Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region

New functional Time-Temperature Indicators (TTIs) utilizing silver and gold nanoparticles (AgNPs and AuNPs) have been fabricated to validate the cold chain compliance of fruits (with temperature requirements ranging between 0°C and 4°C) in the Cundinamarca Region. The working principle of these indi...

Full description

Autores:
Lanza Bayona, Gustavo Adolfo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/70964
Acceso en línea:
https://hdl.handle.net/1992/70964
Palabra clave:
Time-Temperature Indicator
Colorimetric sensing
Nanoparticles
AgNPs
AuNPs
Cold chain validation
Ingeniería
Rights
openAccess
License
CC0 1.0 Universal
id UNIANDES2_a80a2a259b91122369ff560b731ea7de
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/70964
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
title Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
spellingShingle Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
Time-Temperature Indicator
Colorimetric sensing
Nanoparticles
AgNPs
AuNPs
Cold chain validation
Ingeniería
title_short Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
title_full Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
title_fullStr Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
title_full_unstemmed Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
title_sort Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca region
dc.creator.fl_str_mv Lanza Bayona, Gustavo Adolfo
dc.contributor.advisor.none.fl_str_mv Avila Bernal, Alba Graciela
Yan, Vivian Li
dc.contributor.author.none.fl_str_mv Lanza Bayona, Gustavo Adolfo
dc.contributor.jury.none.fl_str_mv Ramírez Cajiao, María Catalina
Herreño Fierro, César Aurelio
Pérez Taborda, Jaime Andrés
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ingeniería::CMUA - Centro de Microelectrónica Universidad de los Andes
dc.subject.keyword.none.fl_str_mv Time-Temperature Indicator
Colorimetric sensing
Nanoparticles
AgNPs
AuNPs
Cold chain validation
topic Time-Temperature Indicator
Colorimetric sensing
Nanoparticles
AgNPs
AuNPs
Cold chain validation
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description New functional Time-Temperature Indicators (TTIs) utilizing silver and gold nanoparticles (AgNPs and AuNPs) have been fabricated to validate the cold chain compliance of fruits (with temperature requirements ranging between 0°C and 4°C) in the Cundinamarca Region. The working principle of these indicators is built around plasmonic nanoparticles (NPs) and relies on their Localized Surface Plasmon Resonances (LSPRs). The plasmonic sensing approach is based on a spectral shift of the plasmon resonance of NPs that are suspended within a medium (nanodispersion), which responds to temperature variations. The temperature alters the initial configuration of the NPs as time progresses, leading to variations in their LSPRs. This phenomenon becomes evident at a larger scale as an optical response, characterized by a colorimetric change in the nanodispersion. In this study, we identify three mechanisms of physical activation responsible for inducing a colorimetric change response in the nanodispersions at temperatures relevant to fruits’ cold chain monitoring. Furthermore, we explore their potential application in fabricating functional Time-Temperature Indicators (TTIs), which are defined in this thesis as indicators composed of a nanodispersion (active material) and a container. The characterization was conducted at three levels: nanodispersions, containers, and TTIs. This work investigated the correlation between the temperature response and parameters such as type of NPs, size, NPs’ synthesis route, and concentration in the performance of TTIs based on nanodispersions. The nanodispersions of AgNPs and AuNPs were synthesized using chemical and physical methods. Specifically, AgNPs were chemically synthesized using two distinct approaches: the in-situ reduction method and the seed-based thermal synthetic method (the nanoparticles synthesized by the latter method were labeled as AgTNPs); while AuNPs were synthesized through the Pulsed Laser Ablation in Liquid Technique. The quantification of the optical response of the nanodispersions was obtained at temperatures of 4°C and 22°C for 5 hours to simulate a break in the fruits’ cold chain conditions. At 4°C, both AgNPs and AgTNPs exhibited color constancy, but at 22°C, they displayed significant variations in colorimetric responses, reaching up to 252 %. On the other hand, AuNPs showed colorimetric responses at low temperatures (4°C), with colorimetric variations of up to 27 %. Characterization techniques such as UV-visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA) were used to determine the mechanisms by which the nanodispersions change their optical response upon exposure to the temperatures under study. The research revealed that for AgNPs, the mechanism is based on an increase in the concentration of NPs in the nanodispersion, from 6.82·108 to 9.90·109 NPs/mL. This mechanism is based on how the synthesis method (chemical reduction) depends on temperature. The process converts metallic ions into nanoparticles by reducing chemical precursors. As the temperature increases, the reduction reaction rate also increases due to higher kinetic energy of the molecules involved. For AgTNPs, the operational mechanism presented is rooted in the variation of the geometry of a certain percentage of NPs, leading to heterogeneity in NPs LSPR. For these AgTNPs, AgNPs seeds were utilized, acting as nuclei onto which additional Ag is deposited, enabling controlled growth and formation of new nanoparticles with shapes strongly influenced by exposure time and temperature. In the case of AuNPs, the colorimetric change mechanism was found to be related to agglomeration processes. At low temperatures, the average interparticle distances between nanoparticles decrease, and the electrostatic interactions among the NPs intensify, leading to the agglomeration of nanoparticles. Consequently, a plasmonic coupling effect occurs, resulting in a collective colorimetric response. Regarding the container, 3D-printed containers using Plant-based Resin, suitable for incorporating the nanodispersions, were also fabricated. These containers demonstrated appropriate transparency in the visible range, thermal conductivity, and impermeability for TTI manufacturing. Among the different TTIs, those based on AgTNPs showed the most distinguishable colorimetric changes at 22°C, with a total color difference of 39.9. Finally, through a comparison of the activation energies required for fruit degradation and the activation energy for the colorimetric change of the TTIs, it was possible to project that the manufactured TTIs could be suitable for monitoring various fruits, including strawberries, apples, blackberries, pears, passionfruits, bananas, peaches, and cape gooseberries. This research highlights the significant potential of nanotechnology in enhancing cold chain monitoring by offering easily interpretable colorimetric indicators.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-27T16:49:22Z
dc.date.available.none.fl_str_mv 2023-10-27T16:49:22Z
dc.date.issued.none.fl_str_mv 2023-08-23
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/70964
dc.identifier.doi.none.fl_str_mv 10.57784/1992/70964
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/70964
identifier_str_mv 10.57784/1992/70964
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Teresita Alzate-Yepes and Diana Mar´ıa Orozco-Soto. P´erdida y desperdicio de alimentos. problema que urge soluci´on. Perspectivas en Nutrici´on Humana, 23(2): 133–139, 2021.
Prem Vrat, Rachita Gupta, Aman Bhatnagar, Devendra Kumar Pathak, and Vijayta Fulzele. Literature review analytics (lra) on sustainable cold-chain for perishable food products: research trends and future directions. Opsearch, 55(3-4): 601–627, 2018.
Benjamin WB Holman, Joseph P Kerry, and David L Hopkins. A review of patents for the smart packaging of meat and muscle-based food products. Recent patents on food, nutrition & agriculture, 9(1):3–13, 2018.
Masoud Ghaani, Carlo A Cozzolino, Giulia Castelli, and Stefano Farris. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51:1–11, 2016.
Seung Yuan Lee, Seung Jae Lee, Dong Soo Choi, and Sun Jin Hur. Current topics in active and intelligent food packaging for preservation of fresh foods. Journal of the Science of Food and Agriculture, 95(14):2799–2810, 2015.
Renata Dobrucka and Robert Przekop. New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, 43(11):e14194, 2019.
Ping Zhao, Jean Pierre Ndayambaje, Xiao Liu, and Xingxing Xia. Microbial spoilage of fruits: A review on causes and prevention methods. Food Reviews International, 38(sup1):225–246, 2022.
R Badia-Melis, U Mc Carthy, L Ruiz-Garcia, J Garcia-Hierro, and JI Robla Villalba. New trends in cold chain monitoring applications-a review. Food Control, 86:170–182, 2018.
Samuel Mercier, Sebastien Villeneuve, Martin Mondor, and Ismail Uysal. Time–temperature management along the food cold chain: A review of recent developments. Comprehensive reviews in food science and food safety, 16(4):647–667, 2017.
Tianxi Yang and Timothy V Duncan. Challenges and potential solutions for nanosensors intended for use with foods. Nature nanotechnology, 16(3):251–265, 2021.
Adriana Pavelkov´a et al. Time temperature indicators as devices intelligent packaging. Acta Univ. Agric. Silvic. Mendel. Brun, 61(1):245–251, 2013.
Judith Langer, Sergey M Novikov, and Luis M Liz-Marz´an. Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology, 26(32):322001, 2015.
PS Taoukis and TP Labuza. Time-temperature indicators (ttis). Novel food packaging techniques, pages 103–126, 2003.
Shaodong Wang, Xinghai Liu, Mei Yang, Yu Zhang, Keyu Xiang, and Rong Tang. Review of time temperature indicators as quality monitors in food packaging.Packaging Technology and Science, 28(10):839–867, 2015.
Marta Biega´nska, Daniela Gwiazdowska, Wojciech Kozak, and K Marchwinska. The use of tti indicators for quality monitoring of freshly squeezed juices. In Proceedings of The International Forum on Agri–Food Logistics II Domestic Scientific Conference AGROLOGISTYKA, 2014.
K Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, 2003.
Ivan O Sosa, Cecila Noguez, and Ruben G Barrera. Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B, 107 (26):6269–6275, 2003.
Paolo Prosposito, Luca Burratti, and Iole Venditti. Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors, 8(2):26, 2020.
Antul Kumar, Anuj Choudhary, Harmanjot Kaur, Sahil Mehta, and Azamal Husen. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. Journal of Nanobiotechnology, 19(1):256, 2021.
Abolghasem Jouyban and Elaheh Rahimpour. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta, 217:121071, 2020.
Vincenzo Amendola, Roberto Pilot, Marco Frasconi, Onofrio M Marago, and Maria Antonia Iatı. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 29(20):203002, 2017.
Lili Yu, Zhaorui Song, Jun Peng, Manli Yang, Hao Zhi, and Hua He. Progress of gold nanomaterials for colorimetric sensing based on different strategies. TrAC Trends in Analytical Chemistry, 127:115880, 2020.
Kathryn M Mayer and Jason H Hafner. Localized surface plasmon resonance sensors. Chemical reviews, 111(6):3828–3857, 2011.
Jie Zeng, Stefan Roberts, and Younan Xia. Nanocrystal-based time–temperature indicators. Chemistry–A European Journal, 16(42):12559–12563, 2010.
Seokwon Lim, Sundaram Gunasekaran, and Jee-Young Imm. Gelatin-templated gold nanoparticles as novel time–temperature indicator. Journal of food science, 77(9):N45–N49, 2012.
Yi-Cheng Wang, Lin Lu, and Sundaram Gunasekaran. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage. Microchimica Acta, 182(7-8):1305–1311, 2015.
Chao Zhang, An-Xiang Yin, Ruibin Jiang, Jie Rong, Lu Dong, Tian Zhao, Ling-Dong Sun, Jianfang Wang, Xing Chen, and Chun-Hua Yan. Time–temperature indicator for perishable products based on kinetically programmable ag overgrowth on au nanorods. ACS nano, 7(5):4561–4568, 2013.
Colleen L Nehl, Hongwei Liao, and Jason H Hafner. Optical properties of starshaped gold nanoparticles. Nano letters, 6(4):683–688, 2006.
Gobernación de Cundinamarca. Secretaría de planeación de Cundinamarca. Recuperado de Oficina de Sistemas de Información Análisis y Estadísticas: http://www.cundinamarca. gov. co, 2016.
R Tafur, JC Toro, A Navarrete, and CA Ramírez. Plan frutícola nacional: Desarrollo de la fruticultura en Cundinamarca. Ministerio de Agricultura y Desarrollo Rural–ASOHOFRUCOL–SAG, 92, 2006.
Marta Bieganska. Shelf-life monitoring of food using time-temperature indicators (tti) for application in intelligent packaging. Towaroznawcze Problemy Jakosci, (2):75–85, 2017.
Heather Benko. Nanotechnology standardization activities–support of us representation on iso/tc 229 nanotechnologies. Technical report, American National Standards Institute (ANSI), Washington, DC (United States), 2017.
Loutfy H Madkour and Loutfy H Madkour. Introduction to nanotechnology (nt) and nanomaterials (nms). Nanoelectronic Materials: Fundamentals and Applications, pages 1–47, 2019.
Lalitha A Kolahalam, IV Kasi Viswanath, Bhagavathula S Diwakar, B Govindh, Venu Reddy, and YLN Murthy. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings, 18:2182–2190, 2019.
Juh Tzeng Lue. Physical properties of nanomaterials. Encyclopedia of nanoscience and nanotechnology, 10(1):1–46, 2007.
Naveen Noah Jason, Wei Shen, and Wenlong Cheng. Copper nanowires as conductive ink for low-cost draw-on electronics. ACS applied materials & interfaces, 7(30):16760–16766, 2015.
Neeraj Kumar, Pankaj Chamoli, Mrinmoy Misra, MK Manoj, and Ashutosh Sharma. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale, 14(11):3987–4017, 2022.
Akhtar Munir, Khurram Saleem Joya, Tanveer Ul Haq, Noor-Ul-Ain Babar, Syed Zajif Hussain, Ahsanulhaq Qurashi, Najeeb Ullah, and Irshad Hussain. Metal nanoclusters: new paradigm in catalysis for water splitting, solar and chemical energy conversion. ChemSusChem, 12(8):1517–1548, 2019.
Asim Hussain, Fazeelat Rehman, Hamza Rafeeq, Muhammad Waqas, Asma Asghar, Nadia Afsheen, Abbas Rahdar, Muhammad Bilal, and Hafiz MN Iqbal. In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air–a review. Chemosphere, 289:133252, 2022.
[40] Shalini Sahani and Yogesh Chandra Sharma. Advancements in applications of nanotechnology in global food industry. Food Chemistry, 342:128318, 2021.
He Zhao, Yuhong Zheng, Yuepeng Cai, Tailin Xu, Renfeng Dong, and Xueji Zhang. Intelligent metallic micro/nanomotors: From propulsion to application. Nano Today, 52:101939, 2023.
Shi-Hao Li, Punit Kumar, Shubham Chandra, and Upadrasta Ramamurty. Directed energy deposition of metals: processing, microstructures, and mechanical properties. International Materials Reviews, 68(6):605–647, 2023.
Abeer Jabra Shnoudeh, Islam Hamad, Ruwaida W Abdo, Lana Qadumii, Abdulmutallab Yousef Jaber, Hiba Salim Surchi, and Shahd Z Alkelany. Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and bionanotechnology, pages 527–612. Elsevier, 2019.
A Resano-Garcia, Y Battie, A En Naciri, S Akil, and N Chaoui. Experimental and theoretical determination of the plasmonic responses and shape distribution of colloidal metallic nanoparticles. The Journal of Chemical Physics, 142(13), 2015.
Alexander Wei. Plasmonic nanomaterials: enhanced optical properties from metal nanoparticles and their ensembles. In Nanoparticles: building blocks for nanotechnology, pages 173–200. Springer, 2004.
Prashant K Jain and Mostafa A El-Sayed. Plasmonic coupling in noble metal nanostructures. Chemical Physics Letters, 487(4-6):153–164, 2010.
Sujit Kumar Ghosh and Tarasankar Pal. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chemical reviews, 107(11):4797–4862, 2007.
VM Renter´ıa and J Garc´ıa-Macedo. Influence of the local dielectric constant on modeling the optical absorption of silver nanoparticles in silica gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 278(1-3):1–9, 2006.
SS Verma and Jagmeet Singh Sekhon. Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (lspr) of gold nanorod. Journal of Optics, 41:89–93, 2012.
Valentina Guerrero-Florez, Stelia C Mendez-Sanchez, Olga A Patrón-Soberano, Vicente Rodríguez-González, Diana Blach, and Fernando Martínez. Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: A comparative study for different particle sizes, shapes, and surface conjugations. Journal of materials chemistry B, 8(14):2862–2875, 2020.
T De Andrade, FCM Freire, Giovanni Barbero, and AL Alexe-Ionescu. Interface description of milli-q water cells: Temperature dependence of the cpe parameters. Journal of Electroanalytical Chemistry, 777:19–25, 2016.
TP Iglesias, MA Rivas, R Iglesias, Jo˜ao Carlos R Reis, and F Cohelho. Electric permittivity and conductivity of nanofluids consisting of 15 nm particles of alumina in base milli-q and milli-ro water at different temperatures. The Journal of Chemical Thermodynamics, 66:123–130, 2013.
Florian Kretschmer, Stefan Muehlig, Stephanie Hoeppener, Andreas Winter, Martin D Hager, Carsten Rockstuhl, Thomas Pertsch, and Ulrich S Schubert. Survey of plasmonic nanoparticles: from synthesis to application. Particle & Particle Systems Characterization, 31(7):721–744, 2014.
Daan P Spr¨unken, Hiroo Omi, Kazuaki Furukawa, Hiroshi Nakashima, Ilya Sychugov, Yoshihiro Kobayashi, and Keiichi Torimitsu. Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using gans theory. The Journal of Physical Chemistry C, 111(39):14299–14306, 2007.
Zhang Jiang and Wei Chen. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis. Journal of Applied Crystallography, 50(6):1653–1663, 2017.
Ji-Yong Park, Sami Rosenblatt, Yuval Yaish, Vera Sazonova, Hande Ustunel, Stephan Braig, TA Arias, Piet W Brouwer, and Paul L McEuen. Electron- phonon scattering in metallic single-walled carbon nanotubes. Nano letters, 4(3):517–520, 2004.
OA Yeshchenko, IS Bondarchuk, VS Gurin, IM Dmitruk, and AV Kotko. Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surface Science, 608:275–281, 2013.
Ramin Golestanian. Collective behavior of thermally active colloids. Physical review letters, 108(3):038303, 2012.
Herbert Loria, Pedro Pereira-Almao, and Carlos E Scott. Determination of agglomeration kinetics in nanoparticle dispersions. Industrial & engineering chemistry research, 50(14):8529–8535, 2011.
Jun Cai and Jian-Sheng Wang. Energies and structures of stacking faults of ag from the tight-binding method calculation. Modelling and Simulation in Materials Science and Engineering, 10(5):469, 2002.
Haoyang Haven Liu, Sirikarn Surawanvijit, Robert Rallo, Gerassimos Orkoulas, and Yoram Cohen. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number monte carlo simulation. Environmental science & technology, 45(21):9284–9292, 2011.
Dirk L Van Hyning, Walter G Klemperer, and Charles F Zukoski. Silver nanoparticle formation: predictions and verification of the aggregative growth model. Langmuir, 17(11):3128–3135, 2001.
Sonja Froeschke, Stefanie Kohler, Alfred P Weber, and Gerhard Kasper. Impact fragmentation of nanoparticle agglomerates. Journal of Aerosol Science, 34(3): 275–287, 2003.
Martin Seipenbusch, Petya Toneva, Wolfgang Peukert, and Alfred P Weber. Impact fragmentation of metal nanoparticle agglomerates. Particle & Particle Systems Characterization, 24(3):193–200, 2007.
ASTM F1416-96(2019). Standard guide for selection of time-temperature indicators. Standard, ASTM Standards, United States, June 2019.
PS Taoukis. Commercialization of time-temperature integrators for foods. In Case studies in novel food processing technologies, pages 351–366. Elsevier, 2010.
GA Lanza, JA Perez-Taborda, and A Avila. Utility of nanomaterials in food processing and packaging. In Nanomaterials in Bionanotechnology, pages 221 248. CRC Press, 2021.
Bambang Kuswandi and Mehran Moradi. Sensor trends in beverages packaging. Trends in beverage packaging, pages 279–302, 2019.
Ajay Piriya VS, Printo Joseph, Kiruba Daniel SCG, Susithra Lakshmanan, Takatoshi Kinoshita, and Sivakumar Muthusamy. Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering: C, 78:1231– 1245, 2017.
Yanfeng Liu, Xin Huang, Zuoji Niu, Dongni Wang, Huilin Gou, Qiaobo Liao, Kai Xi, Zhongfu An, and Xudong Jia. Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chemical Science, 12 (23):8199–8206, 2021.
Corey Fortin and Harold L Goodwin Jr. Valuation of temp-time’s fresh-check indicator on perishable food products in belgium. Technical report, 2008.
Giancarla Alberti, Camilla Zanoni, Lisa Rita Magnaghi, and Raffaela Biesuz. Gold and silver nanoparticle-based colorimetric sensors: new trends and applications. Chemosensors, 9(11):305, 2021.
Chintamani Nagesa Ramachandra Rao, Achim M¨uller, and Anthony K Cheetham. The chemistry of nanomaterials: synthesis, properties and applications. John Wiley & Sons, 2006.
[74] GA Lanza, JA Perez-Taborda, and A Avila. Time temperature indicators (ttis) based on silver nanoparticles for monitoring of perishables products. In Journal of Physics: Conference Series, volume 1247, page 012055. IOP Publishing, 2019.
Ilse Gosens, Jan Andries Post, Liset JJ de la Fonteyne, Eugene HJM Jansen, John W Geus, Flemming R Cassee, and Wim H de Jong. Impact of agglomeration state of nano-and submicron sized gold particles on pulmonary inflammation. Particle and fibre toxicology, 7(1):1–11, 2010.
Chao Zhang, An-Xiang Yin, Ruibin Jiang, Jie Rong, Lu Dong, Tian Zhao, Ling- Dong Sun, Jianfang Wang, Xing Chen, and Chun-Hua Yan. Time–temperature indicator for perishable products based on kinetically programmable ag overgrowth on au nanorods. ACS nano, 7(5):4561–4568, 2013.
Christopher J DeSantis, Rebecca G Weiner, Andjela Radmilovic, Matthew M Bower, and Sara E Skrabalak. Seeding bimetallic nanostructures as a new class of plasmonic colloids. The Journal of Physical Chemistry Letters, 4(18):3072–3082, 2013.
Zhuangqiang Gao, Kaichao Deng, Xu-Dong Wang, Manuel Miro, and Dianping Tang. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS applied materials & interfaces, 6(20):18243–18250, 2014.
Yi-Cheng Wang, Lin Lu, and Sundaram Gunasekaran. Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosensors and Bioelectronics, 92:109–116, 2017.
Ashvin Ashok, Michael Brison, and Yann LeTallec. Improving cold chain systems: Challenges and solutions. Vaccine, 35(17):2217–2223, 2017.
Wentao Wu, Claudio Beretta, Paul Cronje, Stefanie Hellweg, and Thijs Defraeye. Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment. Applied Energy, 254:113586, 2019.
Robert E Hardenburg, Alley E Watada, and Chien Yi Wang. The commercial storage of fruits, vegetables, and florist and nursery stocks. Number 66. US Department of Agriculture, Agricultural Research Service, 1986.
Kandarp Mavani and Mihir Shah. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. International Journal of Engineering Research & Technology, 2(3):1–5, 2013.
Lorraine Mulfinger, Sally D Solomon, Mozghan Bahadory, Aravindan V Jeyarajasingam, Susan A Rutkowsky, and Charles Boritz. Synthesis and study of silver nanoparticles. Journal of chemical education, 84(2):322, 2007.
Damian Aherne, Deirdre M Ledwith, Matthew Gara, and John M Kelly. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 18(14):2005–2016, 2008.
Carlos Andres Perez-Lopez, Jaime Andres Perez-Taborda, Henry Riascos, and Alba Avila. The influence of pulsed laser ablation in liquids parameters on the synthesis of zno nanoparticles. In Journal of Physics: Conference Series, volume 1541, page 012019. IOP Publishing, 2020.
W Norsyuhada, W Mohd Shukri, Hazri Bakhtiar, Shumaila Islam, and Noriah Bidin. Synthesis and characterization of gold-silver nanoparticles in deionized water by pulsed laser ablation (plal) technique at different laser parameter. International Journal of Nanoscience, 18(01):1850015, 2019.
Julio Car and Nikˇsa Krstulovi´c. Fitting procedure to reconstruct the size distribution and the concentration of silver colloidal nanoparticles from uv-vis spectra. Nanomaterials, 12(19):3302, 2022.
Janet P Yapor, Abeer Alharby, Claudia Gentry-Weeks, Melissa M Reynolds, AKM Mashud Alam, and Yan Vivian Li. Polydiacetylene nanofiber composites as a colorimetric sensor responding to escherichia coli and ph. ACS omega, 2(10): 7334–7342, 2017.
Deborah H Charych, Jon O Nagy, Wayne Spevak, and Mark D Bednarski. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science, 261(5121):585–588, 1993.
A Selimis and M Farsari. Laser-based 3d printing and surface texturing. Comprehensive Materials Finishing, 3:111–136, 2017.
Mangirdas Malinauskas. Laser multiscale 3d lithography of plant based resins. In Laser Applications Conference, pages LTu5A–1. Optica Publishing Group, 2021.
Lyane M Moreira, EA Carvalho, MJV Bell, V Anjos, AC Sant’Ana, Ana Paula P Alves, B Fragneaud, LA Sena, BS Archanjo, and CA Achete. Thermo-optical properties of silver and gold nanofluids. Journal of thermal analysis and calorimetry, 114:557–564, 2013.
PramodWarrier and Amyn Teja. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale research letters, 6:1–6, 2011.
Kimon P Valavanis, J Zheng, and George Paschos. A total color difference measure for segmentation in color images. Journal of Intelligent and Robotic Systems, 16: 269–313, 1996.
Alexandra Lyashenko, Robert Weikl, Zsolt Rozsnyai, and Johannes Regensburger. Dekron’s direct printing technology. Inkjet Printing in Industry: Materials, Technologies, Systems, and Applications, 3:1521–1542, 2022.
Chien YiWang. Chilling injury of fruits and vegetables. Food reviews international, 5(2):209–236, 1989.
Sanim Rahman. Size and concentration analysis of gold nanoparticles with ultraviolet-visible spectroscopy. Undergraduate Journal of Mathematical Modeling: One+ Two, 7(1):2, 2016.
Wolfgang Haiss, Nguyen TK Thanh, Jenny Aveyard, and David G Fernig. Determination of size and concentration of gold nanoparticles from uv- vis spectra. Analytical chemistry, 79(11):4215–4221, 2007.
Zaheer Khan, Shaeel Ahmed Al-Thabaiti, Abdullah Yousif Obaid, and AO Al- Youbi. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces B: Biointerfaces, 82(2):513–517, 2011.
Athena M Keene and Katherine M Tyner. Analytical characterization of gold nanoparticle primary particles, aggregates, agglomerates, and agglomerated aggregates. Journal of Nanoparticle Research, 13:3465–3481, 2011.
Jie Zeng, Stefan Roberts, and Younan Xia. Nanocrystal-based time–temperature indicators. Chemistry–A European Journal, 16(42):12559–12563, 2010.
John C Russ, James R Matey, A John Mallinckrodt, and Susan McKay. The image processing handbook. Computers in Physics, 8(2):177–178, 1994.
John C Russ. The image processing and analysis cookbook. Asheville, c2001 [cit. 2018-03-20]. Dostupn´e z: http://web4. cbm. uam. es/joomlarl/images/Servicios/070. Microscopia-opticacfocal/documentos/manuales/Image tool kit. pdf, 2010.
Lou Ross. The image processing handbook, russ john c. crc press, boca raton fl, 2011, 972 pages. isbn 1-4398-4045-0 (hardcover), 2011.
Mohammed Baalousha, Yon Ju-Nam, Paula A Cole, Joseph A Hriljac, Ian P Jones, Charles R Tyler, Vicki Stone, Teresa F Fernandes, Mark A Jepson, and Jamie R Lead. Characterization of cerium oxide nanoparticles—part 2: Nonsize measurements. Environmental Toxicology and Chemistry, 31(5):994–1003, 2012.
Sebastian Stach, Zaneta Garczyk, Stefan Talu, Shahram Solaymani, Atefeh Ghaderi, Rostam Moradian, Negin Beryani Nezafat, Seyed Mohammad Elahi, and Hedieh Gholamali. Stereometric parameters of the cu/fe nps thin films. The Journal of Physical Chemistry C, 119(31):17887–17898, 2015.
Stephen Palani, John P Kenison, Sinan Sabuncu, Tao Huang, Fehmi Civitci, Sadik Esener, and Xiaolin Nan. Multispectral localized surface plasmon resonance (mslspr) reveals and overcomes spectral and sensing heterogeneities of single gold nanoparticles. ACS nano, 17(3):2266–2278, 2023.
Suparna Mukherji, Sharda Bharti, Gauri Shukla, and Soumyo Mukherji. Synthesis and characterization of size-and shape-controlled silver nanoparticles. Physical Sciences Reviews, 4(1):20170082, 2018.
Hugh H Richardson, Zackary N Hickman, Alexander O Govorov, Alyssa C Thomas, Wei Zhang, and Martin E Kordesch. Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano letters, 6(4):783–788, 2006.
Ankita Mishra, Shazia Shaikh, and Ashok Kumar. Progressive cryoaggregation of gold nanoparticles: Physiochemical characterization, effect on biological interactions and use in coldness indicators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636:128158, 2022.
Rochelle Arvizo, Resham Bhattacharya, and Priyabrata Mukherjee. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert opinion on drug delivery, 7(6):753–763, 2010.
Rituraj Borah and Sammy W Verbruggen. Coupled plasmon modes in 2d gold nanoparticle clusters and their effect on local temperature control. The Journal of Physical Chemistry C, 123(50):30594–30603, 2019.
Adriana P Herrera, Oscar Resto, Julio G Briano, and Carlos Rinaldi. Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology, 16 (7):S618, 2005.
Charles A Clifford, Michael Stinz, Vasile-Dan Hodoroaba, Wolfgang ES Unger, and Toshiyuki Fujimoto. International standards in nanotechnologies. In Characterization of nanoparticles, pages 511–525. Elsevier, 2020.
Kannan M Krishnan. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE transactions on magnetics, 46(7):2523–2558, 2010.
Tingting Gao, You Tian, Zhiwei Zhu, and Da-Wen Sun. Modelling, responses and applications of time-temperature indicators (ttis) in monitoring fresh food quality. Trends in Food Science & Technology, 99:311–322, 2020.
Lixuan Zhang, Ruonan Sun, Hufei Yu, Hailong Yu, Gaolei Xu, Liming Deng, and Jing Qian. A new method for matching gold nanoparticle-based time–temperature indicators with muffins without obtaining activation energy. Journal of Food Science, 85(8):2589–2595, 2020.
PS Taoukis and Ted P Labuza. Applicability of time-temperature indicators as shelf life monitors of food products. Journal of Food Science, 54(4):783–788, 1989.
SR Logan. The origin and status of the arrhenius equation. Journal of Chemical Education, 59(4):279, 1982.
Keith J Laidler. The development of the arrhenius equation. Journal of chemical Education, 61(6):494, 1984.
Jiamin Yang and Yi Xu. Prediction of fruit quality based on the rgb values of time–temperature indicator. Journal of Food Science, 86(3):932–941, 2021.
IMLB Avila and CLM Silva. Modelling kinetics of thermal degradation of colour in peach puree. Journal of food engineering, 39(2):161–166, 1999.
Diego A Castellanos, Rolando Mendoza, Rafael Gavara, and An´ıbal O Herrera. Respiration and ethylene generation modeling of “hass” avocado and feijoa fruits and application in modified atmosphere packaging. International Journal of Food Properties, 20(2):333–349, 2017.
Olga L Benavides, Karen L Pinta, Paola A Chamorro, and Andr´es F Ceron. Kinetic modeling of deterioration of strawberry (fragaria x ananassa duch cv. albion) grown in cumbal (colombia). Advance Journal of Food Science and Technology, 15(S): 77–82, 2018.
A Ibarz, J Pagan, and S Garza. Kinetic models of non-enzymatic browning in apple puree. Journal of the Science of Food and Agriculture, 80(8):1162–1168, 2000.
Darko M Mici´c, Sanja B Ostoji´c, Mladen B Simonovi´c, Gordana Krstic, Lato L Pezo, and Branislav R Simonovi´c. Kinetics of blackberry and raspberry seed oils oxidation by dsc. Thermochimica Acta, 601:39–44, 2015.
Albert Ibarz, Jordi Pag´an, and Salvador Garza. Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of food engineering, 39(4):415–422, 1999.
Johanna Garavito, An´ıbal O Herrera, and Diego A Castellanos. A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (physalis peruviana) fruits. Biosystems Engineering, 208: 152–163, 2021.
Carolina Vieira Bezerra, Luiza H Meller da Silva, Danielle Ferreira Corrra, and Antonio MC Rodrigues. A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85:750–755, 2015.
María Antonieta Riera and Yunet Gómez Salcedo. Cinética de la degradación térmica del ácido ascórbico en el jugo de lulo (solanum quitoense lam.). Revista de Ciencia y Tecnología, 35(1), 2019.
Jerry Ampofo-Asiama and Bright Quaye. The effect of pasteurisation on the microbiological and nutritional quality of soursop (annona muricata l.) juice. Asian Food Science Journal, 6(3):1–8, 2018.
Phuc L Ho, Dinh T Tran, Maarten LATM Hertog, and Bart M Nicolaı. Modelling respiration rate of dragon fruit as a function of gas composition and temperature. Scientia Horticulturae, 263:109138, 2020.
CR Chen and HS Ramaswamy. Color and texture change kinetics in ripening bananas. LWT-food science and technology, 35(5):415–419, 2002.
Andrés F Cerón, Diego F Mejía, and Oswaldo Osorio. Cinética de inactivación térmica de la enzima pectinmetilesterasa en zumo de tomate de árbol (solanum betaceum cav.). Información tecnológica, 27(2):67–76, 2016.
GA Lanza, JA Perez-Taborda, and A Avila. Functional time-temperature in- dicators (ttis) based on nanoparticles for detecting steps changes on cold chain monitoring (underevaluation). Foods, 2023.
Grace AV Magalhaes-Ghiotto, Alessandra M de Oliveira, Jean PS Natal, Rosangela Bergamasco, and Raquel G Gomes. Green nanoparticles in water treatment: a review of research trends, applications, environmental aspects and largescale production. Environmental Nanotechnology, Monitoring & Management, 16: 100526, 2021.
Xiaojia He, Hua Deng, Winfred G Aker, and Huey-min Hwang. Regulation and safety of nanotechnology in the food and agriculture industry. In Food applications of nanotechnology, pages 525–536. CRC Press, 2019.
Takuya Tsuzuki. Commercial scale production of inorganic nanoparticles. International journal of nanotechnology, 6(5-6):567–578, 2009.
dc.rights.en.fl_str_mv CC0 1.0 Universal
dc.rights.uri.none.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 103 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/7059dcb3-bf0c-40a6-9dac-90a7bf6284cd/download
https://repositorio.uniandes.edu.co/bitstreams/832ac69d-ed99-429c-a0dd-2d3437114878/download
https://repositorio.uniandes.edu.co/bitstreams/a75a26aa-c5ee-4b6a-9e71-8320b800c954/download
https://repositorio.uniandes.edu.co/bitstreams/4cd02e85-206e-4e77-b246-065269fea6c1/download
https://repositorio.uniandes.edu.co/bitstreams/d5bc187b-a5a1-40ba-9a9a-ce0d33e76f20/download
https://repositorio.uniandes.edu.co/bitstreams/750625d2-6c43-4e35-83c5-7d594933a061/download
https://repositorio.uniandes.edu.co/bitstreams/51c90f6f-35e6-47f0-a490-ee85c6d652dc/download
https://repositorio.uniandes.edu.co/bitstreams/8cd1d304-e9da-491f-bc14-7f310bb38bda/download
bitstream.checksum.fl_str_mv 605dd56399f2294830581310a66f5f22
d38eee1e99fe79234b09cb810e0f5146
42fd4ad1e89814f5e4a476b409eb708c
ae9e573a68e7f92501b6913cc846c39f
c14b20ce0c164f8667a30f08f146c0cc
6879cb259cd7117fe01a1983f1cb8c93
bcfbae408ea3bc732b85237e8f5e3652
dbef97cd1bb1b236177c35bc072a3419
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133967680241664
spelling Avila Bernal, Alba GracielaYan, Vivian LiLanza Bayona, Gustavo AdolfoRamírez Cajiao, María CatalinaHerreño Fierro, César AurelioPérez Taborda, Jaime AndrésFacultad de Ingeniería::CMUA - Centro de Microelectrónica Universidad de los Andes2023-10-27T16:49:22Z2023-10-27T16:49:22Z2023-08-23https://hdl.handle.net/1992/7096410.57784/1992/70964instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/New functional Time-Temperature Indicators (TTIs) utilizing silver and gold nanoparticles (AgNPs and AuNPs) have been fabricated to validate the cold chain compliance of fruits (with temperature requirements ranging between 0°C and 4°C) in the Cundinamarca Region. The working principle of these indicators is built around plasmonic nanoparticles (NPs) and relies on their Localized Surface Plasmon Resonances (LSPRs). The plasmonic sensing approach is based on a spectral shift of the plasmon resonance of NPs that are suspended within a medium (nanodispersion), which responds to temperature variations. The temperature alters the initial configuration of the NPs as time progresses, leading to variations in their LSPRs. This phenomenon becomes evident at a larger scale as an optical response, characterized by a colorimetric change in the nanodispersion. In this study, we identify three mechanisms of physical activation responsible for inducing a colorimetric change response in the nanodispersions at temperatures relevant to fruits’ cold chain monitoring. Furthermore, we explore their potential application in fabricating functional Time-Temperature Indicators (TTIs), which are defined in this thesis as indicators composed of a nanodispersion (active material) and a container. The characterization was conducted at three levels: nanodispersions, containers, and TTIs. This work investigated the correlation between the temperature response and parameters such as type of NPs, size, NPs’ synthesis route, and concentration in the performance of TTIs based on nanodispersions. The nanodispersions of AgNPs and AuNPs were synthesized using chemical and physical methods. Specifically, AgNPs were chemically synthesized using two distinct approaches: the in-situ reduction method and the seed-based thermal synthetic method (the nanoparticles synthesized by the latter method were labeled as AgTNPs); while AuNPs were synthesized through the Pulsed Laser Ablation in Liquid Technique. The quantification of the optical response of the nanodispersions was obtained at temperatures of 4°C and 22°C for 5 hours to simulate a break in the fruits’ cold chain conditions. At 4°C, both AgNPs and AgTNPs exhibited color constancy, but at 22°C, they displayed significant variations in colorimetric responses, reaching up to 252 %. On the other hand, AuNPs showed colorimetric responses at low temperatures (4°C), with colorimetric variations of up to 27 %. Characterization techniques such as UV-visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS), Dynamic Light Scattering (DLS), and Nanoparticle Tracking Analysis (NTA) were used to determine the mechanisms by which the nanodispersions change their optical response upon exposure to the temperatures under study. The research revealed that for AgNPs, the mechanism is based on an increase in the concentration of NPs in the nanodispersion, from 6.82·108 to 9.90·109 NPs/mL. This mechanism is based on how the synthesis method (chemical reduction) depends on temperature. The process converts metallic ions into nanoparticles by reducing chemical precursors. As the temperature increases, the reduction reaction rate also increases due to higher kinetic energy of the molecules involved. For AgTNPs, the operational mechanism presented is rooted in the variation of the geometry of a certain percentage of NPs, leading to heterogeneity in NPs LSPR. For these AgTNPs, AgNPs seeds were utilized, acting as nuclei onto which additional Ag is deposited, enabling controlled growth and formation of new nanoparticles with shapes strongly influenced by exposure time and temperature. In the case of AuNPs, the colorimetric change mechanism was found to be related to agglomeration processes. At low temperatures, the average interparticle distances between nanoparticles decrease, and the electrostatic interactions among the NPs intensify, leading to the agglomeration of nanoparticles. Consequently, a plasmonic coupling effect occurs, resulting in a collective colorimetric response. Regarding the container, 3D-printed containers using Plant-based Resin, suitable for incorporating the nanodispersions, were also fabricated. These containers demonstrated appropriate transparency in the visible range, thermal conductivity, and impermeability for TTI manufacturing. Among the different TTIs, those based on AgTNPs showed the most distinguishable colorimetric changes at 22°C, with a total color difference of 39.9. Finally, through a comparison of the activation energies required for fruit degradation and the activation energy for the colorimetric change of the TTIs, it was possible to project that the manufactured TTIs could be suitable for monitoring various fruits, including strawberries, apples, blackberries, pears, passionfruits, bananas, peaches, and cape gooseberries. This research highlights the significant potential of nanotechnology in enhancing cold chain monitoring by offering easily interpretable colorimetric indicators.Fundación CEIBADoctor en IngenieríaDoctoradoMicro y Nanotecnología103 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nanoparticles Applications in Time-Temperature Indicators (TTIs) for cold chain validation of fruits in Cundinamarca regionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDTime-Temperature IndicatorColorimetric sensingNanoparticlesAgNPsAuNPsCold chain validationIngenieríaTeresita Alzate-Yepes and Diana Mar´ıa Orozco-Soto. P´erdida y desperdicio de alimentos. problema que urge soluci´on. Perspectivas en Nutrici´on Humana, 23(2): 133–139, 2021.Prem Vrat, Rachita Gupta, Aman Bhatnagar, Devendra Kumar Pathak, and Vijayta Fulzele. Literature review analytics (lra) on sustainable cold-chain for perishable food products: research trends and future directions. Opsearch, 55(3-4): 601–627, 2018.Benjamin WB Holman, Joseph P Kerry, and David L Hopkins. A review of patents for the smart packaging of meat and muscle-based food products. Recent patents on food, nutrition & agriculture, 9(1):3–13, 2018.Masoud Ghaani, Carlo A Cozzolino, Giulia Castelli, and Stefano Farris. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51:1–11, 2016.Seung Yuan Lee, Seung Jae Lee, Dong Soo Choi, and Sun Jin Hur. Current topics in active and intelligent food packaging for preservation of fresh foods. Journal of the Science of Food and Agriculture, 95(14):2799–2810, 2015.Renata Dobrucka and Robert Przekop. New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, 43(11):e14194, 2019.Ping Zhao, Jean Pierre Ndayambaje, Xiao Liu, and Xingxing Xia. Microbial spoilage of fruits: A review on causes and prevention methods. Food Reviews International, 38(sup1):225–246, 2022.R Badia-Melis, U Mc Carthy, L Ruiz-Garcia, J Garcia-Hierro, and JI Robla Villalba. New trends in cold chain monitoring applications-a review. Food Control, 86:170–182, 2018.Samuel Mercier, Sebastien Villeneuve, Martin Mondor, and Ismail Uysal. Time–temperature management along the food cold chain: A review of recent developments. Comprehensive reviews in food science and food safety, 16(4):647–667, 2017.Tianxi Yang and Timothy V Duncan. Challenges and potential solutions for nanosensors intended for use with foods. Nature nanotechnology, 16(3):251–265, 2021.Adriana Pavelkov´a et al. Time temperature indicators as devices intelligent packaging. Acta Univ. Agric. Silvic. Mendel. Brun, 61(1):245–251, 2013.Judith Langer, Sergey M Novikov, and Luis M Liz-Marz´an. Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology, 26(32):322001, 2015.PS Taoukis and TP Labuza. Time-temperature indicators (ttis). Novel food packaging techniques, pages 103–126, 2003.Shaodong Wang, Xinghai Liu, Mei Yang, Yu Zhang, Keyu Xiang, and Rong Tang. Review of time temperature indicators as quality monitors in food packaging.Packaging Technology and Science, 28(10):839–867, 2015.Marta Biega´nska, Daniela Gwiazdowska, Wojciech Kozak, and K Marchwinska. The use of tti indicators for quality monitoring of freshly squeezed juices. In Proceedings of The International Forum on Agri–Food Logistics II Domestic Scientific Conference AGROLOGISTYKA, 2014.K Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, 2003.Ivan O Sosa, Cecila Noguez, and Ruben G Barrera. Optical properties of metal nanoparticles with arbitrary shapes. The Journal of Physical Chemistry B, 107 (26):6269–6275, 2003.Paolo Prosposito, Luca Burratti, and Iole Venditti. Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors, 8(2):26, 2020.Antul Kumar, Anuj Choudhary, Harmanjot Kaur, Sahil Mehta, and Azamal Husen. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. Journal of Nanobiotechnology, 19(1):256, 2021.Abolghasem Jouyban and Elaheh Rahimpour. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta, 217:121071, 2020.Vincenzo Amendola, Roberto Pilot, Marco Frasconi, Onofrio M Marago, and Maria Antonia Iatı. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 29(20):203002, 2017.Lili Yu, Zhaorui Song, Jun Peng, Manli Yang, Hao Zhi, and Hua He. Progress of gold nanomaterials for colorimetric sensing based on different strategies. TrAC Trends in Analytical Chemistry, 127:115880, 2020.Kathryn M Mayer and Jason H Hafner. Localized surface plasmon resonance sensors. Chemical reviews, 111(6):3828–3857, 2011.Jie Zeng, Stefan Roberts, and Younan Xia. Nanocrystal-based time–temperature indicators. Chemistry–A European Journal, 16(42):12559–12563, 2010.Seokwon Lim, Sundaram Gunasekaran, and Jee-Young Imm. Gelatin-templated gold nanoparticles as novel time–temperature indicator. Journal of food science, 77(9):N45–N49, 2012.Yi-Cheng Wang, Lin Lu, and Sundaram Gunasekaran. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage. Microchimica Acta, 182(7-8):1305–1311, 2015.Chao Zhang, An-Xiang Yin, Ruibin Jiang, Jie Rong, Lu Dong, Tian Zhao, Ling-Dong Sun, Jianfang Wang, Xing Chen, and Chun-Hua Yan. Time–temperature indicator for perishable products based on kinetically programmable ag overgrowth on au nanorods. ACS nano, 7(5):4561–4568, 2013.Colleen L Nehl, Hongwei Liao, and Jason H Hafner. Optical properties of starshaped gold nanoparticles. Nano letters, 6(4):683–688, 2006.Gobernación de Cundinamarca. Secretaría de planeación de Cundinamarca. Recuperado de Oficina de Sistemas de Información Análisis y Estadísticas: http://www.cundinamarca. gov. co, 2016.R Tafur, JC Toro, A Navarrete, and CA Ramírez. Plan frutícola nacional: Desarrollo de la fruticultura en Cundinamarca. Ministerio de Agricultura y Desarrollo Rural–ASOHOFRUCOL–SAG, 92, 2006.Marta Bieganska. Shelf-life monitoring of food using time-temperature indicators (tti) for application in intelligent packaging. Towaroznawcze Problemy Jakosci, (2):75–85, 2017.Heather Benko. Nanotechnology standardization activities–support of us representation on iso/tc 229 nanotechnologies. Technical report, American National Standards Institute (ANSI), Washington, DC (United States), 2017.Loutfy H Madkour and Loutfy H Madkour. Introduction to nanotechnology (nt) and nanomaterials (nms). Nanoelectronic Materials: Fundamentals and Applications, pages 1–47, 2019.Lalitha A Kolahalam, IV Kasi Viswanath, Bhagavathula S Diwakar, B Govindh, Venu Reddy, and YLN Murthy. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings, 18:2182–2190, 2019.Juh Tzeng Lue. Physical properties of nanomaterials. Encyclopedia of nanoscience and nanotechnology, 10(1):1–46, 2007.Naveen Noah Jason, Wei Shen, and Wenlong Cheng. Copper nanowires as conductive ink for low-cost draw-on electronics. ACS applied materials & interfaces, 7(30):16760–16766, 2015.Neeraj Kumar, Pankaj Chamoli, Mrinmoy Misra, MK Manoj, and Ashutosh Sharma. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale, 14(11):3987–4017, 2022.Akhtar Munir, Khurram Saleem Joya, Tanveer Ul Haq, Noor-Ul-Ain Babar, Syed Zajif Hussain, Ahsanulhaq Qurashi, Najeeb Ullah, and Irshad Hussain. Metal nanoclusters: new paradigm in catalysis for water splitting, solar and chemical energy conversion. ChemSusChem, 12(8):1517–1548, 2019.Asim Hussain, Fazeelat Rehman, Hamza Rafeeq, Muhammad Waqas, Asma Asghar, Nadia Afsheen, Abbas Rahdar, Muhammad Bilal, and Hafiz MN Iqbal. In-situ, ex-situ, and nano-remediation strategies to treat polluted soil, water, and air–a review. Chemosphere, 289:133252, 2022.[40] Shalini Sahani and Yogesh Chandra Sharma. Advancements in applications of nanotechnology in global food industry. Food Chemistry, 342:128318, 2021.He Zhao, Yuhong Zheng, Yuepeng Cai, Tailin Xu, Renfeng Dong, and Xueji Zhang. Intelligent metallic micro/nanomotors: From propulsion to application. Nano Today, 52:101939, 2023.Shi-Hao Li, Punit Kumar, Shubham Chandra, and Upadrasta Ramamurty. Directed energy deposition of metals: processing, microstructures, and mechanical properties. International Materials Reviews, 68(6):605–647, 2023.Abeer Jabra Shnoudeh, Islam Hamad, Ruwaida W Abdo, Lana Qadumii, Abdulmutallab Yousef Jaber, Hiba Salim Surchi, and Shahd Z Alkelany. Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and bionanotechnology, pages 527–612. Elsevier, 2019.A Resano-Garcia, Y Battie, A En Naciri, S Akil, and N Chaoui. Experimental and theoretical determination of the plasmonic responses and shape distribution of colloidal metallic nanoparticles. The Journal of Chemical Physics, 142(13), 2015.Alexander Wei. Plasmonic nanomaterials: enhanced optical properties from metal nanoparticles and their ensembles. In Nanoparticles: building blocks for nanotechnology, pages 173–200. Springer, 2004.Prashant K Jain and Mostafa A El-Sayed. Plasmonic coupling in noble metal nanostructures. Chemical Physics Letters, 487(4-6):153–164, 2010.Sujit Kumar Ghosh and Tarasankar Pal. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chemical reviews, 107(11):4797–4862, 2007.VM Renter´ıa and J Garc´ıa-Macedo. Influence of the local dielectric constant on modeling the optical absorption of silver nanoparticles in silica gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 278(1-3):1–9, 2006.SS Verma and Jagmeet Singh Sekhon. Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (lspr) of gold nanorod. Journal of Optics, 41:89–93, 2012.Valentina Guerrero-Florez, Stelia C Mendez-Sanchez, Olga A Patrón-Soberano, Vicente Rodríguez-González, Diana Blach, and Fernando Martínez. Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: A comparative study for different particle sizes, shapes, and surface conjugations. Journal of materials chemistry B, 8(14):2862–2875, 2020.T De Andrade, FCM Freire, Giovanni Barbero, and AL Alexe-Ionescu. Interface description of milli-q water cells: Temperature dependence of the cpe parameters. Journal of Electroanalytical Chemistry, 777:19–25, 2016.TP Iglesias, MA Rivas, R Iglesias, Jo˜ao Carlos R Reis, and F Cohelho. Electric permittivity and conductivity of nanofluids consisting of 15 nm particles of alumina in base milli-q and milli-ro water at different temperatures. The Journal of Chemical Thermodynamics, 66:123–130, 2013.Florian Kretschmer, Stefan Muehlig, Stephanie Hoeppener, Andreas Winter, Martin D Hager, Carsten Rockstuhl, Thomas Pertsch, and Ulrich S Schubert. Survey of plasmonic nanoparticles: from synthesis to application. Particle & Particle Systems Characterization, 31(7):721–744, 2014.Daan P Spr¨unken, Hiroo Omi, Kazuaki Furukawa, Hiroshi Nakashima, Ilya Sychugov, Yoshihiro Kobayashi, and Keiichi Torimitsu. Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using gans theory. The Journal of Physical Chemistry C, 111(39):14299–14306, 2007.Zhang Jiang and Wei Chen. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis. Journal of Applied Crystallography, 50(6):1653–1663, 2017.Ji-Yong Park, Sami Rosenblatt, Yuval Yaish, Vera Sazonova, Hande Ustunel, Stephan Braig, TA Arias, Piet W Brouwer, and Paul L McEuen. Electron- phonon scattering in metallic single-walled carbon nanotubes. Nano letters, 4(3):517–520, 2004.OA Yeshchenko, IS Bondarchuk, VS Gurin, IM Dmitruk, and AV Kotko. Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surface Science, 608:275–281, 2013.Ramin Golestanian. Collective behavior of thermally active colloids. Physical review letters, 108(3):038303, 2012.Herbert Loria, Pedro Pereira-Almao, and Carlos E Scott. Determination of agglomeration kinetics in nanoparticle dispersions. Industrial & engineering chemistry research, 50(14):8529–8535, 2011.Jun Cai and Jian-Sheng Wang. Energies and structures of stacking faults of ag from the tight-binding method calculation. Modelling and Simulation in Materials Science and Engineering, 10(5):469, 2002.Haoyang Haven Liu, Sirikarn Surawanvijit, Robert Rallo, Gerassimos Orkoulas, and Yoram Cohen. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number monte carlo simulation. Environmental science & technology, 45(21):9284–9292, 2011.Dirk L Van Hyning, Walter G Klemperer, and Charles F Zukoski. Silver nanoparticle formation: predictions and verification of the aggregative growth model. Langmuir, 17(11):3128–3135, 2001.Sonja Froeschke, Stefanie Kohler, Alfred P Weber, and Gerhard Kasper. Impact fragmentation of nanoparticle agglomerates. Journal of Aerosol Science, 34(3): 275–287, 2003.Martin Seipenbusch, Petya Toneva, Wolfgang Peukert, and Alfred P Weber. Impact fragmentation of metal nanoparticle agglomerates. Particle & Particle Systems Characterization, 24(3):193–200, 2007.ASTM F1416-96(2019). Standard guide for selection of time-temperature indicators. Standard, ASTM Standards, United States, June 2019.PS Taoukis. Commercialization of time-temperature integrators for foods. In Case studies in novel food processing technologies, pages 351–366. Elsevier, 2010.GA Lanza, JA Perez-Taborda, and A Avila. Utility of nanomaterials in food processing and packaging. In Nanomaterials in Bionanotechnology, pages 221 248. CRC Press, 2021.Bambang Kuswandi and Mehran Moradi. Sensor trends in beverages packaging. Trends in beverage packaging, pages 279–302, 2019.Ajay Piriya VS, Printo Joseph, Kiruba Daniel SCG, Susithra Lakshmanan, Takatoshi Kinoshita, and Sivakumar Muthusamy. Colorimetric sensors for rapid detection of various analytes. Materials Science and Engineering: C, 78:1231– 1245, 2017.Yanfeng Liu, Xin Huang, Zuoji Niu, Dongni Wang, Huilin Gou, Qiaobo Liao, Kai Xi, Zhongfu An, and Xudong Jia. Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chemical Science, 12 (23):8199–8206, 2021.Corey Fortin and Harold L Goodwin Jr. Valuation of temp-time’s fresh-check indicator on perishable food products in belgium. Technical report, 2008.Giancarla Alberti, Camilla Zanoni, Lisa Rita Magnaghi, and Raffaela Biesuz. Gold and silver nanoparticle-based colorimetric sensors: new trends and applications. Chemosensors, 9(11):305, 2021.Chintamani Nagesa Ramachandra Rao, Achim M¨uller, and Anthony K Cheetham. The chemistry of nanomaterials: synthesis, properties and applications. John Wiley & Sons, 2006.[74] GA Lanza, JA Perez-Taborda, and A Avila. Time temperature indicators (ttis) based on silver nanoparticles for monitoring of perishables products. In Journal of Physics: Conference Series, volume 1247, page 012055. IOP Publishing, 2019.Ilse Gosens, Jan Andries Post, Liset JJ de la Fonteyne, Eugene HJM Jansen, John W Geus, Flemming R Cassee, and Wim H de Jong. Impact of agglomeration state of nano-and submicron sized gold particles on pulmonary inflammation. Particle and fibre toxicology, 7(1):1–11, 2010.Chao Zhang, An-Xiang Yin, Ruibin Jiang, Jie Rong, Lu Dong, Tian Zhao, Ling- Dong Sun, Jianfang Wang, Xing Chen, and Chun-Hua Yan. Time–temperature indicator for perishable products based on kinetically programmable ag overgrowth on au nanorods. ACS nano, 7(5):4561–4568, 2013.Christopher J DeSantis, Rebecca G Weiner, Andjela Radmilovic, Matthew M Bower, and Sara E Skrabalak. Seeding bimetallic nanostructures as a new class of plasmonic colloids. The Journal of Physical Chemistry Letters, 4(18):3072–3082, 2013.Zhuangqiang Gao, Kaichao Deng, Xu-Dong Wang, Manuel Miro, and Dianping Tang. High-resolution colorimetric assay for rapid visual readout of phosphatase activity based on gold/silver core/shell nanorod. ACS applied materials & interfaces, 6(20):18243–18250, 2014.Yi-Cheng Wang, Lin Lu, and Sundaram Gunasekaran. Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosensors and Bioelectronics, 92:109–116, 2017.Ashvin Ashok, Michael Brison, and Yann LeTallec. Improving cold chain systems: Challenges and solutions. Vaccine, 35(17):2217–2223, 2017.Wentao Wu, Claudio Beretta, Paul Cronje, Stefanie Hellweg, and Thijs Defraeye. Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment. Applied Energy, 254:113586, 2019.Robert E Hardenburg, Alley E Watada, and Chien Yi Wang. The commercial storage of fruits, vegetables, and florist and nursery stocks. Number 66. US Department of Agriculture, Agricultural Research Service, 1986.Kandarp Mavani and Mihir Shah. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. International Journal of Engineering Research & Technology, 2(3):1–5, 2013.Lorraine Mulfinger, Sally D Solomon, Mozghan Bahadory, Aravindan V Jeyarajasingam, Susan A Rutkowsky, and Charles Boritz. Synthesis and study of silver nanoparticles. Journal of chemical education, 84(2):322, 2007.Damian Aherne, Deirdre M Ledwith, Matthew Gara, and John M Kelly. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 18(14):2005–2016, 2008.Carlos Andres Perez-Lopez, Jaime Andres Perez-Taborda, Henry Riascos, and Alba Avila. The influence of pulsed laser ablation in liquids parameters on the synthesis of zno nanoparticles. In Journal of Physics: Conference Series, volume 1541, page 012019. IOP Publishing, 2020.W Norsyuhada, W Mohd Shukri, Hazri Bakhtiar, Shumaila Islam, and Noriah Bidin. Synthesis and characterization of gold-silver nanoparticles in deionized water by pulsed laser ablation (plal) technique at different laser parameter. International Journal of Nanoscience, 18(01):1850015, 2019.Julio Car and Nikˇsa Krstulovi´c. Fitting procedure to reconstruct the size distribution and the concentration of silver colloidal nanoparticles from uv-vis spectra. Nanomaterials, 12(19):3302, 2022.Janet P Yapor, Abeer Alharby, Claudia Gentry-Weeks, Melissa M Reynolds, AKM Mashud Alam, and Yan Vivian Li. Polydiacetylene nanofiber composites as a colorimetric sensor responding to escherichia coli and ph. ACS omega, 2(10): 7334–7342, 2017.Deborah H Charych, Jon O Nagy, Wayne Spevak, and Mark D Bednarski. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science, 261(5121):585–588, 1993.A Selimis and M Farsari. Laser-based 3d printing and surface texturing. Comprehensive Materials Finishing, 3:111–136, 2017.Mangirdas Malinauskas. Laser multiscale 3d lithography of plant based resins. In Laser Applications Conference, pages LTu5A–1. Optica Publishing Group, 2021.Lyane M Moreira, EA Carvalho, MJV Bell, V Anjos, AC Sant’Ana, Ana Paula P Alves, B Fragneaud, LA Sena, BS Archanjo, and CA Achete. Thermo-optical properties of silver and gold nanofluids. Journal of thermal analysis and calorimetry, 114:557–564, 2013.PramodWarrier and Amyn Teja. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale research letters, 6:1–6, 2011.Kimon P Valavanis, J Zheng, and George Paschos. A total color difference measure for segmentation in color images. Journal of Intelligent and Robotic Systems, 16: 269–313, 1996.Alexandra Lyashenko, Robert Weikl, Zsolt Rozsnyai, and Johannes Regensburger. Dekron’s direct printing technology. Inkjet Printing in Industry: Materials, Technologies, Systems, and Applications, 3:1521–1542, 2022.Chien YiWang. Chilling injury of fruits and vegetables. Food reviews international, 5(2):209–236, 1989.Sanim Rahman. Size and concentration analysis of gold nanoparticles with ultraviolet-visible spectroscopy. Undergraduate Journal of Mathematical Modeling: One+ Two, 7(1):2, 2016.Wolfgang Haiss, Nguyen TK Thanh, Jenny Aveyard, and David G Fernig. Determination of size and concentration of gold nanoparticles from uv- vis spectra. Analytical chemistry, 79(11):4215–4221, 2007.Zaheer Khan, Shaeel Ahmed Al-Thabaiti, Abdullah Yousif Obaid, and AO Al- Youbi. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids and Surfaces B: Biointerfaces, 82(2):513–517, 2011.Athena M Keene and Katherine M Tyner. Analytical characterization of gold nanoparticle primary particles, aggregates, agglomerates, and agglomerated aggregates. Journal of Nanoparticle Research, 13:3465–3481, 2011.Jie Zeng, Stefan Roberts, and Younan Xia. Nanocrystal-based time–temperature indicators. Chemistry–A European Journal, 16(42):12559–12563, 2010.John C Russ, James R Matey, A John Mallinckrodt, and Susan McKay. The image processing handbook. Computers in Physics, 8(2):177–178, 1994.John C Russ. The image processing and analysis cookbook. Asheville, c2001 [cit. 2018-03-20]. Dostupn´e z: http://web4. cbm. uam. es/joomlarl/images/Servicios/070. Microscopia-opticacfocal/documentos/manuales/Image tool kit. pdf, 2010.Lou Ross. The image processing handbook, russ john c. crc press, boca raton fl, 2011, 972 pages. isbn 1-4398-4045-0 (hardcover), 2011.Mohammed Baalousha, Yon Ju-Nam, Paula A Cole, Joseph A Hriljac, Ian P Jones, Charles R Tyler, Vicki Stone, Teresa F Fernandes, Mark A Jepson, and Jamie R Lead. Characterization of cerium oxide nanoparticles—part 2: Nonsize measurements. Environmental Toxicology and Chemistry, 31(5):994–1003, 2012.Sebastian Stach, Zaneta Garczyk, Stefan Talu, Shahram Solaymani, Atefeh Ghaderi, Rostam Moradian, Negin Beryani Nezafat, Seyed Mohammad Elahi, and Hedieh Gholamali. Stereometric parameters of the cu/fe nps thin films. The Journal of Physical Chemistry C, 119(31):17887–17898, 2015.Stephen Palani, John P Kenison, Sinan Sabuncu, Tao Huang, Fehmi Civitci, Sadik Esener, and Xiaolin Nan. Multispectral localized surface plasmon resonance (mslspr) reveals and overcomes spectral and sensing heterogeneities of single gold nanoparticles. ACS nano, 17(3):2266–2278, 2023.Suparna Mukherji, Sharda Bharti, Gauri Shukla, and Soumyo Mukherji. Synthesis and characterization of size-and shape-controlled silver nanoparticles. Physical Sciences Reviews, 4(1):20170082, 2018.Hugh H Richardson, Zackary N Hickman, Alexander O Govorov, Alyssa C Thomas, Wei Zhang, and Martin E Kordesch. Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano letters, 6(4):783–788, 2006.Ankita Mishra, Shazia Shaikh, and Ashok Kumar. Progressive cryoaggregation of gold nanoparticles: Physiochemical characterization, effect on biological interactions and use in coldness indicators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636:128158, 2022.Rochelle Arvizo, Resham Bhattacharya, and Priyabrata Mukherjee. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert opinion on drug delivery, 7(6):753–763, 2010.Rituraj Borah and Sammy W Verbruggen. Coupled plasmon modes in 2d gold nanoparticle clusters and their effect on local temperature control. The Journal of Physical Chemistry C, 123(50):30594–30603, 2019.Adriana P Herrera, Oscar Resto, Julio G Briano, and Carlos Rinaldi. Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology, 16 (7):S618, 2005.Charles A Clifford, Michael Stinz, Vasile-Dan Hodoroaba, Wolfgang ES Unger, and Toshiyuki Fujimoto. International standards in nanotechnologies. In Characterization of nanoparticles, pages 511–525. Elsevier, 2020.Kannan M Krishnan. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE transactions on magnetics, 46(7):2523–2558, 2010.Tingting Gao, You Tian, Zhiwei Zhu, and Da-Wen Sun. Modelling, responses and applications of time-temperature indicators (ttis) in monitoring fresh food quality. Trends in Food Science & Technology, 99:311–322, 2020.Lixuan Zhang, Ruonan Sun, Hufei Yu, Hailong Yu, Gaolei Xu, Liming Deng, and Jing Qian. A new method for matching gold nanoparticle-based time–temperature indicators with muffins without obtaining activation energy. Journal of Food Science, 85(8):2589–2595, 2020.PS Taoukis and Ted P Labuza. Applicability of time-temperature indicators as shelf life monitors of food products. Journal of Food Science, 54(4):783–788, 1989.SR Logan. The origin and status of the arrhenius equation. Journal of Chemical Education, 59(4):279, 1982.Keith J Laidler. The development of the arrhenius equation. Journal of chemical Education, 61(6):494, 1984.Jiamin Yang and Yi Xu. Prediction of fruit quality based on the rgb values of time–temperature indicator. Journal of Food Science, 86(3):932–941, 2021.IMLB Avila and CLM Silva. Modelling kinetics of thermal degradation of colour in peach puree. Journal of food engineering, 39(2):161–166, 1999.Diego A Castellanos, Rolando Mendoza, Rafael Gavara, and An´ıbal O Herrera. Respiration and ethylene generation modeling of “hass” avocado and feijoa fruits and application in modified atmosphere packaging. International Journal of Food Properties, 20(2):333–349, 2017.Olga L Benavides, Karen L Pinta, Paola A Chamorro, and Andr´es F Ceron. Kinetic modeling of deterioration of strawberry (fragaria x ananassa duch cv. albion) grown in cumbal (colombia). Advance Journal of Food Science and Technology, 15(S): 77–82, 2018.A Ibarz, J Pagan, and S Garza. Kinetic models of non-enzymatic browning in apple puree. Journal of the Science of Food and Agriculture, 80(8):1162–1168, 2000.Darko M Mici´c, Sanja B Ostoji´c, Mladen B Simonovi´c, Gordana Krstic, Lato L Pezo, and Branislav R Simonovi´c. Kinetics of blackberry and raspberry seed oils oxidation by dsc. Thermochimica Acta, 601:39–44, 2015.Albert Ibarz, Jordi Pag´an, and Salvador Garza. Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of food engineering, 39(4):415–422, 1999.Johanna Garavito, An´ıbal O Herrera, and Diego A Castellanos. A combined mathematical model to represent transpiration, respiration, and water activity changes in fresh cape gooseberry (physalis peruviana) fruits. Biosystems Engineering, 208: 152–163, 2021.Carolina Vieira Bezerra, Luiza H Meller da Silva, Danielle Ferreira Corrra, and Antonio MC Rodrigues. A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. International Journal of Heat and Mass Transfer, 85:750–755, 2015.María Antonieta Riera and Yunet Gómez Salcedo. Cinética de la degradación térmica del ácido ascórbico en el jugo de lulo (solanum quitoense lam.). Revista de Ciencia y Tecnología, 35(1), 2019.Jerry Ampofo-Asiama and Bright Quaye. The effect of pasteurisation on the microbiological and nutritional quality of soursop (annona muricata l.) juice. Asian Food Science Journal, 6(3):1–8, 2018.Phuc L Ho, Dinh T Tran, Maarten LATM Hertog, and Bart M Nicolaı. Modelling respiration rate of dragon fruit as a function of gas composition and temperature. Scientia Horticulturae, 263:109138, 2020.CR Chen and HS Ramaswamy. Color and texture change kinetics in ripening bananas. LWT-food science and technology, 35(5):415–419, 2002.Andrés F Cerón, Diego F Mejía, and Oswaldo Osorio. Cinética de inactivación térmica de la enzima pectinmetilesterasa en zumo de tomate de árbol (solanum betaceum cav.). Información tecnológica, 27(2):67–76, 2016.GA Lanza, JA Perez-Taborda, and A Avila. Functional time-temperature in- dicators (ttis) based on nanoparticles for detecting steps changes on cold chain monitoring (underevaluation). Foods, 2023.Grace AV Magalhaes-Ghiotto, Alessandra M de Oliveira, Jean PS Natal, Rosangela Bergamasco, and Raquel G Gomes. Green nanoparticles in water treatment: a review of research trends, applications, environmental aspects and largescale production. Environmental Nanotechnology, Monitoring & Management, 16: 100526, 2021.Xiaojia He, Hua Deng, Winfred G Aker, and Huey-min Hwang. Regulation and safety of nanotechnology in the food and agriculture industry. In Food applications of nanotechnology, pages 525–536. CRC Press, 2019.Takuya Tsuzuki. Commercial scale production of inorganic nanoparticles. International journal of nanotechnology, 6(5-6):567–578, 2009.201422757PublicationORIGINALautorizacion tesis.pdfautorizacion tesis.pdfHIDEapplication/pdf304104https://repositorio.uniandes.edu.co/bitstreams/7059dcb3-bf0c-40a6-9dac-90a7bf6284cd/download605dd56399f2294830581310a66f5f22MD51Nanoparticles Applications in Time-Temperature Indicators.pdfNanoparticles Applications in Time-Temperature Indicators.pdfapplication/pdf24772700https://repositorio.uniandes.edu.co/bitstreams/832ac69d-ed99-429c-a0dd-2d3437114878/downloadd38eee1e99fe79234b09cb810e0f5146MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.uniandes.edu.co/bitstreams/a75a26aa-c5ee-4b6a-9e71-8320b800c954/download42fd4ad1e89814f5e4a476b409eb708cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/4cd02e85-206e-4e77-b246-065269fea6c1/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis.pdf.txtautorizacion tesis.pdf.txtExtracted texttext/plain2096https://repositorio.uniandes.edu.co/bitstreams/d5bc187b-a5a1-40ba-9a9a-ce0d33e76f20/downloadc14b20ce0c164f8667a30f08f146c0ccMD55Nanoparticles Applications in Time-Temperature Indicators.pdf.txtNanoparticles Applications in Time-Temperature Indicators.pdf.txtExtracted texttext/plain100489https://repositorio.uniandes.edu.co/bitstreams/750625d2-6c43-4e35-83c5-7d594933a061/download6879cb259cd7117fe01a1983f1cb8c93MD57THUMBNAILautorizacion tesis.pdf.jpgautorizacion tesis.pdf.jpgGenerated Thumbnailimage/jpeg10907https://repositorio.uniandes.edu.co/bitstreams/51c90f6f-35e6-47f0-a490-ee85c6d652dc/downloadbcfbae408ea3bc732b85237e8f5e3652MD56Nanoparticles Applications in Time-Temperature Indicators.pdf.jpgNanoparticles Applications in Time-Temperature Indicators.pdf.jpgGenerated Thumbnailimage/jpeg7998https://repositorio.uniandes.edu.co/bitstreams/8cd1d304-e9da-491f-bc14-7f310bb38bda/downloaddbef97cd1bb1b236177c35bc072a3419MD581992/70964oai:repositorio.uniandes.edu.co:1992/709642024-08-26 15:24:11.606http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalrestrictedhttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K