Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming

Public Private Partnerships (PPPs) are associations between a government and a private party with the objective of delivering public assets and/or services. The private party provides financial leverage and technical expertise to develop large-scale projects, responding to the requirements and condi...

Full description

Autores:
Rodríguez González, Samuel
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/48609
Acceso en línea:
http://hdl.handle.net/1992/48609
Palabra clave:
Investigación operacional
Toma de decisiones
Cooperación entre los sectores público y privado
Infraestructura vial
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_aca86604111278f233f35ad127c84a4e
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/48609
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
title Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
spellingShingle Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
Investigación operacional
Toma de decisiones
Cooperación entre los sectores público y privado
Infraestructura vial
Ingeniería
title_short Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
title_full Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
title_fullStr Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
title_full_unstemmed Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
title_sort Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
dc.creator.fl_str_mv Rodríguez González, Samuel
dc.contributor.advisor.none.fl_str_mv Gómez Castro, Camilo Hernando
dc.contributor.author.none.fl_str_mv Rodríguez González, Samuel
dc.contributor.jury.none.fl_str_mv Castillo Hernández, Mario
González Gómez, Andres
dc.subject.armarc.es_CO.fl_str_mv Investigación operacional
Toma de decisiones
Cooperación entre los sectores público y privado
Infraestructura vial
topic Investigación operacional
Toma de decisiones
Cooperación entre los sectores público y privado
Infraestructura vial
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Public Private Partnerships (PPPs) are associations between a government and a private party with the objective of delivering public assets and/or services. The private party provides financial leverage and technical expertise to develop large-scale projects, responding to the requirements and conditions specified by the public party, which, in turn, must oversee the adequate development of the project. A key challenge arises due to the Principal-Agent problem (PA problem), namely: a conflict of interests in which the public may not be able to ascertain whether the private party's actions respond to its own interests rather than the project's. The interactions in a PPP can thus be viewed as a Stackelberg Game and consequently as a bi-level optimization problem, in which a leader (the government) and a follower (a private contractor) partake in coupled decision processes, where the follower's decisions depend on previous leader decisions and cause an impact on the leader's objective. We propose a bi-level optimization framework to model PPPs in the context of a road maintenance as a typical example of infrastructure operation projects. The problem under consideration involves integer decision variables, which complicates the solution strategy for bi-level optimization problems. Thus, we incorporate recent Branch \& Bound and Branch \& Cut methodology approaches found in the operations research literature. The use of MIBLPs allows to model interactions in PPPs (e.g., PA problem), while considering potentially complex combinatorial problems resulting from the project's characteristics (e.g., infrastructure maintenance). Finally, our model can find bi-level feasible maintenance and inspection plans for both parties within reasonable computation times, allowing for analysis of trade-offs in PPPs and potential strategies to overcome drawbacks such as the PA problem
publishDate 2020
dc.date.issued.es_CO.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-18T12:24:52Z
dc.date.available.none.fl_str_mv 2021-02-18T12:24:52Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/48609
dc.identifier.pdf.none.fl_str_mv u833143.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/48609
identifier_str_mv u833143.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 24 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Maestría en Ingeniería Industrial
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Industrial
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/87670cbe-cccc-415f-a659-feb87220d38e/download
https://repositorio.uniandes.edu.co/bitstreams/d7c244df-5f35-4215-ae6b-91042481c5d4/download
https://repositorio.uniandes.edu.co/bitstreams/cd29ea37-9e38-4c79-a197-8f8c9528d1d1/download
bitstream.checksum.fl_str_mv 3c15f100319a478c24d3d69a71117f89
53800fc0542975cd9bd3e6dd0126f916
e6d1f6fad80517dfc5ae8ff873634641
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133917975642112
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Castro, Camilo Hernando022ffb2f-20e5-4612-98ee-070a69f51e20400Rodríguez González, Samuel6b1c1506-562c-4cdc-b729-c3ef5df5a9e9500Castillo Hernández, MarioGonzález Gómez, Andres2021-02-18T12:24:52Z2021-02-18T12:24:52Z2020http://hdl.handle.net/1992/48609u833143.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Public Private Partnerships (PPPs) are associations between a government and a private party with the objective of delivering public assets and/or services. The private party provides financial leverage and technical expertise to develop large-scale projects, responding to the requirements and conditions specified by the public party, which, in turn, must oversee the adequate development of the project. A key challenge arises due to the Principal-Agent problem (PA problem), namely: a conflict of interests in which the public may not be able to ascertain whether the private party's actions respond to its own interests rather than the project's. The interactions in a PPP can thus be viewed as a Stackelberg Game and consequently as a bi-level optimization problem, in which a leader (the government) and a follower (a private contractor) partake in coupled decision processes, where the follower's decisions depend on previous leader decisions and cause an impact on the leader's objective. We propose a bi-level optimization framework to model PPPs in the context of a road maintenance as a typical example of infrastructure operation projects. The problem under consideration involves integer decision variables, which complicates the solution strategy for bi-level optimization problems. Thus, we incorporate recent Branch \& Bound and Branch \& Cut methodology approaches found in the operations research literature. The use of MIBLPs allows to model interactions in PPPs (e.g., PA problem), while considering potentially complex combinatorial problems resulting from the project's characteristics (e.g., infrastructure maintenance). Finally, our model can find bi-level feasible maintenance and inspection plans for both parties within reasonable computation times, allowing for analysis of trade-offs in PPPs and potential strategies to overcome drawbacks such as the PA problem"Las alianzas público-privadas (APP) son asociaciones entre un gobierno y una entidad privada con el objetivo de proveer activos y/o servicios públicos. La parte privada proporciona apalancamiento financiero y experiencia técnica para desarrollar proyectos a gran escala, respondiendo a los requisitos y condiciones especificados por la parte pública, que, a su vez, debe supervisar el desarrollo adecuado del proyecto. Un desafío clave surge debido al problema del Principal-Agente (PA), es decir: un conflicto de intereses en el que el público no puede determinar si las acciones de la parte privada responden a sus propios intereses en lugar de los del proyecto. Las interacciones en una APP pueden verse como un juego de Stackelberg y, en consecuencia, como un problema de optimización de dos niveles (bi-nivel), en el que un líder (el gobierno) y un seguidor (la entidad privada) participan en procesos de decisión acoplados, donde las decisiones del seguidor dependen de las decisiones anteriores del líder y causan un impacto en el objetivo del líder. Proponemos un marco de optimización de bi-nivel para modelar las APP en el contexto del mantenimiento de carreteras como un ejemplo típico de proyectos de operación de infraestructura. El problema bajo consideración involucra variables de decisión enteras, lo que complica la estrategia de solución para problemas de optimización bi-nivel. Por lo tanto, incorporamos enfoques recientes de metodologías basadas en Branch & Bound y Branch & Cut que se encuentran en la literatura de investigación de operaciones. El uso de MIBLP permite modelar interacciones en APPs (por ejemplo, el problema del PA), al tiempo que considera problemas combinatorios potencialmente complejos que resultan de las características del proyecto (por ejemplo, mantenimiento de infraestructura). Finalmente, nuestro modelo puede encontrar planes de mantenimiento e inspección factibles en dos niveles para ambas partes dentro de tiempos de cómputo razonables."--Tomado del Formato de Documento de GradoMagíster en Ingeniería IndustrialMaestría24 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería Industrialinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaAddressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programmingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMInvestigación operacionalToma de decisionesCooperación entre los sectores público y privadoInfraestructura vialIngenieríaPublicationTEXTu833143.pdf.txtu833143.pdf.txtExtracted texttext/plain52439https://repositorio.uniandes.edu.co/bitstreams/87670cbe-cccc-415f-a659-feb87220d38e/download3c15f100319a478c24d3d69a71117f89MD54ORIGINALu833143.pdfapplication/pdf414418https://repositorio.uniandes.edu.co/bitstreams/d7c244df-5f35-4215-ae6b-91042481c5d4/download53800fc0542975cd9bd3e6dd0126f916MD51THUMBNAILu833143.pdf.jpgu833143.pdf.jpgIM Thumbnailimage/jpeg17881https://repositorio.uniandes.edu.co/bitstreams/cd29ea37-9e38-4c79-a197-8f8c9528d1d1/downloade6d1f6fad80517dfc5ae8ff873634641MD551992/48609oai:repositorio.uniandes.edu.co:1992/486092023-10-10 17:05:33.831https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co