Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming
Public Private Partnerships (PPPs) are associations between a government and a private party with the objective of delivering public assets and/or services. The private party provides financial leverage and technical expertise to develop large-scale projects, responding to the requirements and condi...
- Autores:
-
Rodríguez González, Samuel
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/48609
- Acceso en línea:
- http://hdl.handle.net/1992/48609
- Palabra clave:
- Investigación operacional
Toma de decisiones
Cooperación entre los sectores público y privado
Infraestructura vial
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_aca86604111278f233f35ad127c84a4e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/48609 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
title |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
spellingShingle |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming Investigación operacional Toma de decisiones Cooperación entre los sectores público y privado Infraestructura vial Ingeniería |
title_short |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
title_full |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
title_fullStr |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
title_full_unstemmed |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
title_sort |
Addressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programming |
dc.creator.fl_str_mv |
Rodríguez González, Samuel |
dc.contributor.advisor.none.fl_str_mv |
Gómez Castro, Camilo Hernando |
dc.contributor.author.none.fl_str_mv |
Rodríguez González, Samuel |
dc.contributor.jury.none.fl_str_mv |
Castillo Hernández, Mario González Gómez, Andres |
dc.subject.armarc.es_CO.fl_str_mv |
Investigación operacional Toma de decisiones Cooperación entre los sectores público y privado Infraestructura vial |
topic |
Investigación operacional Toma de decisiones Cooperación entre los sectores público y privado Infraestructura vial Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
Public Private Partnerships (PPPs) are associations between a government and a private party with the objective of delivering public assets and/or services. The private party provides financial leverage and technical expertise to develop large-scale projects, responding to the requirements and conditions specified by the public party, which, in turn, must oversee the adequate development of the project. A key challenge arises due to the Principal-Agent problem (PA problem), namely: a conflict of interests in which the public may not be able to ascertain whether the private party's actions respond to its own interests rather than the project's. The interactions in a PPP can thus be viewed as a Stackelberg Game and consequently as a bi-level optimization problem, in which a leader (the government) and a follower (a private contractor) partake in coupled decision processes, where the follower's decisions depend on previous leader decisions and cause an impact on the leader's objective. We propose a bi-level optimization framework to model PPPs in the context of a road maintenance as a typical example of infrastructure operation projects. The problem under consideration involves integer decision variables, which complicates the solution strategy for bi-level optimization problems. Thus, we incorporate recent Branch \& Bound and Branch \& Cut methodology approaches found in the operations research literature. The use of MIBLPs allows to model interactions in PPPs (e.g., PA problem), while considering potentially complex combinatorial problems resulting from the project's characteristics (e.g., infrastructure maintenance). Finally, our model can find bi-level feasible maintenance and inspection plans for both parties within reasonable computation times, allowing for analysis of trade-offs in PPPs and potential strategies to overcome drawbacks such as the PA problem |
publishDate |
2020 |
dc.date.issued.es_CO.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-02-18T12:24:52Z |
dc.date.available.none.fl_str_mv |
2021-02-18T12:24:52Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/48609 |
dc.identifier.pdf.none.fl_str_mv |
u833143.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/48609 |
identifier_str_mv |
u833143.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
24 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Ingeniería Industrial |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Industrial |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/87670cbe-cccc-415f-a659-feb87220d38e/download https://repositorio.uniandes.edu.co/bitstreams/d7c244df-5f35-4215-ae6b-91042481c5d4/download https://repositorio.uniandes.edu.co/bitstreams/cd29ea37-9e38-4c79-a197-8f8c9528d1d1/download |
bitstream.checksum.fl_str_mv |
3c15f100319a478c24d3d69a71117f89 53800fc0542975cd9bd3e6dd0126f916 e6d1f6fad80517dfc5ae8ff873634641 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133917975642112 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Castro, Camilo Hernando022ffb2f-20e5-4612-98ee-070a69f51e20400Rodríguez González, Samuel6b1c1506-562c-4cdc-b729-c3ef5df5a9e9500Castillo Hernández, MarioGonzález Gómez, Andres2021-02-18T12:24:52Z2021-02-18T12:24:52Z2020http://hdl.handle.net/1992/48609u833143.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Public Private Partnerships (PPPs) are associations between a government and a private party with the objective of delivering public assets and/or services. The private party provides financial leverage and technical expertise to develop large-scale projects, responding to the requirements and conditions specified by the public party, which, in turn, must oversee the adequate development of the project. A key challenge arises due to the Principal-Agent problem (PA problem), namely: a conflict of interests in which the public may not be able to ascertain whether the private party's actions respond to its own interests rather than the project's. The interactions in a PPP can thus be viewed as a Stackelberg Game and consequently as a bi-level optimization problem, in which a leader (the government) and a follower (a private contractor) partake in coupled decision processes, where the follower's decisions depend on previous leader decisions and cause an impact on the leader's objective. We propose a bi-level optimization framework to model PPPs in the context of a road maintenance as a typical example of infrastructure operation projects. The problem under consideration involves integer decision variables, which complicates the solution strategy for bi-level optimization problems. Thus, we incorporate recent Branch \& Bound and Branch \& Cut methodology approaches found in the operations research literature. The use of MIBLPs allows to model interactions in PPPs (e.g., PA problem), while considering potentially complex combinatorial problems resulting from the project's characteristics (e.g., infrastructure maintenance). Finally, our model can find bi-level feasible maintenance and inspection plans for both parties within reasonable computation times, allowing for analysis of trade-offs in PPPs and potential strategies to overcome drawbacks such as the PA problem"Las alianzas público-privadas (APP) son asociaciones entre un gobierno y una entidad privada con el objetivo de proveer activos y/o servicios públicos. La parte privada proporciona apalancamiento financiero y experiencia técnica para desarrollar proyectos a gran escala, respondiendo a los requisitos y condiciones especificados por la parte pública, que, a su vez, debe supervisar el desarrollo adecuado del proyecto. Un desafío clave surge debido al problema del Principal-Agente (PA), es decir: un conflicto de intereses en el que el público no puede determinar si las acciones de la parte privada responden a sus propios intereses en lugar de los del proyecto. Las interacciones en una APP pueden verse como un juego de Stackelberg y, en consecuencia, como un problema de optimización de dos niveles (bi-nivel), en el que un líder (el gobierno) y un seguidor (la entidad privada) participan en procesos de decisión acoplados, donde las decisiones del seguidor dependen de las decisiones anteriores del líder y causan un impacto en el objetivo del líder. Proponemos un marco de optimización de bi-nivel para modelar las APP en el contexto del mantenimiento de carreteras como un ejemplo típico de proyectos de operación de infraestructura. El problema bajo consideración involucra variables de decisión enteras, lo que complica la estrategia de solución para problemas de optimización bi-nivel. Por lo tanto, incorporamos enfoques recientes de metodologías basadas en Branch & Bound y Branch & Cut que se encuentran en la literatura de investigación de operaciones. El uso de MIBLP permite modelar interacciones en APPs (por ejemplo, el problema del PA), al tiempo que considera problemas combinatorios potencialmente complejos que resultan de las características del proyecto (por ejemplo, mantenimiento de infraestructura). Finalmente, nuestro modelo puede encontrar planes de mantenimiento e inspección factibles en dos niveles para ambas partes dentro de tiempos de cómputo razonables."--Tomado del Formato de Documento de GradoMagíster en Ingeniería IndustrialMaestría24 hojasapplication/pdfengUniversidad de los AndesMaestría en Ingeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería Industrialinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaAddressing the principal-agent problem in public private partnerships via mixed-integer bi-level linear programmingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMInvestigación operacionalToma de decisionesCooperación entre los sectores público y privadoInfraestructura vialIngenieríaPublicationTEXTu833143.pdf.txtu833143.pdf.txtExtracted texttext/plain52439https://repositorio.uniandes.edu.co/bitstreams/87670cbe-cccc-415f-a659-feb87220d38e/download3c15f100319a478c24d3d69a71117f89MD54ORIGINALu833143.pdfapplication/pdf414418https://repositorio.uniandes.edu.co/bitstreams/d7c244df-5f35-4215-ae6b-91042481c5d4/download53800fc0542975cd9bd3e6dd0126f916MD51THUMBNAILu833143.pdf.jpgu833143.pdf.jpgIM Thumbnailimage/jpeg17881https://repositorio.uniandes.edu.co/bitstreams/cd29ea37-9e38-4c79-a197-8f8c9528d1d1/downloade6d1f6fad80517dfc5ae8ff873634641MD551992/48609oai:repositorio.uniandes.edu.co:1992/486092023-10-10 17:05:33.831https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |