Algebraic geometric codes from elliptic curves
"Let C=[n,k,d] be a Goppa Code constructed from an elliptic curve. It is known that C is an AMDS (almost MDS) code i.e. d=n-k. By studying how many information sets C has (an MDS Code has \binom{n}{k} information sets) we investigate, for a given rate \frac{k}{n}, how close are actually Goppa C...
- Autores:
-
Jaramillo Martínez, David
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/44336
- Acceso en línea:
- http://hdl.handle.net/1992/44336
- Palabra clave:
- Geometría algebraica - Investigaciones
Códigos Goppa - Investigaciones
Curvas algebráicas - Investigaciones
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Summary: | "Let C=[n,k,d] be a Goppa Code constructed from an elliptic curve. It is known that C is an AMDS (almost MDS) code i.e. d=n-k. By studying how many information sets C has (an MDS Code has \binom{n}{k} information sets) we investigate, for a given rate \frac{k}{n}, how close are actually Goppa Codes from being MDS, having in mind the benefit that they do not require such a big underlying field as say Reed-Solomon Codes. For the case k=3 we say exactly how far are them of being MDS."--Tomado del Formato de Documento de Grado. |
---|