¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT

Las lesiones de quemaduras son un problema de salud pública por lo cual su tratamiento es relevante. Una propuesta novedosa es el uso de biomateriales, tales como el ácido poli(láctico-co-glicólico) (PLGA) y la policaprolactona (PCL), capaces de promover la regeneración de tejidos. El diseño de memb...

Full description

Autores:
Gómez Cárdenas, Oscar Dony
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/69050
Acceso en línea:
http://hdl.handle.net/1992/69050
Palabra clave:
Lesiones por quemaduras
Cultivo celular
Ácido poli(láctico-co-glicólico)
Policaprolactona
Células HFF-1
Células HaCaT
Microbiología
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNIANDES2_a5e679acb449b5e1e25dbbf478170d5a
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/69050
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
title ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
spellingShingle ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
Lesiones por quemaduras
Cultivo celular
Ácido poli(láctico-co-glicólico)
Policaprolactona
Células HFF-1
Células HaCaT
Microbiología
title_short ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
title_full ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
title_fullStr ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
title_full_unstemmed ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
title_sort ¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaT
dc.creator.fl_str_mv Gómez Cárdenas, Oscar Dony
dc.contributor.advisor.none.fl_str_mv Baldrich Mora, Laura Mercedes
Groot De Restrepo, Helena
dc.contributor.author.none.fl_str_mv Gómez Cárdenas, Oscar Dony
dc.contributor.researchgroup.es_CO.fl_str_mv Laboratorio de Genética Humana
dc.subject.keyword.none.fl_str_mv Lesiones por quemaduras
Cultivo celular
Ácido poli(láctico-co-glicólico)
Policaprolactona
Células HFF-1
Células HaCaT
topic Lesiones por quemaduras
Cultivo celular
Ácido poli(láctico-co-glicólico)
Policaprolactona
Células HFF-1
Células HaCaT
Microbiología
dc.subject.themes.es_CO.fl_str_mv Microbiología
description Las lesiones de quemaduras son un problema de salud pública por lo cual su tratamiento es relevante. Una propuesta novedosa es el uso de biomateriales, tales como el ácido poli(láctico-co-glicólico) (PLGA) y la policaprolactona (PCL), capaces de promover la regeneración de tejidos. El diseño de membranas con estos biomateriales debería ser capaz de proporcionar un soporte sólido sobre el cual crezcan adheridas las células esenciales en la regeneración de la piel, especialmente los fibroblastos y los queratinocitos. Por lo tanto, se evaluó el efecto de membranas de PLGA y PLGA + PCL como soportes que potencien el crecimiento de células HFF-1 (fibroblastos) y HaCaT (queratinocitos). De esta manera, se realizó una primera aproximación en aras de establecer una potencial aplicación para mejorar la calidad de vida en pacientes con lesiones por quemaduras.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-02T14:10:24Z
dc.date.available.none.fl_str_mv 2023-08-02T14:10:24Z
dc.date.issued.none.fl_str_mv 2023-06-06
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/69050
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/69050
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Animal Cell Culture Guide | ATCC. (s/f). https://www.atcc.org/resources/culture-guides/animal-cell-culture-guide
Babilotte, J., Martin, B., Guduric, V., Bareille, R., Agniel, R., Roques, S., Héroguez, V., Dussauze, M., Gaudon, M., Le Nihouannen, D., & Catros, S. (2021). Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Materials Science and Engineering: C, 118, 111334. https://doi.org/10.1016/j.msec.2020.111334
Baust, J. M., Buehring, G. C., Campbell, L., Elmore, E., Harbell, J. W., Nims, R. W., Price, P., Reid, Y. A., & Simione, F. (2017). Best practices in cell culture: an overview. In Vitro Cellular & Developmental Biology - Animal, 53(8), 669-672. https://doi.org/10.1007/s11626-017-0177-7
Bédard, P., Gauvin, S., Ferland, K., Caneparo, C., Pellerin, È., Chabaud, S., & Bolduc, S. (2020). Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel, Switzerland), 7(3). https://doi.org/10.3390/bioengineering7030115
Cai, S., Wu, C., Yang, W., Liang, W., Yu, H., & Liu, L. (2020). Recent advance in surface modification for regulating cell adhesion and behaviors. 9(1), 971-989. https://doi.org/10.1515/ntrev-2020-0076
Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., & Tanaka, J. (2005). Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26(15), 2559-2566. https://doi.org/10.1016/j.biomaterials.2004.07.034
Chen, H., Yin, B., Hu, B., Zhang, B., Liu, J., Jing, Y., Fan, Z., Tian, Y., Wei, X., & Zhang, W. (2021). Acellular fish skin enhances wound healing by promoting angiogenesis and collagen deposition. Biomedical Materials, 16(4), 45011. https://doi.org/10.1088/1748-605X/abef7a
Choi, W. S., Kim, J. H., Ahn, C. B., Lee, J. H., Kim, Y. J., Son, K. H., & Lee, J. W. (2021). Development of a Multi-Layer Skin Substitute Using Human Hair Keratinic Extract-Based Hybrid 3D Printing. Polymers, 13(16). https://doi.org/10.3390/polym13162584
Cialdai, F., Risaliti, C., & Monici, M. (2022). Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology, 10, 958381. https://doi.org/10.3389/fbioe.2022.958381
Compton, T. (1993). An immortalized human fibroblast cell line is permissive for human cytomegalovirus infection. Journal of Virology, 67(6), 3644-3648. https://doi.org/10.1128/JVI.67.6.3644-3648.1993
Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P. L., Soares, R., & Guerreiro, S. G. (2015). Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Engineering. Part A, 21(5-6), 1055-1065. https://doi.org/10.1089/ten.TEA.2014.0443
desJardins-Park, H. E., Foster, D. S., & Longaker, M. T. (2018). Fibroblasts and wound healing: an update. Regenerative Medicine, 13(5), 491-495. https://doi.org/10.2217/rme-2018-0073
Drexler, H. G. (2001). 1 - Introduction. En H. G. B. T.-T. L.-L. C. L. F. Drexler (Ed.), Factsbook (pp. 2-11). Academic Press. https://doi.org/10.1016/B978-012221970-2/50002-4
Esmaeili, A., Biazar, E., Ebrahimi, M., Heidari Keshel, S., Kheilnezhad, B., & Saeedi Landi, F. (2023). Acellular fish skin for wound healing. International Wound Journal, n/a(n/a). https://doi.org/10.1111/iwj.14158
Espósito, A. C. C., Brianezi, G., Miot, L. D. B., & Miot, H. A. (2022). Fibroblast morphology, growth rate and gene expression in facial melasma. Anais Brasileiros de Dermatologia, 97(5), 575-582. https://doi.org/10.1016/j.abd.2021.09.012
Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 15(3), 3640-3659. https://doi.org/10.3390/ijms15033640
Gharibshahian, M., Salehi, M., Beheshtizadeh, N., Kamalabadi-Farahani, M., Atashi, A., Nourbakhsh, M.-S., & Alizadeh, M. (2023). Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering . En Frontiers in Bioengineering and Biotechnology (Vol. 11). https://www.frontiersin.org/articles/10.3389/fbioe.2023.1168504
González-González, A. M., Cruz, R., Rosales-Ibáñez, R., Hernández-Sánchez, F., Carrillo-Escalante, H. J., Rodríguez-Martínez, J. J., Velasquillo, C., Talamás-Lara, D., & Ludert, J. E. (2023). In Vitro and In Vivo Evaluation of a Polycaprolactone (PCL)/Polylactic-Co-Glycolic Acid (PLGA) (80:20) Scaffold for Improved Treatment of Chondral (Cartilage) Injuries. En Polymers (Vol. 15, Número 10). https://doi.org/10.3390/polym15102324
Greenhalgh, D. G. (2019). Management of Burns. New England Journal of Medicine, 380(24), 2349-2359. https://doi.org/10.1056/NEJMra1807442
Hama, R., Reinhardt, J. W., Ulziibayar, A., Watanabe, T., Kelly, J., & Shinoka, T. (2023). Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration. En Biomimetics (Vol. 8, Número 1). https://doi.org/10.3390/biomimetics8010130
Han, Y., Lian, M., Wu, Q., Qiao, Z., Sun, B., & Dai, K. (2021). Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. En Frontiers in Bioengineering and Biotechnology (Vol. 9). https://www.frontiersin.org/articles/10.3389/fbioe.2021.629270
Hosseini Mansoub, N. (2021). The role of keratinocyte function on the defected diabetic wound healing. International Journal of Burns and Trauma, 11(6), 430-441.
Ibrahim, M., Ayyoubi, H. S., Alkhairi, L. A., Tabbaa, H., Elkins, I., & Narvel, R. (2023). Fish Skin Grafts Versus Alternative Wound Dressings in Wound Care: A Systematic Review of the Literature. Cureus, 15(3), e36348. https://doi.org/10.7759/cureus.36348
James, S. L., Lucchesi, L. R., Bisignano, C., Castle, C. D., Dingels, Z. V, Fox, J. T., Hamilton, E. B., Henry, N. J., McCracken, D., Roberts, N. L. S., Sylte, D. O., Ahmadi, A., Ahmed, M. B., Alahdab, F., Alipour, V., Andualem, Z., Antonio, C. A. T., Arabloo, J., Badiye, A. D., ... Mokdad, A. H. (2020). Epidemiology of injuries from fire, heat and hot substances: global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Injury Prevention, 26(Suppl 2), i36 LP-i45. https://doi.org/10.1136/injuryprev-2019-043299
Komine, M., Meijuan, J., Kimura-Sashikawa, M., Hossain, R. M. D., Ansary, T. M., Oshio, T., Meephansan, J., Tsuda, H., Tominaga, S., & Ohtsuki, M. (2022). Keratinocytes in Skin Disorders: The Importance of Keratinocytes as a Barrier (M. Komine (Ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.103732
Li, Z. (2011). 5.43 - In Vitro Micro-Tissue and -Organ Models for Toxicity Testing (M. B. T.-C. B. (Second E. Moo-Young (Ed.); pp. 551-563). Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00503-1
Low, Z. W. K., Li, Z., Owh, C., Chee, P. L., Ye, E., Dan, K., Chan, S. Y., Young, D. J., & Loh, X. J. (2020). Recent innovations in artificial skin. Biomaterials Science, 8(3), 776-797. https://doi.org/10.1039/C9BM01445D
Luze, H., Nischwitz, S. P., Smolle, C., Zrim, R., & Kamolz, L.-P. (2022). The Use of Acellular Fish Skin Grafts in Burn Wound Management-A Systematic Review. En Medicina (Vol. 58, Número 7). https://doi.org/10.3390/medicina58070912
Mehra, L., & Gupta, P. (2023). 3 - Biomaterial-based fibers for enhanced wound healing and effective tissue regeneration. En N. Sharma & B. S. B. T.-F. and T. E. in D. D. S. Butola (Eds.), The Textile Institute Book Series (pp. 73-96). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-96117-2.00005-4
Navarrete, N., & Rodriguez, N. (2016). Epidemiologic characteristics of death by burn injury from 2000 to 2009 in Colombia, South America: a population-based study. Burns & Trauma, 4(1), 8. https://doi.org/10.1186/s41038-016-0033-0
Nilforoushzadeh, M. A., Ahmadi Ashtiani, H. R., Jaffary, F., Jahangiri, F., Nikkhah, N., Mahmoudbeyk, M., Fard, M., Ansari, Z., & Zare, S. (2017). Dermal Fibroblast Cells: Biology and Function in Skin Regeneration. Journal of Skin and Stem Cell, 4(2), e69080. https://doi.org/10.5812/jssc.69080
Norton, R., & Kobusingye, O. (2013). Injuries. New England Journal of Medicine, 368(18), 1723-1730. https://doi.org/10.1056/NEJMra1109343
Park, Y., Huh, K. M., & Kang, S.-W. (2021). Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. International Journal of Molecular Sciences, 22(5). https://doi.org/10.3390/ijms22052491
Patel, M., Jha, A., & Patel, R. (2021). Potential application of PLGA microsphere for tissue engineering. Journal of Polymer Research, 28(6), 214. https://doi.org/10.1007/s10965-021-02562-6
Phan, T. T., Lim, I. J., Tan, E. K., Bay, B. H., & Lee, S. T. (2005). Evaluation of cell culture on the polyurethane-based membrane (TegadermTM): implication for tissue engineering of skin. Cell and Tissue Banking, 6(2), 91-97. https://doi.org/10.1007/s10561-004-3904-8
Piipponen, M., Li, D., & Landén, N. X. (2020). The Immune Functions of Keratinocytes in Skin Wound Healing. International Journal of Molecular Sciences, 21(22). https://doi.org/10.3390/ijms21228790
Poor cell growth troubleshooting. (s/f). https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/poor-cell-growth
Price, K., Lee, K. C., Woolley, K. E., Falk, H., Peck, M., Lilford, R., & Moiemen, N. (2021). Burn injury prevention in low- and middle- income countries: scoping systematic review. Burns & Trauma, 9, tkab037. https://doi.org/10.1093/burnst/tkab037
Quinn, L., Ahmed, T., Falk, H., Miranda Altamirano, A., Muganza, A., Nakarmi, K., Nawar, A., Peck, M., Man Rai, S., Sartori, J., Philipe Molina Vana, L., Wabwire, B., Moiemen, N., & Lilford, R. (2023). Burn Admissions Across Low- and Middle-income Countries: A Repeated Cross-sectional Survey. Journal of Burn Care & Research, 44(2), 320-328. https://doi.org/10.1093/jbcr/irac096
Rousselle, P., Braye, F., & Dayan, G. (2019). Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews, 146, 344-365. https://doi.org/0.1016/j.addr.2018.06.019
Russo, B., Brembilla, N. C., & Chizzolini, C. (2020). Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. En Frontiers in immunology (Vol. 11, p. 648). https://doi.org/10.3389/fimmu.2020.00648
Sadeghi-Avalshahr, A., Nokhasteh, S., Molavi, A. M., Khorsand-Ghayeni, M., & Mahdavi-Shahri, M. (2017). Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regenerative Biomaterials, 4(5), 309-314. https://doi.org/10.1093/rb/rbx026
Salerno, S., Messina, A., Giordano, F., Bader, A., Drioli, E., & De Bartolo, L. (2017). Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis. Materials Science and Engineering: C, 71, 943-953. https://doi.org/https://doi.org/10.1016/j.msec.2016.11.008
Seo, M.-D., Kang, T. J., Lee, C. H., Lee, A.-Y., & Noh, M. (2012). HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines. Biomolecules & Therapeutics, 20(2), 171-176. https://doi.org/10.4062/biomolther.2012.20.2.171
Sierra-Sánchez, Á., Kim, K. H., Blasco-Morente, G., & Arias-Santiago, S. (2021). Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. npj Regenerative Medicine, 6(1), 35. https://doi.org/10.1038/s41536-021-00144-0
Skardal, A. (2015). Chapter 1 - Bioprinting Essentials of Cell and Protein Viability (A. Atala & J. J. B. T.-E. of 3D B. and T. Yoo (Eds.); pp. 1-17). Academic Press. https://doi.org/10.1016/B978-0-12-800972-7.00001-3
Souto, E. B., Ribeiro, A. F., Ferreira, M. I., Teixeira, M. C., Shimojo, A. A. M., Soriano, J. L., Naveros, B. C., Durazzo, A., Lucarini, M., Souto, S. B., & Santini, A. (2020). New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. En International Journal of Molecular Sciences (Vol. 21, Número 2). https://doi.org/10.3390/ijms21020393
Stokes, M. A. R., & Johnson, W. D. (2017). Burns in the Third World: an unmet need. Annals of Burns and Fire Disasters, 30(4), 243-246.
Sun, Q., Hou, Y., Chu, Z., & Wei, Q. (2022). Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 10, 397-404. https://doi.org/10.1016/j.bioactmat.2021.08.026
Sun, Q., Wei, Q., & Zhao, C. (2021). How do the cells sense and respond to the microenvironment mechanics? Chinese Science Bulletin, 66(18), 2303-2311. https://doi.org/https://doi.org/10.1360/TB-2020-1069
Tavakoli, S., & Klar, A. S. (2021). Bioengineered Skin Substitutes: Advances and Future Trends. En Applied Sciences (Vol. 11, Número 4). https://doi.org/10.3390/app11041493
Ulrich, A. B., & Pour, P. M. (2001). Cell Lines (S. Maloy & K. B. T.-B. E. of G. (Second E. Hughes (Eds.); pp. 481-482). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.00212-6
Urciuolo, F., Casale, C., Imparato, G., & Netti, P. A. (2019). Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. Journal of Clinical Medicine, 8(12). https://doi.org/10.3390/jcm8122083
Verma, A. (2014). Chapter 12 - Animal Tissue Culture: Principles and Applications (A. S. Verma & A. B. T.-A. B. Singh (Eds.); pp. 211-231). Academic Press. https://doi.org/10.1016/B978-0-12-416002-6.00012-2
Wall, S. L., Velin, L., Abbas, A., Allorto, N. L., Graner, M., Moeller, E., Ryan-Coker, M. F. D., & Pompermaier, L. (2023). Who tells the story of burns in low-and-middle income countries? A bibliometric study. Burns, 49(4), 854-860. https://doi.org/10.1016/j.burns.2022.06.003
Wojtowicz, A. M., Oliveira, S., Carlson, M. W., Zawadzka, A., Rousseau, C. F., & Baksh, D. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration, 22(2), 246-255. https://doi.org/10.1111/wrr.12154
Xie, W., Wei, X., Kang, H., Jiang, H., Chu, Z., Lin, Y., Hou, Y., & Wei, Q. (2023). Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Advanced Science, 10(9), 2204594. https://doi.org/10.1002/advs.202204594
Yakupu, A., Zhang, J., Dong, W., Song, F., Dong, J., & Lu, S. (2022). The epidemiological characteristic and trends of burns globally. BMC Public Health, 22(1), 1596. https://doi.org/10.1186/s12889-022-13887-2
Yang, X., Wang, Y., Zhou, Y., Chen, J., & Wan, Q. (2021). The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. En Polymers (Vol. 13, Número 16). https://doi.org/10.3390/polym13162754
Yin, B., He, Y., Zhang, Z., Cheng, X., Bao, W., Li, S., Wang, W., & Jia, C. (2023). Global burden of burns and its association with socio-economic development status, 1990-2019. Burns. https://doi.org/10.1016/j.burns.2023.02.007
Zhong, J., Wang, H., Yang, K., Wang, H., Duan, C., Ni, N., An, L., Luo, Y., Zhao, P., Gou, Y., Sheng, S., Shi, D., Chen, C., Wagstaff, W., Hendren-Santiago, B., Haydon, R. C., Luu, H. H., Reid, R. R., Ho, S. H., ... Fan, J. (2022). Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioactive Materials, 9, 523-540. https://doi.org/10.1016/j.bioactmat.2021.07.022
Zorina, A., Zorin, V., Isaev, A., Kudlay, D., Vasileva, M., & Kopnin, P. (2023). Dermal Fibroblasts as the Main Target for Skin Anti-Age Correction Using a Combination of Regenerative Medicine Methods. En Current Issues in Molecular Biology (Vol. 45, Número 5, pp. 3829-3847). https://doi.org/10.3390/cimb45050247
dc.rights.license.*.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 24 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Microbiología
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/2484565b-e36c-45fd-847b-e5bab77eb7bf/download
https://repositorio.uniandes.edu.co/bitstreams/7307386c-1512-4b58-b63a-4c817c6fb7c7/download
https://repositorio.uniandes.edu.co/bitstreams/71686635-3e3f-4352-8a77-f2bbf970b507/download
https://repositorio.uniandes.edu.co/bitstreams/a4e76a57-5a43-4d71-af44-e433e07a8e1f/download
https://repositorio.uniandes.edu.co/bitstreams/0b99d9d9-5a2c-4d57-815b-612db5fb64cd/download
https://repositorio.uniandes.edu.co/bitstreams/e282924b-e660-47ae-a31a-70974ebc8fbc/download
https://repositorio.uniandes.edu.co/bitstreams/2bc4acf3-33b6-47fc-9776-32b525af106e/download
https://repositorio.uniandes.edu.co/bitstreams/2163d6f6-3774-47f8-bf03-156c990bf798/download
bitstream.checksum.fl_str_mv 83af5273752bc060da01003f026df6b7
ed329c3ec3439d8c4e3817a3074cac7d
5aa5c691a1ffe97abd12c2966efcb8d6
a88c78a40006e55a112c200cd6feeeff
b48004ce12d93f2c1645f91dfff17431
84a900c9dd4b2a10095a94649e1ce116
b99928559a14ba9a8fc83e11ecc0ed73
ac4904f636f0f81f062adeaf2682c068
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133860482220032
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Baldrich Mora, Laura Mercedes28851a50-3193-456a-9efa-e2bc010a2fce600Groot De Restrepo, Helenavirtual::4050-1Gómez Cárdenas, Oscar Dony8de8d0c1-97b6-4b3b-83af-f447ac09eef1600Laboratorio de Genética Humana2023-08-02T14:10:24Z2023-08-02T14:10:24Z2023-06-06http://hdl.handle.net/1992/69050instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Las lesiones de quemaduras son un problema de salud pública por lo cual su tratamiento es relevante. Una propuesta novedosa es el uso de biomateriales, tales como el ácido poli(láctico-co-glicólico) (PLGA) y la policaprolactona (PCL), capaces de promover la regeneración de tejidos. El diseño de membranas con estos biomateriales debería ser capaz de proporcionar un soporte sólido sobre el cual crezcan adheridas las células esenciales en la regeneración de la piel, especialmente los fibroblastos y los queratinocitos. Por lo tanto, se evaluó el efecto de membranas de PLGA y PLGA + PCL como soportes que potencien el crecimiento de células HFF-1 (fibroblastos) y HaCaT (queratinocitos). De esta manera, se realizó una primera aproximación en aras de establecer una potencial aplicación para mejorar la calidad de vida en pacientes con lesiones por quemaduras.MicrobiólogoPregrado24 páginasapplication/pdfspaUniversidad de los AndesMicrobiologíaFacultad de CienciasDepartamento de Ciencias Biológicas¿Uso de membranas con ácido poli(láctico-co-glicólico) y con policaprolactona para el tratamiento de lesiones por quemaduras? Primera aproximación evaluando el crecimiento de células HFF-1 y HaCaTTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPLesiones por quemadurasCultivo celularÁcido poli(láctico-co-glicólico)PolicaprolactonaCélulas HFF-1Células HaCaTMicrobiologíaAnimal Cell Culture Guide | ATCC. (s/f). https://www.atcc.org/resources/culture-guides/animal-cell-culture-guideBabilotte, J., Martin, B., Guduric, V., Bareille, R., Agniel, R., Roques, S., Héroguez, V., Dussauze, M., Gaudon, M., Le Nihouannen, D., & Catros, S. (2021). Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Materials Science and Engineering: C, 118, 111334. https://doi.org/10.1016/j.msec.2020.111334Baust, J. M., Buehring, G. C., Campbell, L., Elmore, E., Harbell, J. W., Nims, R. W., Price, P., Reid, Y. A., & Simione, F. (2017). Best practices in cell culture: an overview. In Vitro Cellular & Developmental Biology - Animal, 53(8), 669-672. https://doi.org/10.1007/s11626-017-0177-7Bédard, P., Gauvin, S., Ferland, K., Caneparo, C., Pellerin, È., Chabaud, S., & Bolduc, S. (2020). Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel, Switzerland), 7(3). https://doi.org/10.3390/bioengineering7030115Cai, S., Wu, C., Yang, W., Liang, W., Yu, H., & Liu, L. (2020). Recent advance in surface modification for regulating cell adhesion and behaviors. 9(1), 971-989. https://doi.org/10.1515/ntrev-2020-0076Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., & Tanaka, J. (2005). Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26(15), 2559-2566. https://doi.org/10.1016/j.biomaterials.2004.07.034Chen, H., Yin, B., Hu, B., Zhang, B., Liu, J., Jing, Y., Fan, Z., Tian, Y., Wei, X., & Zhang, W. (2021). Acellular fish skin enhances wound healing by promoting angiogenesis and collagen deposition. Biomedical Materials, 16(4), 45011. https://doi.org/10.1088/1748-605X/abef7aChoi, W. S., Kim, J. H., Ahn, C. B., Lee, J. H., Kim, Y. J., Son, K. H., & Lee, J. W. (2021). Development of a Multi-Layer Skin Substitute Using Human Hair Keratinic Extract-Based Hybrid 3D Printing. Polymers, 13(16). https://doi.org/10.3390/polym13162584Cialdai, F., Risaliti, C., & Monici, M. (2022). Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Frontiers in Bioengineering and Biotechnology, 10, 958381. https://doi.org/10.3389/fbioe.2022.958381Compton, T. (1993). An immortalized human fibroblast cell line is permissive for human cytomegalovirus infection. Journal of Virology, 67(6), 3644-3648. https://doi.org/10.1128/JVI.67.6.3644-3648.1993Costa-Almeida, R., Gomez-Lazaro, M., Ramalho, C., Granja, P. L., Soares, R., & Guerreiro, S. G. (2015). Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Engineering. Part A, 21(5-6), 1055-1065. https://doi.org/10.1089/ten.TEA.2014.0443desJardins-Park, H. E., Foster, D. S., & Longaker, M. T. (2018). Fibroblasts and wound healing: an update. Regenerative Medicine, 13(5), 491-495. https://doi.org/10.2217/rme-2018-0073Drexler, H. G. (2001). 1 - Introduction. En H. G. B. T.-T. L.-L. C. L. F. Drexler (Ed.), Factsbook (pp. 2-11). Academic Press. https://doi.org/10.1016/B978-012221970-2/50002-4Esmaeili, A., Biazar, E., Ebrahimi, M., Heidari Keshel, S., Kheilnezhad, B., & Saeedi Landi, F. (2023). Acellular fish skin for wound healing. International Wound Journal, n/a(n/a). https://doi.org/10.1111/iwj.14158Espósito, A. C. C., Brianezi, G., Miot, L. D. B., & Miot, H. A. (2022). Fibroblast morphology, growth rate and gene expression in facial melasma. Anais Brasileiros de Dermatologia, 97(5), 575-582. https://doi.org/10.1016/j.abd.2021.09.012Gentile, P., Chiono, V., Carmagnola, I., & Hatton, P. V. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 15(3), 3640-3659. https://doi.org/10.3390/ijms15033640Gharibshahian, M., Salehi, M., Beheshtizadeh, N., Kamalabadi-Farahani, M., Atashi, A., Nourbakhsh, M.-S., & Alizadeh, M. (2023). Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering . En Frontiers in Bioengineering and Biotechnology (Vol. 11). https://www.frontiersin.org/articles/10.3389/fbioe.2023.1168504González-González, A. M., Cruz, R., Rosales-Ibáñez, R., Hernández-Sánchez, F., Carrillo-Escalante, H. J., Rodríguez-Martínez, J. J., Velasquillo, C., Talamás-Lara, D., & Ludert, J. E. (2023). In Vitro and In Vivo Evaluation of a Polycaprolactone (PCL)/Polylactic-Co-Glycolic Acid (PLGA) (80:20) Scaffold for Improved Treatment of Chondral (Cartilage) Injuries. En Polymers (Vol. 15, Número 10). https://doi.org/10.3390/polym15102324Greenhalgh, D. G. (2019). Management of Burns. New England Journal of Medicine, 380(24), 2349-2359. https://doi.org/10.1056/NEJMra1807442Hama, R., Reinhardt, J. W., Ulziibayar, A., Watanabe, T., Kelly, J., & Shinoka, T. (2023). Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration. En Biomimetics (Vol. 8, Número 1). https://doi.org/10.3390/biomimetics8010130Han, Y., Lian, M., Wu, Q., Qiao, Z., Sun, B., & Dai, K. (2021). Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. En Frontiers in Bioengineering and Biotechnology (Vol. 9). https://www.frontiersin.org/articles/10.3389/fbioe.2021.629270Hosseini Mansoub, N. (2021). The role of keratinocyte function on the defected diabetic wound healing. International Journal of Burns and Trauma, 11(6), 430-441.Ibrahim, M., Ayyoubi, H. S., Alkhairi, L. A., Tabbaa, H., Elkins, I., & Narvel, R. (2023). Fish Skin Grafts Versus Alternative Wound Dressings in Wound Care: A Systematic Review of the Literature. Cureus, 15(3), e36348. https://doi.org/10.7759/cureus.36348James, S. L., Lucchesi, L. R., Bisignano, C., Castle, C. D., Dingels, Z. V, Fox, J. T., Hamilton, E. B., Henry, N. J., McCracken, D., Roberts, N. L. S., Sylte, D. O., Ahmadi, A., Ahmed, M. B., Alahdab, F., Alipour, V., Andualem, Z., Antonio, C. A. T., Arabloo, J., Badiye, A. D., ... Mokdad, A. H. (2020). Epidemiology of injuries from fire, heat and hot substances: global, regional and national morbidity and mortality estimates from the Global Burden of Disease 2017 study. Injury Prevention, 26(Suppl 2), i36 LP-i45. https://doi.org/10.1136/injuryprev-2019-043299Komine, M., Meijuan, J., Kimura-Sashikawa, M., Hossain, R. M. D., Ansary, T. M., Oshio, T., Meephansan, J., Tsuda, H., Tominaga, S., & Ohtsuki, M. (2022). Keratinocytes in Skin Disorders: The Importance of Keratinocytes as a Barrier (M. Komine (Ed.); p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.103732Li, Z. (2011). 5.43 - In Vitro Micro-Tissue and -Organ Models for Toxicity Testing (M. B. T.-C. B. (Second E. Moo-Young (Ed.); pp. 551-563). Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00503-1Low, Z. W. K., Li, Z., Owh, C., Chee, P. L., Ye, E., Dan, K., Chan, S. Y., Young, D. J., & Loh, X. J. (2020). Recent innovations in artificial skin. Biomaterials Science, 8(3), 776-797. https://doi.org/10.1039/C9BM01445DLuze, H., Nischwitz, S. P., Smolle, C., Zrim, R., & Kamolz, L.-P. (2022). The Use of Acellular Fish Skin Grafts in Burn Wound Management-A Systematic Review. En Medicina (Vol. 58, Número 7). https://doi.org/10.3390/medicina58070912Mehra, L., & Gupta, P. (2023). 3 - Biomaterial-based fibers for enhanced wound healing and effective tissue regeneration. En N. Sharma & B. S. B. T.-F. and T. E. in D. D. S. Butola (Eds.), The Textile Institute Book Series (pp. 73-96). Woodhead Publishing. https://doi.org/10.1016/B978-0-323-96117-2.00005-4Navarrete, N., & Rodriguez, N. (2016). Epidemiologic characteristics of death by burn injury from 2000 to 2009 in Colombia, South America: a population-based study. Burns & Trauma, 4(1), 8. https://doi.org/10.1186/s41038-016-0033-0Nilforoushzadeh, M. A., Ahmadi Ashtiani, H. R., Jaffary, F., Jahangiri, F., Nikkhah, N., Mahmoudbeyk, M., Fard, M., Ansari, Z., & Zare, S. (2017). Dermal Fibroblast Cells: Biology and Function in Skin Regeneration. Journal of Skin and Stem Cell, 4(2), e69080. https://doi.org/10.5812/jssc.69080Norton, R., & Kobusingye, O. (2013). Injuries. New England Journal of Medicine, 368(18), 1723-1730. https://doi.org/10.1056/NEJMra1109343Park, Y., Huh, K. M., & Kang, S.-W. (2021). Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. International Journal of Molecular Sciences, 22(5). https://doi.org/10.3390/ijms22052491Patel, M., Jha, A., & Patel, R. (2021). Potential application of PLGA microsphere for tissue engineering. Journal of Polymer Research, 28(6), 214. https://doi.org/10.1007/s10965-021-02562-6Phan, T. T., Lim, I. J., Tan, E. K., Bay, B. H., & Lee, S. T. (2005). Evaluation of cell culture on the polyurethane-based membrane (TegadermTM): implication for tissue engineering of skin. Cell and Tissue Banking, 6(2), 91-97. https://doi.org/10.1007/s10561-004-3904-8Piipponen, M., Li, D., & Landén, N. X. (2020). The Immune Functions of Keratinocytes in Skin Wound Healing. International Journal of Molecular Sciences, 21(22). https://doi.org/10.3390/ijms21228790Poor cell growth troubleshooting. (s/f). https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/poor-cell-growthPrice, K., Lee, K. C., Woolley, K. E., Falk, H., Peck, M., Lilford, R., & Moiemen, N. (2021). Burn injury prevention in low- and middle- income countries: scoping systematic review. Burns & Trauma, 9, tkab037. https://doi.org/10.1093/burnst/tkab037Quinn, L., Ahmed, T., Falk, H., Miranda Altamirano, A., Muganza, A., Nakarmi, K., Nawar, A., Peck, M., Man Rai, S., Sartori, J., Philipe Molina Vana, L., Wabwire, B., Moiemen, N., & Lilford, R. (2023). Burn Admissions Across Low- and Middle-income Countries: A Repeated Cross-sectional Survey. Journal of Burn Care & Research, 44(2), 320-328. https://doi.org/10.1093/jbcr/irac096Rousselle, P., Braye, F., & Dayan, G. (2019). Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews, 146, 344-365. https://doi.org/0.1016/j.addr.2018.06.019Russo, B., Brembilla, N. C., & Chizzolini, C. (2020). Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. En Frontiers in immunology (Vol. 11, p. 648). https://doi.org/10.3389/fimmu.2020.00648Sadeghi-Avalshahr, A., Nokhasteh, S., Molavi, A. M., Khorsand-Ghayeni, M., & Mahdavi-Shahri, M. (2017). Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regenerative Biomaterials, 4(5), 309-314. https://doi.org/10.1093/rb/rbx026Salerno, S., Messina, A., Giordano, F., Bader, A., Drioli, E., & De Bartolo, L. (2017). Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis. Materials Science and Engineering: C, 71, 943-953. https://doi.org/https://doi.org/10.1016/j.msec.2016.11.008Seo, M.-D., Kang, T. J., Lee, C. H., Lee, A.-Y., & Noh, M. (2012). HaCaT Keratinocytes and Primary Epidermal Keratinocytes Have Different Transcriptional Profiles of Cornified Envelope-Associated Genes to T Helper Cell Cytokines. Biomolecules & Therapeutics, 20(2), 171-176. https://doi.org/10.4062/biomolther.2012.20.2.171Sierra-Sánchez, Á., Kim, K. H., Blasco-Morente, G., & Arias-Santiago, S. (2021). Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. npj Regenerative Medicine, 6(1), 35. https://doi.org/10.1038/s41536-021-00144-0Skardal, A. (2015). Chapter 1 - Bioprinting Essentials of Cell and Protein Viability (A. Atala & J. J. B. T.-E. of 3D B. and T. Yoo (Eds.); pp. 1-17). Academic Press. https://doi.org/10.1016/B978-0-12-800972-7.00001-3Souto, E. B., Ribeiro, A. F., Ferreira, M. I., Teixeira, M. C., Shimojo, A. A. M., Soriano, J. L., Naveros, B. C., Durazzo, A., Lucarini, M., Souto, S. B., & Santini, A. (2020). New Nanotechnologies for the Treatment and Repair of Skin Burns Infections. En International Journal of Molecular Sciences (Vol. 21, Número 2). https://doi.org/10.3390/ijms21020393Stokes, M. A. R., & Johnson, W. D. (2017). Burns in the Third World: an unmet need. Annals of Burns and Fire Disasters, 30(4), 243-246.Sun, Q., Hou, Y., Chu, Z., & Wei, Q. (2022). Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioactive Materials, 10, 397-404. https://doi.org/10.1016/j.bioactmat.2021.08.026Sun, Q., Wei, Q., & Zhao, C. (2021). How do the cells sense and respond to the microenvironment mechanics? Chinese Science Bulletin, 66(18), 2303-2311. https://doi.org/https://doi.org/10.1360/TB-2020-1069Tavakoli, S., & Klar, A. S. (2021). Bioengineered Skin Substitutes: Advances and Future Trends. En Applied Sciences (Vol. 11, Número 4). https://doi.org/10.3390/app11041493Ulrich, A. B., & Pour, P. M. (2001). Cell Lines (S. Maloy & K. B. T.-B. E. of G. (Second E. Hughes (Eds.); pp. 481-482). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.00212-6Urciuolo, F., Casale, C., Imparato, G., & Netti, P. A. (2019). Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. Journal of Clinical Medicine, 8(12). https://doi.org/10.3390/jcm8122083Verma, A. (2014). Chapter 12 - Animal Tissue Culture: Principles and Applications (A. S. Verma & A. B. T.-A. B. Singh (Eds.); pp. 211-231). Academic Press. https://doi.org/10.1016/B978-0-12-416002-6.00012-2Wall, S. L., Velin, L., Abbas, A., Allorto, N. L., Graner, M., Moeller, E., Ryan-Coker, M. F. D., & Pompermaier, L. (2023). Who tells the story of burns in low-and-middle income countries? A bibliometric study. Burns, 49(4), 854-860. https://doi.org/10.1016/j.burns.2022.06.003Wojtowicz, A. M., Oliveira, S., Carlson, M. W., Zawadzka, A., Rousseau, C. F., & Baksh, D. (2014). The importance of both fibroblasts and keratinocytes in a bilayered living cellular construct used in wound healing. Wound Repair and Regeneration, 22(2), 246-255. https://doi.org/10.1111/wrr.12154Xie, W., Wei, X., Kang, H., Jiang, H., Chu, Z., Lin, Y., Hou, Y., & Wei, Q. (2023). Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction. Advanced Science, 10(9), 2204594. https://doi.org/10.1002/advs.202204594Yakupu, A., Zhang, J., Dong, W., Song, F., Dong, J., & Lu, S. (2022). The epidemiological characteristic and trends of burns globally. BMC Public Health, 22(1), 1596. https://doi.org/10.1186/s12889-022-13887-2Yang, X., Wang, Y., Zhou, Y., Chen, J., & Wan, Q. (2021). The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. En Polymers (Vol. 13, Número 16). https://doi.org/10.3390/polym13162754Yin, B., He, Y., Zhang, Z., Cheng, X., Bao, W., Li, S., Wang, W., & Jia, C. (2023). Global burden of burns and its association with socio-economic development status, 1990-2019. Burns. https://doi.org/10.1016/j.burns.2023.02.007Zhong, J., Wang, H., Yang, K., Wang, H., Duan, C., Ni, N., An, L., Luo, Y., Zhao, P., Gou, Y., Sheng, S., Shi, D., Chen, C., Wagstaff, W., Hendren-Santiago, B., Haydon, R. C., Luu, H. H., Reid, R. R., Ho, S. H., ... Fan, J. (2022). Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioactive Materials, 9, 523-540. https://doi.org/10.1016/j.bioactmat.2021.07.022Zorina, A., Zorin, V., Isaev, A., Kudlay, D., Vasileva, M., & Kopnin, P. (2023). Dermal Fibroblasts as the Main Target for Skin Anti-Age Correction Using a Combination of Regenerative Medicine Methods. En Current Issues in Molecular Biology (Vol. 45, Número 5, pp. 3829-3847). https://doi.org/10.3390/cimb45050247201813642Publicationf822bd03-a362-452e-ab9a-0d8c735e28f9virtual::4050-1f822bd03-a362-452e-ab9a-0d8c735e28f9virtual::4050-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000014931virtual::4050-1THUMBNAILTesis de grado.pdf.jpgTesis de grado.pdf.jpgIM Thumbnailimage/jpeg10603https://repositorio.uniandes.edu.co/bitstreams/2484565b-e36c-45fd-847b-e5bab77eb7bf/download83af5273752bc060da01003f026df6b7MD56201813642_ForAutEntTesis_TraGraSisBib_202320.pdf.jpg201813642_ForAutEntTesis_TraGraSisBib_202320.pdf.jpgIM Thumbnailimage/jpeg16415https://repositorio.uniandes.edu.co/bitstreams/7307386c-1512-4b58-b63a-4c817c6fb7c7/downloaded329c3ec3439d8c4e3817a3074cac7dMD58LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/71686635-3e3f-4352-8a77-f2bbf970b507/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTTesis de grado.pdf.txtTesis de grado.pdf.txtExtracted texttext/plain50005https://repositorio.uniandes.edu.co/bitstreams/a4e76a57-5a43-4d71-af44-e433e07a8e1f/downloada88c78a40006e55a112c200cd6feeeffMD55201813642_ForAutEntTesis_TraGraSisBib_202320.pdf.txt201813642_ForAutEntTesis_TraGraSisBib_202320.pdf.txtExtracted texttext/plain1521https://repositorio.uniandes.edu.co/bitstreams/0b99d9d9-5a2c-4d57-815b-612db5fb64cd/downloadb48004ce12d93f2c1645f91dfff17431MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.uniandes.edu.co/bitstreams/e282924b-e660-47ae-a31a-70974ebc8fbc/download84a900c9dd4b2a10095a94649e1ce116MD52ORIGINALTesis de grado.pdfTesis de grado.pdfTesis de gradoapplication/pdf2541421https://repositorio.uniandes.edu.co/bitstreams/2bc4acf3-33b6-47fc-9776-32b525af106e/downloadb99928559a14ba9a8fc83e11ecc0ed73MD54201813642_ForAutEntTesis_TraGraSisBib_202320.pdf201813642_ForAutEntTesis_TraGraSisBib_202320.pdfHIDEapplication/pdf234294https://repositorio.uniandes.edu.co/bitstreams/2163d6f6-3774-47f8-bf03-156c990bf798/downloadac4904f636f0f81f062adeaf2682c068MD531992/69050oai:repositorio.uniandes.edu.co:1992/690502024-03-13 12:35:12.472http://creativecommons.org/licenses/by-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==