Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle

A classification of cubic fields can be done using the trace form and higher analogues of Gauss composition. Using these ideas a new proof for the Scholz reflection principle is given.

Autores:
Cortés Gómez, Santiago Enrique
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/34651
Acceso en línea:
http://hdl.handle.net/1992/34651
Palabra clave:
Teoría algebraica de los números
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_a902baf8e61a855c9c7221bb4e20efbd
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/34651
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mantilla Soler, Guillermo Arturob0036201-de2b-422d-b5b7-ac9ae3dd1be3500Cortés Gómez, Santiago Enriqueaa8dbf0c-31c4-4512-9fc4-f838d7cac9c55002020-06-10T09:15:32Z2020-06-10T09:15:32Z2018http://hdl.handle.net/1992/34651u808222.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/A classification of cubic fields can be done using the trace form and higher analogues of Gauss composition. Using these ideas a new proof for the Scholz reflection principle is given.La forma traza es un invariante para clasificar cuerpos cúbicos de discrimate fundamental y positivo. Para poder probar lo anterior se usan analogos de la composición de Gauss de dimensiones mayores. Usando estas ideas se da una demostración alternativa del principio de reflexión de Scholz.Magíster en MatemáticasMaestría35 hojasapplication/pdfengUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaHigher composition laws, integral trace forms and an alternative proof for the Scholz reflection principleTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMTeoría algebraica de los númerosMatemáticasPublicationORIGINALu808222.pdfapplication/pdf386380https://repositorio.uniandes.edu.co/bitstreams/dc1e4d53-2886-49ee-a625-f03665bf831b/download31f0edb894abb957f9c026692d8ed3ecMD51TEXTu808222.pdf.txtu808222.pdf.txtExtracted texttext/plain70407https://repositorio.uniandes.edu.co/bitstreams/f24026b3-c3d6-45ac-abcf-a13d80f28f50/downloadfca5f099b8d202055db72a1aa296c56eMD54THUMBNAILu808222.pdf.jpgu808222.pdf.jpgIM Thumbnailimage/jpeg2881https://repositorio.uniandes.edu.co/bitstreams/f1177961-3a99-48ef-b966-58492c5852dd/download1b3113f9c0311a32e99753434664c974MD551992/34651oai:repositorio.uniandes.edu.co:1992/346512023-10-10 19:13:22.424http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
title Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
spellingShingle Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
Teoría algebraica de los números
Matemáticas
title_short Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
title_full Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
title_fullStr Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
title_full_unstemmed Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
title_sort Higher composition laws, integral trace forms and an alternative proof for the Scholz reflection principle
dc.creator.fl_str_mv Cortés Gómez, Santiago Enrique
dc.contributor.advisor.none.fl_str_mv Mantilla Soler, Guillermo Arturo
dc.contributor.author.none.fl_str_mv Cortés Gómez, Santiago Enrique
dc.subject.keyword.es_CO.fl_str_mv Teoría algebraica de los números
topic Teoría algebraica de los números
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description A classification of cubic fields can be done using the trace form and higher analogues of Gauss composition. Using these ideas a new proof for the Scholz reflection principle is given.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T09:15:32Z
dc.date.available.none.fl_str_mv 2020-06-10T09:15:32Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/34651
dc.identifier.pdf.none.fl_str_mv u808222.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/34651
identifier_str_mv u808222.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 35 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/dc1e4d53-2886-49ee-a625-f03665bf831b/download
https://repositorio.uniandes.edu.co/bitstreams/f24026b3-c3d6-45ac-abcf-a13d80f28f50/download
https://repositorio.uniandes.edu.co/bitstreams/f1177961-3a99-48ef-b966-58492c5852dd/download
bitstream.checksum.fl_str_mv 31f0edb894abb957f9c026692d8ed3ec
fca5f099b8d202055db72a1aa296c56e
1b3113f9c0311a32e99753434664c974
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134041321734144