Semialgebraic groups over real closed fields

This thesis investigates semialgebraically connected semialgebraic groups over a sufficiently saturated real closed field R = R = (R, <, +, 0, ., 1) and is therefore contribution to the study of definable groups o o-minimal structures.

Autores:
Barriga Turriago, Eliana Lucero
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2017
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/61382
Acceso en línea:
http://hdl.handle.net/1992/61382
Palabra clave:
Conjuntos semialgebráicos
Operaciones cohomológicas
Topología algebraica
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_a76fc55a5605339e554acd1fe325dcc0
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/61382
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Peterzil, Ya'acov3ae96868-dd86-40c7-ba15-9172cfc338fd500Onshuus Niño, Alfvirtual::10604-1Barriga Turriago, Eliana Lucerod06f228b-2ec4-462d-a326-b9861a0be64d500Berarducci, AlessandroGoodrick, John RichardStarchenko, Sergei2022-09-26T22:17:37Z2022-09-26T22:17:37Z2017http://hdl.handle.net/1992/6138210.57784/1992/61382instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/795073-1001This thesis investigates semialgebraically connected semialgebraic groups over a sufficiently saturated real closed field R = R = (R, <, +, 0, ., 1) and is therefore contribution to the study of definable groups o o-minimal structures.Esta tesis investiga los grupos semialgebraicos semialgebraicamente conexos sobre un campo real cerrado suficientemente saturado R = (R, <, +, 0, ., 1) y, por lo tanto, contribuye al estudio de grupos definibles de estructuras mínimas.Doctor en MatemáticasDoctorado108 hojasapplication/pdfengUniversidad de los AndesDoctorado en MatemáticasFacultad de CienciasDepartamento de MatemáticasSemialgebraic groups over real closed fieldsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDConjuntos semialgebráicosOperaciones cohomológicasTopología algebraica200512889Publicationhttps://scholar.google.es/citations?user=Ov2U9EoAAAAJvirtual::10604-10000-0001-7593-1553virtual::10604-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000246409virtual::10604-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::10604-15a750db4-a429-4f4f-af11-b70f91dd30eavirtual::10604-1ORIGINAL12264.pdfapplication/pdf877875https://repositorio.uniandes.edu.co/bitstreams/1d10f165-3949-454f-a5d4-4063b20f3019/download4fedf53e4fbf41131e656b6c161e4613MD51TEXT12264.pdf.txt12264.pdf.txtExtracted texttext/plain185310https://repositorio.uniandes.edu.co/bitstreams/f0bfe0c5-80dc-4fd7-a563-467728b03ef3/downloadd27db7c4ab48532d6a1ced819680b018MD52THUMBNAIL12264.pdf.jpg12264.pdf.jpgIM Thumbnailimage/jpeg5252https://repositorio.uniandes.edu.co/bitstreams/00271cf4-3737-4c86-94d9-933d9b11072b/download7a82295cc4484c1cbd9e7c387ac4a360MD531992/61382oai:repositorio.uniandes.edu.co:1992/613822024-08-26 15:24:08.106http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.spa.fl_str_mv Semialgebraic groups over real closed fields
title Semialgebraic groups over real closed fields
spellingShingle Semialgebraic groups over real closed fields
Conjuntos semialgebráicos
Operaciones cohomológicas
Topología algebraica
title_short Semialgebraic groups over real closed fields
title_full Semialgebraic groups over real closed fields
title_fullStr Semialgebraic groups over real closed fields
title_full_unstemmed Semialgebraic groups over real closed fields
title_sort Semialgebraic groups over real closed fields
dc.creator.fl_str_mv Barriga Turriago, Eliana Lucero
dc.contributor.advisor.none.fl_str_mv Peterzil, Ya'acov
Onshuus Niño, Alf
dc.contributor.author.none.fl_str_mv Barriga Turriago, Eliana Lucero
dc.contributor.jury.none.fl_str_mv Berarducci, Alessandro
Goodrick, John Richard
Starchenko, Sergei
dc.subject.keyword.spa.fl_str_mv Conjuntos semialgebráicos
Operaciones cohomológicas
Topología algebraica
topic Conjuntos semialgebráicos
Operaciones cohomológicas
Topología algebraica
description This thesis investigates semialgebraically connected semialgebraic groups over a sufficiently saturated real closed field R = R = (R, <, +, 0, ., 1) and is therefore contribution to the study of definable groups o o-minimal structures.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2022-09-26T22:17:37Z
dc.date.available.none.fl_str_mv 2022-09-26T22:17:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/61382
dc.identifier.doi.none.fl_str_mv 10.57784/1992/61382
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
dc.identifier.local.spa.fl_str_mv 795073-1001
url http://hdl.handle.net/1992/61382
identifier_str_mv 10.57784/1992/61382
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
795073-1001
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 108 hojas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de los Andes
dc.publisher.program.spa.fl_str_mv Doctorado en Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/1d10f165-3949-454f-a5d4-4063b20f3019/download
https://repositorio.uniandes.edu.co/bitstreams/f0bfe0c5-80dc-4fd7-a563-467728b03ef3/download
https://repositorio.uniandes.edu.co/bitstreams/00271cf4-3737-4c86-94d9-933d9b11072b/download
bitstream.checksum.fl_str_mv 4fedf53e4fbf41131e656b6c161e4613
d27db7c4ab48532d6a1ced819680b018
7a82295cc4484c1cbd9e7c387ac4a360
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133965980499968