Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia
Thermo-solar energy technology offers a promising potential for future sustainable power generation, especially those ones based en central tower receivers which can achieve higher temperatures for a higher thermal efficiency. Currently, these power plants still have obstacles and limitations which...
- Autores:
-
Doval Martínez, Boris Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73367
- Acceso en línea:
- https://hdl.handle.net/1992/73367
- Palabra clave:
- Solar-thermal energy
Concentrated solar power
Supercritical CO2 cycle
Central Receiver
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNIANDES2_ad7fab9bc55594b641a1d15f07bc6314 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/73367 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
dc.title.alternative.spa.fl_str_mv |
Análisis energético de una planta CSP basada en CO2 supercrítico aplicada en Colombia |
title |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
spellingShingle |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia Solar-thermal energy Concentrated solar power Supercritical CO2 cycle Central Receiver Ingeniería |
title_short |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
title_full |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
title_fullStr |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
title_full_unstemmed |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
title_sort |
Preliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia |
dc.creator.fl_str_mv |
Doval Martínez, Boris Andrés |
dc.contributor.advisor.none.fl_str_mv |
González Mancera, Andrés Leónardo |
dc.contributor.author.none.fl_str_mv |
Doval Martínez, Boris Andrés |
dc.subject.keyword.none.fl_str_mv |
Solar-thermal energy Concentrated solar power Supercritical CO2 cycle Central Receiver |
topic |
Solar-thermal energy Concentrated solar power Supercritical CO2 cycle Central Receiver Ingeniería |
dc.subject.themes.spa.fl_str_mv |
Ingeniería |
description |
Thermo-solar energy technology offers a promising potential for future sustainable power generation, especially those ones based en central tower receivers which can achieve higher temperatures for a higher thermal efficiency. Currently, these power plants still have obstacles and limitations which difficult its competition against fossil fuel based systems. For this reason, more efficient thermodynamic cycles are essential for the future of this installations, since this reduces the Levelized Cost of Electricity (LCOE) and facilitates the adoption of these new production methods. In the present work, a recompression cycle based on supercritical CO2 is adapted for its implementation in CSP plan with a central tower receiver exposed to the weather conditions in the Guajira region, in northern Colombia. The plant operation is evaluated according to the first law of thermodynamics and theoretical results obtained show the performance, thermal efficiency, annual energy produced and its availability during 3 years. For start, they indicate an improvement in the amount of energy per area produced and present the critical components which behaviour can be adapted for the production optimization |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-22T13:35:43Z |
dc.date.available.none.fl_str_mv |
2024-01-22T13:35:43Z |
dc.date.issued.none.fl_str_mv |
2024-01-16 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/73367 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/73367 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
C. White, 2015 qtr ch. 4 technology assessment: Supercritical carbon dioxide brayton cycle (6 2016).URL https://www.osti.gov/biblio/1505083 P. R. P., Performance analysis and optimization of central receiver solar thermal power plants for utility scale power generation, Sustainability 12 (1) (2020). doi:10.3390/su12010127. URL https://www.mdpi.com/2071-1050/12/1/127 IDEAM, Atlas interactivo - radiacion ideam, Tech. rep., Instituto de ´ Hidrología, Metereología y Estudios Ambientales (2014). URL http://atlas.ideam.gov.co/visorAtlasRadiacion.html W. B. Group, Globar solar atlas. URL https://globalsolaratlas.info/map c=11.921439,-71.483917,11r=COLs=11.890869,-71.365128m=site D. M. Soler, Linea colectora: inconvenientes por los que se retrasaria tres años (August 2022) G. de energıa de Bogota, Colectora 500kv upme 06 2017 - la guajira y cesar, Web article NREL, Nsrdb: National solar radiation database (2022). URL https://nsrdb.nrel.gov/data-viewer C. D. M. Hodge, A. Clifton, Overview and metereological validation of the wind integration national datased toolkit, Tech. rep., National Renewable Energy Laboratory and 3TIER By Vaisala (April 2015). URL https://www.nrel.gov/docs/fy15osti/61740.pdf Alvaro Enrique Pinilla Sepulveda, Lecture notes - Wind Energy elective course, 2023, Ch. 2. S. E. Trabelsi, R. Chargui, L. Qoaider, A. Liqreina, A. Guizani, Techno-economic performance of concentrating solar power plants under the climatic conditions of the southern region of tunisia, Energy Conversion and Management 119 (2016) 203–214. doi:https://doi.org/10.1016/j.enconman.2016.04.033. A. Modi, M. R. Kærn, J. G. Andreasen, F. Haglind, Thermoeconomic optimization of a kalina cycle for a central receiver concentrating solar power plant, Energy Conversion and Management 115 (2016) 276–287. doi:https://doi.org/10.1016/j.enconman.2016.02.063 Y. Yao, Y. Hu, S. Gao, Heliostat field layout methodology in central receiver systems based on efficiency-related distribution, Solar Energy 117 (2015) 114–124. doi:https://doi.org/10.1016/j.solener.2015.04.029 S. M. Besarati, D. Yogi Goswami, A computationally efficient method for the design of the heliostat field for solar power tower plant, Renewable Energy 69 (2014) 226–232. doi:https://doi.org/10.1016/j.renene.2014.03.043 B. S. Emerick, F. G. Battisti, A. K. da Silva, Geometric optimization of a solar tower receiver operating with supercritical co2 as working fluid, Applied Thermal Engineering 228 (2023) 120318. doi:https://doi.org/10.1016/j.applthermaleng.2023.120318. Y. Ahn, S. J. Bae, M. Kim, S. K. Cho, S. Baik, J. I. Lee, J. E. Cha, Review of supercritical co2 power cycle technology and current status of research and development, Nuclear Engineering and Technology 47 (6) (2015) 647–661. doi:https://doi.org/10.1016/j.net.2015.06.009. W. Stein, R. Buck, Advanced power cycles for concentrated solar power, Solar Energy 152 (2017) 91–105, progress in Solar Energy Special Issue: Concentrating Solar Power (CSP). C. T. M. P. E. J. L. T. G. R. G. A. Wright, Steven A., S.-A. A. J., Summary of the sandia supercritical co2 development program, Tech. rep., Sandia National Laboratories (May 2011). V. Zare, M. Hasanzadeh, Energy and exergy analysis of a closed brayton cycle-based combined cycle for solar power tower plants, Energy Conversion and Management 128 (2016) 227–237. doi:https://doi.org/10.1016/j.enconman.2016.09.080. X. Wang, Y. Yang, Y. Zheng, Y. Dai, Exergy and exergoeconomic analyses of a supercritical co2 cycle for a cogeneration application, Energy 119 (2017) 971–982. doi:https://doi.org/10.1016/j.energy.2016.11.044 M. Walker, K. M. Armijo, J. Yellowhair, C. K. Ho, A. Bohinsky, J. Halfinger, H. Feinroth, High temperature silicon carbide receiver tubes for concentrating solar power. (1 2019). doi:10.2172/1493845. URL https://www.osti.gov/biblio/1493845 M. Rodr´ıguez-Sanchez, A. Soria-Verdugo, J. A. Almendros-Ibanez, ˜ A. Acosta-Iborra, D. Santana, Thermal design guidelines of solar power towers, Applied Thermal Engineering 63 (1) (2014) 428–438. doi:https://doi.org/10.1016/j.applthermaleng.2013.11.014. National Renewable Energy Laboratory, SolarPILOT user’s manual (2015). W. P. Domenico Mendicino, Simulating a supercritical co2 compressor -from design to optimization (May 2023). URL https://app.webinar.net/JZKQ10VXq4m?mcc=CAL P. G. Bejerano, Gemasolar: c ́omo funciona la tecnolog ́ıa punta solar, on-line article (May 2014). J. L. M. Ayde Catalina Figueroa Castro, Perspectiva sectorial energia - actualidad del sector energetico colombiano, Tech. rep., CorfiColombiana (february 2023) H. Rober Ashe, Variable heat flux exchangers, eEUU Patente US 20090120629A1 (May 2019). |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
9 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Mecánica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/0f99bdef-1b9c-4b35-bb29-0e46ddbc6b12/download https://repositorio.uniandes.edu.co/bitstreams/ed218c91-63f0-4afd-96dd-2d33db121526/download https://repositorio.uniandes.edu.co/bitstreams/6112caf3-89a8-4fca-a74c-bf291f616ec4/download https://repositorio.uniandes.edu.co/bitstreams/5ebf1864-0e14-445d-a78a-a026b9a3c689/download https://repositorio.uniandes.edu.co/bitstreams/0d6cb405-1ab4-4b00-a8ca-1067bc2908c2/download https://repositorio.uniandes.edu.co/bitstreams/f4a79838-d20d-4484-bd14-74f26984326f/download https://repositorio.uniandes.edu.co/bitstreams/40f4d621-228d-453b-b45f-05e6be362c52/download https://repositorio.uniandes.edu.co/bitstreams/75574af1-4ffb-484e-bf8a-9e344ab3eaa4/download |
bitstream.checksum.fl_str_mv |
0175ea4a2d4caec4bbcc37e300941108 c4ad382fb4fbe6eb8438c613bce66bfd 4c30a90661a818ef296f547ccb93dc40 ae9e573a68e7f92501b6913cc846c39f 64473b1598e7304a5b5998b672197436 2a98bd66907232b5081528c96db172d1 afdfcbedb77801a34078c798c0fe586f 20c84e53f6c1c1e4a9eefee1a33b12d7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134054717292544 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autoresAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Mancera, Andrés Leónardovirtual::100-1Doval Martínez, Boris Andrés2024-01-22T13:35:43Z2024-01-22T13:35:43Z2024-01-16https://hdl.handle.net/1992/73367instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Thermo-solar energy technology offers a promising potential for future sustainable power generation, especially those ones based en central tower receivers which can achieve higher temperatures for a higher thermal efficiency. Currently, these power plants still have obstacles and limitations which difficult its competition against fossil fuel based systems. For this reason, more efficient thermodynamic cycles are essential for the future of this installations, since this reduces the Levelized Cost of Electricity (LCOE) and facilitates the adoption of these new production methods. In the present work, a recompression cycle based on supercritical CO2 is adapted for its implementation in CSP plan with a central tower receiver exposed to the weather conditions in the Guajira region, in northern Colombia. The plant operation is evaluated according to the first law of thermodynamics and theoretical results obtained show the performance, thermal efficiency, annual energy produced and its availability during 3 years. For start, they indicate an improvement in the amount of energy per area produced and present the critical components which behaviour can be adapted for the production optimizationIngeniero MecánicoPregrado9 páginasapplication/pdfengUniversidad de los AndesIngeniería MecánicaFacultad de IngenieríaDepartamento de Ingeniería MecánicaPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, ColombiaAnálisis energético de una planta CSP basada en CO2 supercrítico aplicada en ColombiaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPSolar-thermal energyConcentrated solar powerSupercritical CO2 cycleCentral ReceiverIngenieríaC. White, 2015 qtr ch. 4 technology assessment: Supercritical carbon dioxide brayton cycle (6 2016).URL https://www.osti.gov/biblio/1505083P. R. P., Performance analysis and optimization of central receiver solar thermal power plants for utility scale power generation, Sustainability 12 (1) (2020). doi:10.3390/su12010127. URL https://www.mdpi.com/2071-1050/12/1/127IDEAM, Atlas interactivo - radiacion ideam, Tech. rep., Instituto de ´ Hidrología, Metereología y Estudios Ambientales (2014). URL http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlW. B. Group, Globar solar atlas. URL https://globalsolaratlas.info/map c=11.921439,-71.483917,11r=COLs=11.890869,-71.365128m=siteD. M. Soler, Linea colectora: inconvenientes por los que se retrasaria tres años (August 2022)G. de energıa de Bogota, Colectora 500kv upme 06 2017 - la guajira y cesar, Web articleNREL, Nsrdb: National solar radiation database (2022). URL https://nsrdb.nrel.gov/data-viewerC. D. M. Hodge, A. Clifton, Overview and metereological validation of the wind integration national datased toolkit, Tech. rep., National Renewable Energy Laboratory and 3TIER By Vaisala (April 2015). URL https://www.nrel.gov/docs/fy15osti/61740.pdfAlvaro Enrique Pinilla Sepulveda, Lecture notes - Wind Energy elective course, 2023, Ch. 2.S. E. Trabelsi, R. Chargui, L. Qoaider, A. Liqreina, A. Guizani, Techno-economic performance of concentrating solar power plants under the climatic conditions of the southern region of tunisia, Energy Conversion and Management 119 (2016) 203–214. doi:https://doi.org/10.1016/j.enconman.2016.04.033.A. Modi, M. R. Kærn, J. G. Andreasen, F. Haglind, Thermoeconomic optimization of a kalina cycle for a central receiver concentrating solar power plant, Energy Conversion and Management 115 (2016) 276–287. doi:https://doi.org/10.1016/j.enconman.2016.02.063Y. Yao, Y. Hu, S. Gao, Heliostat field layout methodology in central receiver systems based on efficiency-related distribution, Solar Energy 117 (2015) 114–124. doi:https://doi.org/10.1016/j.solener.2015.04.029S. M. Besarati, D. Yogi Goswami, A computationally efficient method for the design of the heliostat field for solar power tower plant, Renewable Energy 69 (2014) 226–232. doi:https://doi.org/10.1016/j.renene.2014.03.043B. S. Emerick, F. G. Battisti, A. K. da Silva, Geometric optimization of a solar tower receiver operating with supercritical co2 as working fluid, Applied Thermal Engineering 228 (2023) 120318. doi:https://doi.org/10.1016/j.applthermaleng.2023.120318.Y. Ahn, S. J. Bae, M. Kim, S. K. Cho, S. Baik, J. I. Lee, J. E. Cha, Review of supercritical co2 power cycle technology and current status of research and development, Nuclear Engineering and Technology 47 (6) (2015) 647–661. doi:https://doi.org/10.1016/j.net.2015.06.009.W. Stein, R. Buck, Advanced power cycles for concentrated solar power, Solar Energy 152 (2017) 91–105, progress in Solar Energy Special Issue: Concentrating Solar Power (CSP).C. T. M. P. E. J. L. T. G. R. G. A. Wright, Steven A., S.-A. A. J., Summary of the sandia supercritical co2 development program, Tech. rep., Sandia National Laboratories (May 2011).V. Zare, M. Hasanzadeh, Energy and exergy analysis of a closed brayton cycle-based combined cycle for solar power tower plants, Energy Conversion and Management 128 (2016) 227–237. doi:https://doi.org/10.1016/j.enconman.2016.09.080.X. Wang, Y. Yang, Y. Zheng, Y. Dai, Exergy and exergoeconomic analyses of a supercritical co2 cycle for a cogeneration application, Energy 119 (2017) 971–982. doi:https://doi.org/10.1016/j.energy.2016.11.044M. Walker, K. M. Armijo, J. Yellowhair, C. K. Ho, A. Bohinsky, J. Halfinger, H. Feinroth, High temperature silicon carbide receiver tubes for concentrating solar power. (1 2019). doi:10.2172/1493845. URL https://www.osti.gov/biblio/1493845M. Rodr´ıguez-Sanchez, A. Soria-Verdugo, J. A. Almendros-Ibanez, ˜ A. Acosta-Iborra, D. Santana, Thermal design guidelines of solar power towers, Applied Thermal Engineering 63 (1) (2014) 428–438. doi:https://doi.org/10.1016/j.applthermaleng.2013.11.014.National Renewable Energy Laboratory, SolarPILOT user’s manual (2015).W. P. Domenico Mendicino, Simulating a supercritical co2 compressor -from design to optimization (May 2023). URL https://app.webinar.net/JZKQ10VXq4m?mcc=CALP. G. Bejerano, Gemasolar: c ́omo funciona la tecnolog ́ıa punta solar, on-line article (May 2014).J. L. M. Ayde Catalina Figueroa Castro, Perspectiva sectorial energia - actualidad del sector energetico colombiano, Tech. rep., CorfiColombiana (february 2023)H. Rober Ashe, Variable heat flux exchangers, eEUU Patente US 20090120629A1 (May 2019).201920849Publicationhttps://scholar.google.es/citations?user=6mPjKkQAAAAJvirtual::100-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000215880virtual::100-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::100-1dfb722df-f96b-4bfa-bfd9-49a4fc1b6a32virtual::100-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/0f99bdef-1b9c-4b35-bb29-0e46ddbc6b12/download0175ea4a2d4caec4bbcc37e300941108MD51ORIGINALPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia.pdfPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia.pdfapplication/pdf1777263https://repositorio.uniandes.edu.co/bitstreams/ed218c91-63f0-4afd-96dd-2d33db121526/downloadc4ad382fb4fbe6eb8438c613bce66bfdMD52autorizacion tesis Boris Doval 201920849.pdfautorizacion tesis Boris Doval 201920849.pdfHIDEapplication/pdf313207https://repositorio.uniandes.edu.co/bitstreams/6112caf3-89a8-4fca-a74c-bf291f616ec4/download4c30a90661a818ef296f547ccb93dc40MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/5ebf1864-0e14-445d-a78a-a026b9a3c689/downloadae9e573a68e7f92501b6913cc846c39fMD53TEXTPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia.pdf.txtPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia.pdf.txtExtracted texttext/plain32935https://repositorio.uniandes.edu.co/bitstreams/0d6cb405-1ab4-4b00-a8ca-1067bc2908c2/download64473b1598e7304a5b5998b672197436MD55autorizacion tesis Boris Doval 201920849.pdf.txtautorizacion tesis Boris Doval 201920849.pdf.txtExtracted texttext/plain2183https://repositorio.uniandes.edu.co/bitstreams/f4a79838-d20d-4484-bd14-74f26984326f/download2a98bd66907232b5081528c96db172d1MD57THUMBNAILPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia.pdf.jpgPreliminary design and performance of a solar tower plant based on supercritical CO2 under the weather conditions of La Guajira, Colombia.pdf.jpgGenerated Thumbnailimage/jpeg13016https://repositorio.uniandes.edu.co/bitstreams/40f4d621-228d-453b-b45f-05e6be362c52/downloadafdfcbedb77801a34078c798c0fe586fMD56autorizacion tesis Boris Doval 201920849.pdf.jpgautorizacion tesis Boris Doval 201920849.pdf.jpgGenerated Thumbnailimage/jpeg11295https://repositorio.uniandes.edu.co/bitstreams/75574af1-4ffb-484e-bf8a-9e344ab3eaa4/download20c84e53f6c1c1e4a9eefee1a33b12d7MD581992/73367oai:repositorio.uniandes.edu.co:1992/733672024-05-15 10:57:26.594http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |