Inteligencia artificial para detectar corrupción en la administración pública municipal de Colombia

Esta investigación busca evaluar el uso de algoritmos de aprendizaje de máquinas en la detección temprana de actos de corrupción en la administración pública municipal de Colombia. Esto se desarrolla a partir de dos enfoques: (i) una evaluación de algoritmos de aprendizaje supervisado para la predic...

Full description

Autores:
Mojica Muñoz, Kevin Steven
Tipo de recurso:
Work document
Fecha de publicación:
2021
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/50541
Acceso en línea:
http://hdl.handle.net/1992/50541
Palabra clave:
Corrupción
Aprendizaje de máquinas
Administración pública
D73, D83, C63, H70
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Esta investigación busca evaluar el uso de algoritmos de aprendizaje de máquinas en la detección temprana de actos de corrupción en la administración pública municipal de Colombia. Esto se desarrolla a partir de dos enfoques: (i) una evaluación de algoritmos de aprendizaje supervisado para la predicción directa de variables relacionadas con la corrupción y, (ii) una evaluación de aprendizaje no supervisado para la segmentación de riesgo relativo de corrupción. Los resultados indican que, pese a que se obtienen resultados satisfactorios en la evaluación de aprendizaje supervisado, el aprendizaje no supervisado se perfila como la herramienta más útil para la detección temprana de corrupción municipal en Colombia. A partir de estos hallazgos, se crea un Índice de Riesgo Relativo de Corrupción Municipal para el periodo 2020-2023. Este índice busca servir a los organismos de control en la la focalización de sus esfuerzos de investigación y prevención de la corrupción.