Semialgebraic groups over real closed fields
This thesis investigates semialgebraically connected semialgebraic groups over a sufficiently saturated real closed field R = R = (R, <, +, 0, ., 1) and is therefore contribution to the study of definable groups o o-minimal structures.
- Autores:
-
Barriga Turriago, Eliana Lucero
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2017
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/61382
- Acceso en línea:
- http://hdl.handle.net/1992/61382
- Palabra clave:
- Conjuntos semialgebráicos
Operaciones cohomológicas
Topología algebraica
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_a76fc55a5605339e554acd1fe325dcc0 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/61382 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Peterzil, Ya'acov3ae96868-dd86-40c7-ba15-9172cfc338fd500Onshuus Niño, Alfvirtual::10604-1Barriga Turriago, Eliana Lucerod06f228b-2ec4-462d-a326-b9861a0be64d500Berarducci, AlessandroGoodrick, John RichardStarchenko, Sergei2022-09-26T22:17:37Z2022-09-26T22:17:37Z2017http://hdl.handle.net/1992/6138210.57784/1992/61382instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/795073-1001This thesis investigates semialgebraically connected semialgebraic groups over a sufficiently saturated real closed field R = R = (R, <, +, 0, ., 1) and is therefore contribution to the study of definable groups o o-minimal structures.Esta tesis investiga los grupos semialgebraicos semialgebraicamente conexos sobre un campo real cerrado suficientemente saturado R = (R, <, +, 0, ., 1) y, por lo tanto, contribuye al estudio de grupos definibles de estructuras mínimas.Doctor en MatemáticasDoctorado108 hojasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasSemialgebraic groups over real closed fieldsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDConjuntos semialgebráicosOperaciones cohomológicasTopología algebraica200512889Publicationhttps://scholar.google.es/citations?user=Ov2U9EoAAAAJvirtual::10604-10000-0001-7593-1553virtual::10604-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246409virtual::10604-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::10604-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::10604-1ORIGINAL12264.pdfapplication/pdf877875https://repositorio.uniandes.edu.co/bitstreams/1d10f165-3949-454f-a5d4-4063b20f3019/download4fedf53e4fbf41131e656b6c161e4613MD51TEXT12264.pdf.txt12264.pdf.txtExtracted texttext/plain185310https://repositorio.uniandes.edu.co/bitstreams/f0bfe0c5-80dc-4fd7-a563-467728b03ef3/downloadd27db7c4ab48532d6a1ced819680b018MD52THUMBNAIL12264.pdf.jpg12264.pdf.jpgIM Thumbnailimage/jpeg5252https://repositorio.uniandes.edu.co/bitstreams/00271cf4-3737-4c86-94d9-933d9b11072b/download7a82295cc4484c1cbd9e7c387ac4a360MD531992/61382oai:repositorio.uniandes.edu.co:1992/613822024-08-26 15:24:08.106http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.spa.fl_str_mv |
Semialgebraic groups over real closed fields |
title |
Semialgebraic groups over real closed fields |
spellingShingle |
Semialgebraic groups over real closed fields Conjuntos semialgebráicos Operaciones cohomológicas Topología algebraica |
title_short |
Semialgebraic groups over real closed fields |
title_full |
Semialgebraic groups over real closed fields |
title_fullStr |
Semialgebraic groups over real closed fields |
title_full_unstemmed |
Semialgebraic groups over real closed fields |
title_sort |
Semialgebraic groups over real closed fields |
dc.creator.fl_str_mv |
Barriga Turriago, Eliana Lucero |
dc.contributor.advisor.none.fl_str_mv |
Peterzil, Ya'acov Onshuus Niño, Alf |
dc.contributor.author.none.fl_str_mv |
Barriga Turriago, Eliana Lucero |
dc.contributor.jury.none.fl_str_mv |
Berarducci, Alessandro Goodrick, John Richard Starchenko, Sergei |
dc.subject.keyword.spa.fl_str_mv |
Conjuntos semialgebráicos Operaciones cohomológicas Topología algebraica |
topic |
Conjuntos semialgebráicos Operaciones cohomológicas Topología algebraica |
description |
This thesis investigates semialgebraically connected semialgebraic groups over a sufficiently saturated real closed field R = R = (R, <, +, 0, ., 1) and is therefore contribution to the study of definable groups o o-minimal structures. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2022-09-26T22:17:37Z |
dc.date.available.none.fl_str_mv |
2022-09-26T22:17:37Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/61382 |
dc.identifier.doi.none.fl_str_mv |
10.57784/1992/61382 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
dc.identifier.local.spa.fl_str_mv |
795073-1001 |
url |
http://hdl.handle.net/1992/61382 |
identifier_str_mv |
10.57784/1992/61382 instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ 795073-1001 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
108 hojas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/1d10f165-3949-454f-a5d4-4063b20f3019/download https://repositorio.uniandes.edu.co/bitstreams/f0bfe0c5-80dc-4fd7-a563-467728b03ef3/download https://repositorio.uniandes.edu.co/bitstreams/00271cf4-3737-4c86-94d9-933d9b11072b/download |
bitstream.checksum.fl_str_mv |
4fedf53e4fbf41131e656b6c161e4613 d27db7c4ab48532d6a1ced819680b018 7a82295cc4484c1cbd9e7c387ac4a360 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133965980499968 |