saldarriaga JF (2021) Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon 7:e08301. https://doi.org/10.1016/J.HELIYON.2021.E08301
Nieder R, Benbi DK, Reichl FX (2018) Soil components and human health. Soil Components and Human Health 1–886. https://doi.org/10.1007/978-94-024-1222-2/COVER
O’Brien PL, DeSutter TM, Casey FXM, et al (2017) Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—a Review of Current Remediation Techniques. Curr Pollut Rep 3:192–205. https://doi.org/10.1007/S40726-017-0063-7/METRICS
Pais I, Jones JB (1997) The handbook of trace elements. St. Lucie Press
Park JD, Zheng W (2012) Human Exposure and Health Effects of Inorganic and Elemental Mercury. Journal of Preventive Medicine and Public Health 45:344. https://doi.org/10.3961/JPMPH.2012.45.6.344
Parween T, Jan S, Mahmooduzzafar, Fatma T (2012) Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. International Journal of Environmental Science and Technology 9:605–612. https://doi.org/10.1007/S13762-012-0095-X/FIGURES/1
Parween T, Jan S, Mahmooduzzafar, Fatma T (2011) Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol Plant 33:2321–2328. https://doi.org/10.1007/S11738-011-0772-2/TABLES/5
Priya AK, Muruganandam M, Ali SS, Kornaros M (2023) Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics 2023, Vol 11, Page 422 11:422. https://doi.org/10.3390/TOXICS11050422
Restrepo-Sánchez NE, Acevedo-Betancourth L, Henao-Murillo B, Peláez-Jaramillo C (2015) Remediation effect of compost on soluble mercury transfer in a crop of Phaseolus vulgaris. Journal of Environmental Sciences 31:61–67. https://doi.org/10.1016/J.JES.2014.09.038
Rodríguez F, Montoya-Ruiz C, Estiati I, Saldarriaga JF (2020) Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process. ACS Omega 5:24389–24402. https://doi.org/10.1021/ACSOMEGA.0C02768/ASSET/IMAGES/LARGE/AO0C02768_0010.JPEG
Rodríguez-Fernández MC, Alonso JD, Montero C, Saldarriaga JF (2020) Study of the Effects of the Addition of Fly Ash from Carwash Sludge in Lime and Cement Pastes. Sustainability 2020, Vol 12, Page 6451 12:6451. https://doi.org/10.3390/SU12166451
Saha J, Selladurai R, Coumar M, et al (2017) Soil Pollution - An Emerging Threat to Agriculture. 10:386. https://doi.org/10.1007/978-981-10-4274-4
Saldarriaga JF, López JE, Díaz-García L, Montoya-Ruiz C (2023) Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. Environmental Science and Pollution Research 30:49498–49511. https://doi.org/10.1007/S11356-023-25501-Y/METRICS
Sarwar N, Imran M, Shaheen MR, et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/J.CHEMOSPHERE.2016.12.116
Saunders M, Magnanti BL, Correia Carreira S, et al (2012) Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy. Environ Health 11:1–11. https://doi.org/10.1186/1476-069X-11-S1-S5/FIGURES/4
Schoenholtz SH, Miegroet H Van, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manage 138:335–356. https://doi.org/10.1016/S0378-1127(00)00423-0
Serrano MF, López JE, Henao N, Saldarriaga JF (2023a) Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS Omega. https://doi.org/10.1021/ACSOMEGA.3C07433/ASSET/IMAGES/LARGE/AO3C07433_0012.JPEG
Serrano MF, López JE, Saldarriaga JF (2023b) Use of activated rice husk biochar for the removal of metals and microorganisms from treated leachates from landfills. J Mater Cycles Waste Manag 1–11. https://doi.org/10.1007/S10163-023-01762-0/FIGURES/5
Singh H, Northup BK, Rice CW, Prasad PVV (2022) Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4:1–17. https://doi.org/10.1007/S42773-022-00138-1/FIGURES/7
Vangronsveld J, Herzig R, Weyens N, et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research 2009 16:7 16:765–794. https://doi.org/10.1007/S11356-009-0213-6
Wang B, Lehmann J, Hanley K, et al (2015) Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere 138:120–126. https://doi.org/10.1016/J.CHEMOSPHERE.2015.05.062
Wenzel WW (2008) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 2008 321:1 321:385–408. https://doi.org/10.1007/S11104-008-9686-1
WHO WHO (2020) 10 chemicals of public health concern. https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern. Accessed 8 May 2024
Yeganeh M, Afyuni M, Khoshgoftarmanesh AH, et al (2013) Mapping of human health risks arising from soil nickel and mercury contamination. J Hazard Mater 244–245:225–239. https://doi.org/10.1016/J.JHAZMAT.2012.11.040
Zhang W, Zhen G, Chen L, et al (2017) Economic evaluation of health benefits of mercury emission controls for China and the neighboring countries in East Asia. Energy Policy 106:579–587. https://doi.org/10.1016/J.ENPOL.2017.04.010
Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K (2019) Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review. Water Air Soil Pollut 230:1–9. https://doi.org/10.1007/S11270-019-4221-Y/TABLES/3
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 26 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Civil y Ambiental
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/beece70b-99a0-4ac3-a6c1-61482e08f81a/download
https://repositorio.uniandes.edu.co/bitstreams/b372f2bf-591d-4a73-b0d8-e91f0e5bde2b/download
https://repositorio.uniandes.edu.co/bitstreams/30015316-58e4-49da-9783-67906d00d03f/download
https://repositorio.uniandes.edu.co/bitstreams/4586a270-cf5e-4c69-ac9b-4b0a0f1cff69/download
https://repositorio.uniandes.edu.co/bitstreams/25f4357f-7b33-4b88-a225-d83bcaa6d9a9/download
https://repositorio.uniandes.edu.co/bitstreams/51b824c5-d94c-470c-af4e-370427d324cc/download
https://repositorio.uniandes.edu.co/bitstreams/9a5997c8-8187-4859-9a02-7b309116d0f7/download
https://repositorio.uniandes.edu.co/bitstreams/9631914e-3a36-494c-86d5-731d173200d5/download
bitstream.checksum.fl_str_mv f456a5079fed82337a499d0ed164202c
7f49de3a60bac884353740072ed4cfb3
ae9e573a68e7f92501b6913cc846c39f
4460e5956bc1d1639be9ae6146a50347
e1c9675ce9513d7b691b843541cba37a
b76b9303b5fcbd411ecf72effeb54bb3
a09e64baa20b6d75dd0146bae66187d1
a95392587a162ad34dae81a4a5fa5920
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390515438125056
spelling Saldarriaga Elorza, Juan Fernandovirtual::18120-1López Correa, Julián EstebanVargas Beltrán, Alejandra2024-06-11T14:29:00Z2024-06-11T14:29:00Z2024-06-10https://hdl.handle.net/1992/74276instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Las actividades antropogénicas, que abarcan vastas operaciones agrícolas e industriales en todo el mundo, ejercen presiones sustanciales sobre el medio ambiente, culminando en profundos impactos ecológicos. Es preocupante, el problema creciente de la contaminación del suelo, una amenaza emergente que surge de la descarga desenfrenada de contaminantes en los ecosistemas terrestres. Entre estos contaminantes, los metales pesados como el mercurio (Hg) y los agroquímicos como el clorpirifos (CPF) destacan por su amplia presencia y efectos perjudiciales. Su acumulación en los suelos ha alcanzado ahora niveles críticos, poniendo en peligro la fertilidad del suelo y planteando consecuencias significativas tanto para los ecosistemas como para el bienestar humano. En respuesta a este desafío, el estudio actual se embarca en una investigación sobre el potencial de remediación de Phaseolus vulgaris L. (frijol común), explorando la eficacia de mejorar sus capacidades de remediación mediante la integración de enmiendas de biocarbón, compost y micorrizas. Este enfoque innovador de fitorremediación promete ser una solución sostenible para mitigar la contaminación del suelo por Hg y CPF, ofreciendo una estrategia multifacética que aborda tanto los contaminantes orgánicos como los inorgánicos. A través de experimentación y análisis meticulosos, el estudio tiene como objetivo investigar la interacción entre Phaseolus vulgaris L. y estas enmiendas de remediación, buscando proporcionar conocimientos valiosos que informen el desarrollo de estrategias efectivas de remediación del suelo, contribuyendo así a la preservación de la integridad ambiental y la protección de la salud.Anthropogenic activities, encompassing vast agricultural and industrial operations across the globe, exert substantial pressures on the environment, culminating in profound ecological impacts. Particularly concerning is the escalating issue of soil pollution, an emerging threat arising from the discharge of pollutants into terrestrial ecosystems. Among these pollutants, heavy metals like mercury (Hg) and agrochemicals such as chlorpyrifos (CPF) stand out for their widespread presence and detrimental effects. Their accumulation in soils has now reached critical levels, jeopardizing soil fertility and posing significant consequences for both ecosystems and human well-being. In response to this pressing challenge, the current study embarks on an investigation into the remedial potential of Phaseolus vulgaris L. (common bean), exploring the efficacy of enhancing their remediation capabilities through the integration of biochar, compost, and mycorrhizae amendments. This innovative approach to phytoremediation holds promise as a sustainable solution for mitigating soil contamination by Hg and CPF, offering a multifaceted strategy that addresses both organic and inorganic pollutants. Through meticulous experimentation and analysis, the study aims explore the interaction between Phaseolus vulgaris L. and these remediation amendments, seeking to provide valuable insights that inform the development of effective soil remediation strategies, thereby contributing to the preservation of environmental integrity and human health.Pregrado26 páginasapplication/pdfengUniversidad de los AndesIngeniería AmbientalFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Phytoremediation of Hg- and Chlorpyrifos-contaminated soils using Phaseolus vulgaris L assisted by different combinations of amendments (biochar, compost, and mycorrhizae)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPFitorremediaciónBiorremediación de suelosPhaseolus vulgarisMercurioClorpirifosBiocharIngenieríaAcosta-Luque M, López J, Henao N, et al (2022) Remediation of Pb-contaminated soil using Biochar-Based Slow- Release P Fertilizer and biomonitoring employing bioindicators. Sci Rep. https://doi.org/10.21203/RS.3.RS-2289314/V1Ahmad F, Saeed Q, Shah SMU, et al (2022) Environmental sustainability: Challenges and approaches. Natural Resources Conservation and Advances for Sustainability 243–270. https://doi.org/10.1016/B978-0-12-822976-7.00019-3Ajermoun N, Aghris S, Ettadili F, et al (2022) Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. Environ Res 214:113794. https://doi.org/10.1016/J.ENVRES.2022.113794Alamgir M (2016) The Effects of Soil Properties to the Extent of Soil Contamination with Metals. Environmental Remediation Technologies for Metal-Contaminated Soils 1–19. https://doi.org/10.1007/978-4-431-55759-3_1Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, Vol 9, Page 42 9:42. https://doi.org/10.3390/TOXICS9030042ASTM (2019) Standard test methods for pH of soilsAzaizeh H, Castro PML, Kidd P (2011) Biodegradation of Organic Xenobiotic Pollutants in the Rhizosphere. 191–215. https://doi.org/10.1007/978-90-481-9852-8_9Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: A biological perspective. Geoderma 147:159–171. https://doi.org/10.1016/J.GEODERMA.2008.08.007Becerra-Agudelo E, López JE, Betancur-García H, et al (2022) Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon 8:e10221. https://doi.org/10.1016/J.HELIYON.2022.E10221Bishop K, Shanley JB, Riscassi A, et al (2020) Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of The Total Environment 721:137647. https://doi.org/10.1016/J.SCITOTENV.2020.137647Butnan S, Deenik JL, Toomsan B, et al (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237–238:105–116. https://doi.org/10.1016/J.GEODERMA.2014.08.010Chambers HW, Meek EC, Chambers JE (2010) Chemistry of Organophosphorus Insecticides. Hayes’ Handbook of Pesticide Toxicology, Third Edition: Volume 1 1:1395–1398. https://doi.org/10.1016/B978-0-12-374367-1.00064-1Chen J, Guo J, Li Z, et al (2022) Effects of an Arbuscular Mycorrhizal Fungus on the Growth of and Cadmium Uptake in Maize Grown on Polluted Wasteland, Farmland and Slopeland Soils in a Lead-Zinc Mining Area. Toxics 10:359. https://doi.org/10.3390/TOXICS10070359/S1Chintala R, Mollinedo J, Schumacher TE, et al (2014) Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci 60:393–404. https://doi.org/10.1080/03650340.2013.789870Cooke CA, Martínez-Cortizas A, Bindler R, Sexauer Gustin M (2020) Environmental archives of atmospheric Hg deposition – A review. Science of The Total Environment 709:134800. https://doi.org/10.1016/J.SCITOTENV.2019.134800Cruz Y, Camargo G, Gallego JL, Saldarriaga JF (2019) A Kinetic Modelling of the Growth Rate of Lolium perenne for Phytotoxicity Bioassays. Chem Eng Trans 74:1441–1446. https://doi.org/10.3303/CET1974241Cruz Y, Villar S, Gutiérrez K, et al (2021) Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd2+) and mercury (Hg2+). Sci Rep 11:11257. https://doi.org/10.1038/s41598-021-90826-yDar MA, Kaushik G, Villarreal-Chiu JF (2019) Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. J Environ Manage 239:124–136. https://doi.org/10.1016/J.JENVMAN.2019.03.048Deng S, Zhang X, Zhu Y, Zhuo R (2024) Recent advances in phyto-combined remediation of heavy metal pollution in soil. Biotechnol Adv 72:108337. https://doi.org/10.1016/J.BIOTECHADV.2024.108337Dhananjayan V, Jayakumar S, Ravichandran B (2020) Conventional Methods of Pesticide Application in Agricultural Field and Fate of the Pesticides in the Environment and Human Health. Controlled Release of Pesticides for Sustainable Agriculture 1–39. https://doi.org/10.1007/978-3-030-23396-9_1Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127. https://doi.org/10.1016/S0167-8809(01)00246-8Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15:3–11. https://doi.org/10.1016/S0929-1393(00)00067-6Doula MK, Sarris A (2016) Soil Environment. Environment and Development 213–286. https://doi.org/10.1016/B978-0-444-62733-9.00004-6Eaton DL, Daroff RB, Autrup H, et al (2008) Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit Rev Toxicol 38:1–125. https://doi.org/10.1080/10408440802272158Ecobichon DJ, Joy RM (1993) OrganophosphorusEsterInsecticides. Pesticides and Neurological Diseases 183–262. https://doi.org/10.1201/9781439805459-7Fernandes C, Figueira E, Tauler R, Bedia C (2018) Exposure to chlorpyrifos induces morphometric, biochemical and lipidomic alterations in green beans (Phaseolus vulgaris). Ecotoxicol Environ Saf 156:25–33. https://doi.org/10.1016/J.ECOENV.2018.03.005Foong SY, Ma NL, Lam SS, et al (2020) A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J Hazard Mater 400:123006. https://doi.org/10.1016/J.JHAZMAT.2020.123006Garcia C, Nannipieri P, Hernandez T (2018) The Future of Soil Carbon. The Future of Soil Carbon: Its Conservation and Formation 239–267. https://doi.org/10.1016/B978-0-12-811687-6.00009-2Gómez-Sagasti MT, Alkorta I, Becerril JM, et al (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut 223:3249–3262. https://doi.org/10.1007/S11270-012-1106-8/METRICSGraeme KA, Pollack C V. (1998) Heavy Metal Toxicity, Part I: Arsenic and Mercury. J Emerg Med 16:45–56. https://doi.org/10.1016/S0736-4679(97)00241-2Gworek B, Dmuchowski W, Baczewska-Dąbrowska AH (2020) Mercury in the terrestrial environment: a review. Environmental Sciences Europe 2020 32:1 32:1–19. https://doi.org/10.1186/S12302-020-00401-XHagemann N, Joseph S, Schmidt HP, et al (2017) Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications 2017 8:1 8:1–11. https://doi.org/10.1038/s41467-017-01123-0Hasnain M, Munir N, Abideen Z, et al (2023) Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review. Ecotoxicol Environ Saf 249:114408. https://doi.org/10.1016/J.ECOENV.2022.114408Hassan S, Bhadwal SS, Khan M, et al (2024) Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. Chemosphere 356:141889. https://doi.org/10.1016/J.CHEMOSPHERE.2024.141889He S, He Z, Yang X, et al (2015) Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy 134:135–225. https://doi.org/10.1016/BS.AGRON.2015.06.005HEAL (2019) Chlorpyrifos residues in fruits | PAN Europe. In: Pesticide Action Network, Europe. https://www.pan-europe.info/resources/briefings/2019/06/chlorpyrifos-residues-fruits. Accessed 8 May 2024Herrera K, Morales LF, López JE, et al (2023) Biochar production from tannery waste pyrolysis as a circular economy strategy for the removal of emerging compounds in polluted waters. Biomass Convers Biorefin 1:1–14. https://doi.org/10.1007/S13399-023-04261-2/FIGURES/5Herrera K, Morales LF, Tarazona NA, et al (2022) Use of Biochar from Rice Husk Pyrolysis: Part A: Recovery as an Adsorbent in the Removal of Emerging Compounds. ACS Omega 7:7625–7637. https://doi.org/10.1021/ACSOMEGA.1C06147/ASSET/IMAGES/MEDIUM/AO1C06147_M005.GIFHossain MS, Rahman GKMM, Solaiman ARM, et al (2020) Estimating Electrical Conductivity for Soil Salinity Monitoring Using Various Soil-Water Ratios Depending on Soil Texture. Commun Soil Sci Plant Anal 51:635–644. https://doi.org/10.1080/00103624.2020.1729378ISO (1994) Soil quality — Determination of the specific electrical conductivityJha AB, Misra AN, Sharma P (2017) Phytoremediation of Heavy Metal-Contaminated Soil Using Bioenergy Crops. Phytoremediation Potential of Bioenergy Plants 63–96. https://doi.org/10.1007/978-981-10-3084-0_3John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13:269–291. https://doi.org/10.1007/S10311-015-0513-7/METRICSKim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385. https://doi.org/10.1016/J.JHAZMAT.2015.11.031Kumar KSA, Karthika KS (2020) Abiotic and Biotic Factors Influencing Soil Health and/or Soil Degradation. 145–161. https://doi.org/10.1007/978-3-030-44364-1_9Landmeyer JE (2012) Site Assessment and Characterization. Introduction to Phytoremediation of Contaminated Groundwater 131–154. https://doi.org/10.1007/978-94-007-1957-6_6Lehmann J, Rillig MC, Thies J, et al (2011) Biochar effects on soil biota – A review. Soil Biol Biochem 43:1812–1836. https://doi.org/10.1016/J.SOILBIO.2011.04.022Leudo AM, Cruz Y, Montoya-Ruiz C, et al (2020) Mercury Phytoremediation with Lolium perenne-Mycorrhizae in Contaminated Soils. Sustainability 12:3795. https://doi.org/10.3390/su12093795López JE, Saldarriaga JF (2023a) Surface Co-application of Dolomitic Lime with Either Biochar or Compost Changes the Fractionation of Cd in the Soil and Its Uptake by Cacao Seedlings. J Soil Sci Plant Nutr 23:4926–4936. https://doi.org/10.1007/S42729-023-01469-Z/FIGURES/5López JE, Saldarriaga JF (2023b) Surface Co-application of Dolomitic Lime with Either Biochar or Compost Changes the Fractionation of Cd in the Soil and Its Uptake by Cacao Seedlings. J Soil Sci Plant Nutr 1:1–11. https://doi.org/10.1007/S42729-023-01469-Z/FIGURES/5López JE, Zapata D, Saldarriaga JF (2023) Evaluation of different composting systems on an industrial scale as a contribution to the circular economy and its impact on human health. J Air Waste Manage Assoc 73:679–694. https://doi.org/10.1080/10962247.2023.2235299Lund ED (2015) Soil Electrical Conductivity. Soil Science: Step-by-Step Field Analysis 137–146. https://doi.org/10.2136/2008.SOILSCIENCESTEPBYSTEP.C11Luo Y, Durenkamp M, De Nobili M, et al (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314. https://doi.org/10.1016/J.SOILBIO.2011.07.020Masciandaro G, Macci C, Peruzzi E, et al (2013) Organic matter-microorganism-plant in soil bioremediation: A synergic approach. Rev Environ Sci Biotechnol 12:399–419. https://doi.org/10.1007/S11157-013-9313-3/METRICSMorales LF, Herrera K, López JE, Saldarriaga JF (2021) Use of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes. Heliyon 7:e08423. https://doi.org/10.1016/J.HELIYON.2021.E08423Muñoz Romero JH, Sepúlveda Cadavid CA, Cortés N, et al (2019) Inactivation of Fusarium oxysporum Conidia in Soil with Gaseous Ozone – Preliminary Studies. https://doi-org.ezproxy.uniandes.edu.co/101080/0191951220191608810 42:36–42. https://doi.org/10.1080/01919512.2019.1608810Nandi NK, Vyas A, Akhtar MJ, Kumar B (2022) The growing concern of chlorpyrifos exposures on human and environmental health. Pestic Biochem Physiol 185:105138. https://doi.org/10.1016/J.PESTBP.2022.105138Nanjundappa A, Bagyaraj DJ, Saxena AK, et al (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. In soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:1–10. https://doi.org/10.1186/S40694-019-0086-5/TABLES/3Navarro L, Camacho R, López JE, Saldarriaga JF (2021) Assessment of the potential risk of leaching pesticides in agricultural soils: study case Tibasosa, Boyacá, Colombia. Heliyon 7:e08301. https://doi.org/10.1016/J.HELIYON.2021.E08301Nieder R, Benbi DK, Reichl FX (2018) Soil components and human health. Soil Components and Human Health 1–886. https://doi.org/10.1007/978-94-024-1222-2/COVERO’Brien PL, DeSutter TM, Casey FXM, et al (2017) Evaluation of Soil Function Following Remediation of Petroleum Hydrocarbons—a Review of Current Remediation Techniques. Curr Pollut Rep 3:192–205. https://doi.org/10.1007/S40726-017-0063-7/METRICSPais I, Jones JB (1997) The handbook of trace elements. St. Lucie PressPark JD, Zheng W (2012) Human Exposure and Health Effects of Inorganic and Elemental Mercury. Journal of Preventive Medicine and Public Health 45:344. https://doi.org/10.3961/JPMPH.2012.45.6.344Parween T, Jan S, Mahmooduzzafar, Fatma T (2012) Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. International Journal of Environmental Science and Technology 9:605–612. https://doi.org/10.1007/S13762-012-0095-X/FIGURES/1Parween T, Jan S, Mahmooduzzafar, Fatma T (2011) Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol Plant 33:2321–2328. https://doi.org/10.1007/S11738-011-0772-2/TABLES/5Priya AK, Muruganandam M, Ali SS, Kornaros M (2023) Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics 2023, Vol 11, Page 422 11:422. https://doi.org/10.3390/TOXICS11050422Restrepo-Sánchez NE, Acevedo-Betancourth L, Henao-Murillo B, Peláez-Jaramillo C (2015) Remediation effect of compost on soluble mercury transfer in a crop of Phaseolus vulgaris. Journal of Environmental Sciences 31:61–67. https://doi.org/10.1016/J.JES.2014.09.038Rodríguez F, Montoya-Ruiz C, Estiati I, Saldarriaga JF (2020) Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process. ACS Omega 5:24389–24402. https://doi.org/10.1021/ACSOMEGA.0C02768/ASSET/IMAGES/LARGE/AO0C02768_0010.JPEGRodríguez-Fernández MC, Alonso JD, Montero C, Saldarriaga JF (2020) Study of the Effects of the Addition of Fly Ash from Carwash Sludge in Lime and Cement Pastes. Sustainability 2020, Vol 12, Page 6451 12:6451. https://doi.org/10.3390/SU12166451Saha J, Selladurai R, Coumar M, et al (2017) Soil Pollution - An Emerging Threat to Agriculture. 10:386. https://doi.org/10.1007/978-981-10-4274-4Saldarriaga JF, López JE, Díaz-García L, Montoya-Ruiz C (2023) Changes in Lolium perenne L. rhizosphere microbiome during phytoremediation of Cd- and Hg-contaminated soils. Environmental Science and Pollution Research 30:49498–49511. https://doi.org/10.1007/S11356-023-25501-Y/METRICSSarwar N, Imran M, Shaheen MR, et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–721. https://doi.org/10.1016/J.CHEMOSPHERE.2016.12.116Saunders M, Magnanti BL, Correia Carreira S, et al (2012) Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy. Environ Health 11:1–11. https://doi.org/10.1186/1476-069X-11-S1-S5/FIGURES/4Schoenholtz SH, Miegroet H Van, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manage 138:335–356. https://doi.org/10.1016/S0378-1127(00)00423-0Serrano MF, López JE, Henao N, Saldarriaga JF (2023a) Phosphorus-Loaded Biochar-Assisted Phytoremediation to Immobilize Cadmium, Chromium, and Lead in Soils. ACS Omega. https://doi.org/10.1021/ACSOMEGA.3C07433/ASSET/IMAGES/LARGE/AO3C07433_0012.JPEGSerrano MF, López JE, Saldarriaga JF (2023b) Use of activated rice husk biochar for the removal of metals and microorganisms from treated leachates from landfills. J Mater Cycles Waste Manag 1–11. https://doi.org/10.1007/S10163-023-01762-0/FIGURES/5Singh H, Northup BK, Rice CW, Prasad PVV (2022) Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4:1–17. https://doi.org/10.1007/S42773-022-00138-1/FIGURES/7Vangronsveld J, Herzig R, Weyens N, et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research 2009 16:7 16:765–794. https://doi.org/10.1007/S11356-009-0213-6Wang B, Lehmann J, Hanley K, et al (2015) Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH. Chemosphere 138:120–126. https://doi.org/10.1016/J.CHEMOSPHERE.2015.05.062Wenzel WW (2008) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil 2008 321:1 321:385–408. https://doi.org/10.1007/S11104-008-9686-1WHO WHO (2020) 10 chemicals of public health concern. https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern. Accessed 8 May 2024Yeganeh M, Afyuni M, Khoshgoftarmanesh AH, et al (2013) Mapping of human health risks arising from soil nickel and mercury contamination. J Hazard Mater 244–245:225–239. https://doi.org/10.1016/J.JHAZMAT.2012.11.040Zhang W, Zhen G, Chen L, et al (2017) Economic evaluation of health benefits of mercury emission controls for China and the neighboring countries in East Asia. Energy Policy 106:579–587. https://doi.org/10.1016/J.ENPOL.2017.04.010Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K (2019) Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review. Water Air Soil Pollut 230:1–9. https://doi.org/10.1007/S11270-019-4221-Y/TABLES/3201923322Publication0000-0002-2902-2305virtual::18120-176d3641b-9a37-4533-b50d-baf763b86e3avirtual::18120-176d3641b-9a37-4533-b50d-baf763b86e3avirtual::18120-1ORIGINALPhytoremediation of Hg- and Chlorpyrifos-contaminated soils.pdfPhytoremediation of Hg- and Chlorpyrifos-contaminated soils.pdfapplication/pdf3754117https://repositorio.uniandes.edu.co/bitstreams/beece70b-99a0-4ac3-a6c1-61482e08f81a/downloadf456a5079fed82337a499d0ed164202cMD51Formato aurorizacion.pdfFormato aurorizacion.pdfHIDEapplication/pdf253179https://repositorio.uniandes.edu.co/bitstreams/b372f2bf-591d-4a73-b0d8-e91f0e5bde2b/download7f49de3a60bac884353740072ed4cfb3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/30015316-58e4-49da-9783-67906d00d03f/downloadae9e573a68e7f92501b6913cc846c39fMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/4586a270-cf5e-4c69-ac9b-4b0a0f1cff69/download4460e5956bc1d1639be9ae6146a50347MD54TEXTPhytoremediation of Hg- and Chlorpyrifos-contaminated soils.pdf.txtPhytoremediation of Hg- and Chlorpyrifos-contaminated soils.pdf.txtExtracted texttext/plain74343https://repositorio.uniandes.edu.co/bitstreams/25f4357f-7b33-4b88-a225-d83bcaa6d9a9/downloade1c9675ce9513d7b691b843541cba37aMD55Formato aurorizacion.pdf.txtFormato aurorizacion.pdf.txtExtracted texttext/plain1536https://repositorio.uniandes.edu.co/bitstreams/51b824c5-d94c-470c-af4e-370427d324cc/downloadb76b9303b5fcbd411ecf72effeb54bb3MD57THUMBNAILPhytoremediation of Hg- and Chlorpyrifos-contaminated soils.pdf.jpgPhytoremediation of Hg- and Chlorpyrifos-contaminated soils.pdf.jpgGenerated Thumbnailimage/jpeg6898https://repositorio.uniandes.edu.co/bitstreams/9a5997c8-8187-4859-9a02-7b309116d0f7/downloada09e64baa20b6d75dd0146bae66187d1MD56Formato aurorizacion.pdf.jpgFormato aurorizacion.pdf.jpgGenerated Thumbnailimage/jpeg11182https://repositorio.uniandes.edu.co/bitstreams/9631914e-3a36-494c-86d5-731d173200d5/downloada95392587a162ad34dae81a4a5fa5920MD581992/74276oai:repositorio.uniandes.edu.co:1992/742762024-06-12 03:22:28.404http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K