Portfolio selection problem using linear and gaussian graphical models with penalization

Many alternatives have been proposed to improve the classic Markowitz mean-variance approach in the portfolio selection problem. Some alternatives focus in decreasing the error of the estimations of the expected return vector and the covariance matrix. Following this framework, in this paper we are...

Full description

Autores:
Lloreda Palacios, Ricardo Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/39749
Acceso en línea:
http://hdl.handle.net/1992/39749
Palabra clave:
Administración del portafolio
Portafolio de inversiones
R (Lenguaje de programación de computadores)
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Description
Summary:Many alternatives have been proposed to improve the classic Markowitz mean-variance approach in the portfolio selection problem. Some alternatives focus in decreasing the error of the estimations of the expected return vector and the covariance matrix. Following this framework, in this paper we are going to address this problem with penalizations over the asset's weights estimations, in both linear and graphical models. With these penalizations, we induce two important properties to the portfolios obtained, sparsity and stability. These properties yield a better out-of-sample performance for a portfolio because they decrease the error carried by the parameters estimations and also reduce the number of assets in a portfolio. Thus, they are desired for an investor