Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana

La estafiloxantina (STX) es un sacarolípido derivado de un carotenoide presente en Staphylococcus aureus (S. aureus), implicado en la tolerancia al estrés oxidativo y la resistencia a péptidos antimicrobianos. Además, la STX influye en las propiedades biofísicas de la membrana bacteriana y ha sido a...

Full description

Autores:
López Muñoz, Gerson Dirceu
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/60321
Acceso en línea:
http://hdl.handle.net/1992/60321
Palabra clave:
Staphylococcus aureus
Staphyloxanthin
Carotenoids
Antioxidant activities
LC-MS/MS
Oxidative stress
Cold atmospheric plasma
Biophysical properties
FTIR
Química
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_a4e9da5c19e52b948f27e80e84fda7bd
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/60321
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
title Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
spellingShingle Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
Staphylococcus aureus
Staphyloxanthin
Carotenoids
Antioxidant activities
LC-MS/MS
Oxidative stress
Cold atmospheric plasma
Biophysical properties
FTIR
Química
title_short Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
title_full Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
title_fullStr Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
title_full_unstemmed Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
title_sort Targeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membrana
dc.creator.fl_str_mv López Muñoz, Gerson Dirceu
dc.contributor.advisor.none.fl_str_mv Carazzone, Chiara
Leidy, Chad
dc.contributor.author.none.fl_str_mv López Muñoz, Gerson Dirceu
dc.contributor.jury.none.fl_str_mv Sánchez-Camargo, Andrea
Ospina, Olga Lucia
Santos, Cledir
dc.contributor.researchgroup.es_CO.fl_str_mv Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP)
Laboratorio de Biofísica
dc.subject.keyword.none.fl_str_mv Staphylococcus aureus
Staphyloxanthin
Carotenoids
Antioxidant activities
LC-MS/MS
Oxidative stress
Cold atmospheric plasma
Biophysical properties
FTIR
topic Staphylococcus aureus
Staphyloxanthin
Carotenoids
Antioxidant activities
LC-MS/MS
Oxidative stress
Cold atmospheric plasma
Biophysical properties
FTIR
Química
dc.subject.themes.es_CO.fl_str_mv Química
description La estafiloxantina (STX) es un sacarolípido derivado de un carotenoide presente en Staphylococcus aureus (S. aureus), implicado en la tolerancia al estrés oxidativo y la resistencia a péptidos antimicrobianos. Además, la STX influye en las propiedades biofísicas de la membrana bacteriana y ha sido asociada a la formación de dominios lipídicos durante la resistencia a la meticilina. Sin embargo, se desconoce como S. aureus regula la formación de STX y otros carotenoides, la tolerancia al estrés oxidativo por parte de estos metabolitos, así como sus implicaciones en la viscosidad de la membrana. Por ello, en esta investigación se desarrolló un método de cromatografía líquida acoplado a espectrometría de masas en tándem (LC-MS/MS) para caracterizar simultáneamente todos los compuestos químicos asociados a la ruta biosintética de los carotenoides de S. aureus. Un total de 34 metabolitos relacionados a la biosíntesis de STX fueron identificados en una cepa silvestre, además se propuso una ruta biosintética alterna para la cepa SA147 que tenía inhibida la biosíntesis de los carotenoides, la cual se regeneró al contener el plásmido crtMN. La separación cromatográfica se obtuvo empleando columnas con rellenos C18 y C30, demostrando que la biosíntesis de los carotenoides se activa en la en la fase exponencial tardía (8h). Adicionalmente, el método LC-MS/MS permitió estudiar la conversión de carotenoides en el tiempo, evidenciando la progresión desde los precursores de carotenoides predominantes a las 8h de cultivo hasta la formación de los carotenoides finales en la fase estacionaria (24h). También se analizó la fase estacionaria tardía (48h) donde aumentó la proporción de células muertas, siendo STX uno de los componentes principales, pero no el único. Pues se elucidó un equilibrio químico entre el ácido 4,4'-diaponeouroesporenóico y STX durante la dinámica biosintética de los carotenoides, donde el sistema conformado por estas dos biomoléculas podría relacionarse como agentes reguladores de las propiedades biofísicas de la membrana bacteriana. Otro de los objetivos de esta investigación consistió en evaluar metodologías para la extracción de los carotenoides bacterianos, mediante la modernización del método clásico de extracción empleado por más de cuatro décadas, encontrando un incremento de significativo en los rendimientos. También se estudiaron métodos no convencionales de 18 extracción, siendo la extracción con líquidos presurizados (PLE) el método más selectivo a STX, al presentar los mejores rendimientos de recuperación cuando se utilizó etanol como disolvente. Estos resultados demostraron la posibilidad de reemplazar el metanol empleado en el método clásico por etanol, un disolvente que reduciría el impacto al ambiente. A su vez, se evaluó la capacidad antioxidante in vitro en cinco cepas de S. aureus mediante los ensayos DPPH y ORAC-lipofílico, demostrando que las cepas que producen carotenoides presentan la mejor capacidad antioxidante. Por otra parte, para evaluar la asociación entre la capacidad protectora de los carotenoides a condiciones de estrés y su incidencia en las propiedades de la membrana bacteriana, se determinó la viabilidad celular entre cepas que sintetizan carotenoides de las que no lo hacen. Encontrando una diferencia de un orden de magnitud en las unidades formadoras de colonias (UFC) cuando cepas de S. aureus y S. carnosus (contiene genes productores de carotenoides de S. aureus) fueron expuestas a una fuente generadora de especies reactivas de oxígeno y nitrógeno (plasma atmosférico frío, CAP), usado como método bactericida en infecciones cutáneas y bucales. Asimismo, la disminución estadísticamente significativa de los carotenoides cuantificados por el método LC-MS/MS indicó la eficiencia de CAP en degradar estos metabolitos en ambas bacterias. Además, el análisis de permeabilización de la membrana demostró una menor concentración de iones potasio liberado en las cepas productoras de carotenoides después de ser expuestas a CAP. Al analizar los extractos obtenidos después del tratamiento con CAP, ambas bacterias presentaron mayor fluidez debido a la oxidación de los carotenoides. Asimismo, al evaluar la concentración de carotenoides en las cepas de S. aureus expuestas a desecación durante uno y siete días, se demostró que la resistencia a desecación está relacionada con la mayor concentración de carotenoides, medición que también fue realizada con el método LC-MS/MS desarrollado. Adicionalmente, se determinaron las cantidades de los ácidos grasos mediante cromatografía gaseosa acoplada a espectrometría de masas (GC-MS). Estos análisis mostraron que los ácidos grasos de mayor abundancia en la membrana bacteriana tienen cadenas de 15 y 17 unidades de carbono, coincidiendo con los homólogos principales de STX, 19 los cuales fueron caracterizados por LC-MS/MS. Asimismo, se identificaron ácidos grasos entre 10 a 22 unidades de carbonos, algunos de las cuales también se encuentran enlazados al núcleo de STX, identificados por LC-MS/MS. Por último, empleando espectroscopia infrarroja por transformada de Fourier (FTIR) en sistemas de lípidos modelo (incluido un lípido deuterado) y sistemas in vivo, se confirmó que los carotenoides contribuyen a modular las propiedades biofísicas en la membrana de S. aureus. Se determinó que los carotenoides aumentan la rigidez de la membrana bacteriana a la temperatura de crecimiento (37°C) correspondiente a la fase líquido cristalina, que coincide a lo reportado usando sondas fluorescentes. Al mismo tiempo, los resultados FTIR también demostrarían que, con el aumento de la concentración de los carotenoides en la bacteria a bajas temperaturas ocurre un cambio en las temperaturas de transición (Tm) entre la fase gel y la líquido-cristalina, tornándose más fluida la membrana, algo por primera vez reportado para S. aureus. Resultados que confirmarían lo que se ha planteado para STX, carotenoide que cumpliría funciones semejantes al colesterol en células eucariotas, mientras que a altas temperaturas aumenta el nivel de empaquetamiento generando estabilidad, a bajas temperaturas se evita la agrupación de fosfolípidos por intercalación entre las colas lipídicas. En conclusión, mediante metodologías LC-MS/MS enfocadas al análisis de los carotenoides de S. aureus, así como el desarrollo de ensayos químicos y microbiológicos, fue posible elucidar la dinámica bioquímica que ocurre durante la biosíntesis metabólica de estos compuestos. Incluyendo la identificación de su diversidad molecular, comprendiendo con mayor detalle las propiedades de tolerancia a condiciones de estrés oxidativo asociadas a estos carotenoides. Sumado al estudio sobre el impacto que tienen en las propiedades biofísicas de la membrana bacteriana mediante análisis in vivo y con lípidos modelo empleando FTIR, sin la necesidad de sondas adicionales que se utilizan en métodos fluorescentes.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-31T14:22:20Z
dc.date.available.none.fl_str_mv 2022-08-31T14:22:20Z
dc.date.issued.none.fl_str_mv 2022-08-22
dc.type.es_CO.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/60321
dc.identifier.doi.none.fl_str_mv 10.57784/1992/60321
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/60321
identifier_str_mv 10.57784/1992/60321
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Recklinghausen, V.; Ogston, S. A. Staphylococcus Aureus. In Foodborne Microbial Pathogens; Springer, Ed.; New York, NY, 2008; pp 125-134. https://doi.org/10.1007/978-0-387-74537-4_6.
Tong, S. Y. C.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G. Staphylococcus Aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews 2015, 28 (3), 603-661. https://doi.org/10.1128/CMR.00134-14.
Hewelt-Belka, W.; Nakonieczna, J.; Belka, M.; Baczek, T.; Namiesnik, J.; Kot-Wasik, A. Comprehensive Methodology for Staphylococcus Aureus Lipidomics by Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. Journal of Chromatography A 2014, 1362, 62-74. https://doi.org/10.1016/j.chroma.2014.08.020.
Xue, L.; Chen, Y. Y.; Yan, Z.; Lu, W.; Wan, D.; Zhu, H. Staphyloxanthin: A Potential Target for Antivirulence Therapy. Infection and Drug Resistance 2019, 12, 2151-2160. https://doi.org/10.2147/IDR.S193649.
Mishra, N. N.; Yang, S. J.; Sawa, A.; Rubio, A.; Nast, C. C.; Yeaman, M. R.; Bayer, A. S. Analysis of Cell Membrane Characteristics of in Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus Aureus. Antimicrobial Agents and Chemotherapy 2009, 53 (6), 2312-2318. https://doi.org/10.1128/AAC.01682-08.
CDC. Antibiotic Resistance Threats in the United States, 2019; Atlanta, GA: U.S., 2019. https://doi.org/CS239559-B.
Steenbergen, J. N.; Alder, J.; Thorne, G. M.; Tally, F. P. Daptomycin: A Lipopeptide Antibiotic for the Treatment of Serious Gram-Positive Infections. Journal of Antimicrobial Chemotherapy 2005, 55 (3), 283-288. https://doi.org/10.1093/jac/dkh546.
Crass, R. L.; Powell, K. L.; Huang, A. M. Daptomycin for the Treatment of Staphylococcus Aureus Infections Complicated by Septic Pulmonary Emboli. Diagnostic Microbiology and Infectious Disease 2019, 93 (2), 131-135. https://doi.org/10.1016/j.diagmicrobio.2018.09.004.
Dhand, A.; Sakoulas, G. Daptomycin in Combination with Other Antibiotics for the Treatment of Complicated Methicillin-Resistant Staphylococcus Aureus Bacteremia. Clinical Therapeutics 2014, 36 (10), 1303-1316. https://doi.org/10.1016/j.clinthera.2014.09.005.
Heidary, M.; Khosravi, A. D.; Khoshnood, S.; Nasiri, M. J.; Soleimani, S.; Goudarzi, M. Daptomycin. Journal of Antimicrobial Chemotherapy 2018, 73 (1), 1-11. https://doi.org/10.1093/jac/dkx349.
Kilelee, E.; Pokorny, A.; Yeaman, M. R.; Bayer, A. S. Lysyl-Phosphatidylglycerol Attenuates Membrane Perturbation Rather than Surface Association of the Cationic Antimicrobial Peptide 6W-RP-1 in a Model Membrane System : Implications for Daptomycin Resistance. Antimicrob. Agents Chemother. 2010, 54 (10), 4476-4479. https://doi.org/10.1128/AAC.00191-10.
Zhang, T.; Muraih, J. K.; Tishbi, N.; Herskowitz, J.; Victor, R. L.; Silverman, J.; Uwumarenogie, S.; Taylor, S. D.; Palmer, M.; Mintzer, E. Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. J. Biol. Chem. 2014, 289 (17), 11584-11591. https://doi.org/10.1074/jbc.M114.554444.
Sharma, D.; Mandal, S. M.; Manhas, R. K. Purification and Characterization of a Novel Lipopeptide from Streptomyces Amritsarensis Sp. Nov. Active against Methicillin-Resistant Staphylococcus Aureus. AMB Express 2014, 4 (1), 50. https://doi.org/10.1186/s13568-014-0050-y.
Kilelee, E.; Pokorny, A.; Yeaman, M. R.; Bayer, A. S. Lysyl-Phosphatidylglycerol Attenuates Membrane Perturbation Rather than Surface Association of the Cationic Antimicrobial Peptide 6W-RP-1 in a Model Membrane System: Implications for Daptomycin Resistance. Antimicrobial Agents and Chemotherapy 2010, 54 (10), 4476-4479. https://doi.org/10.1128/AAC.00191-10.
Zhang, T. H.; Muraih, J. K.; Tishbi, N.; Herskowitz, J.; Victor, R. L.; Silverman, J.; Uwumarenogie, S.; Taylor, S. D.; Palmer, M.; Mintzer, E. Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. Journal of Biological Chemistry 2014, 289 (17), 11584-11591. https://doi.org/10.1074/jbc.M114.554444.
Kuhn, S.; Slavetinsky, C. J.; Peschel, A. Synthesis and Function of Phospholipids in Staphylococcus Aureus. International Journal of Medical Microbiology 2015, 305 (2), 196-202. https://doi.org/10.1016/j.ijmm.2014.12.016.
Mishra, N. N.; Bayer, S. Correlation of Cell Membrane Lipid Profiles with Daptomycin Resistance in Methicillin-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 2013, 57 (2), 1082-1085. https://doi.org/10.1128/AAC.02182-12.
Oztas, Y.; Bosgelmez, I. An Introduction to Lipidomics : From Laboratory to Clinic. Acta Medica 2017, 48 (1), 8-17.
Yang, K.; Han, X. Lipidomics : Techniques , Applications , and Outcomes Related to Biomedical Sciences. Trends in Biochemical Sciences 2016, 41 (11), 954-969. https://doi.org/10.1016/j.tibs.2016.08.010.
White, D. C.; Frerman, F. E. Extraction, Characterization, and Cellular Localization of the Lipids of Staphylococcus Aureus. Journal of Bacteriology 1967, 94 (6), 1854-1867. https://doi.org/10.1128/jb.94.6.1854-1867.1967.
White, D. C.; Frerman, F. E. Fatty Acid Composition of the Complex Lipids of Staphylococcus Aureus during the Formation of the Membrane-Bound Electron Transport System. Journal of Bacteriology 1968, 95 (6), 2198-2209.
Joyce, G. H.; Hammond, R. K.; White, D. C. Changes in Membrane Lipid Composition in Exponentially Growing Staphylococcus Aureus During the Shift From. Microbiology 1970, 104 (1), 323-330.
Hayami, M.; Okabe, A.; Kariyama, R.; Kanemasa, Y. Lipid Composition of Staphylococcus and Its Derived L-Forms. Microbiol. Immunol. 1979, 23 (6), 435-442.
Hewelt-Belka, W.; Nakonieczna, J.; Belka, M.; Baczek, T.; Namiesnik, J.; Kot-Wasik, A. Untargeted Lipidomics Reveals Differences in the Lipid Pattern among Clinical Isolates of Staphylococcus Aureus Resistant and Sensitive to Antibiotics. Journal of Proteome Research 2016, 15 (3), 914-922. https://doi.org/10.1021/acs.jproteome.5b00915.
Lather, P.; Mohanty, A. K.; Jha, P.; Garsa, A. K.; Sood, S. K. Changes Associated with Cell Membrane Composition of Staphylococcus Aureus on Acquisition of Resistance against Class IIa Bacteriocin and Its in Vitro Substantiation. European Food Research and Technology 2014, 240 (1), 101-107. https://doi.org/10.1007/s00217-014-2311-z.
Perez-Lopez, M. I.; Mendez-Reina, R.; Trier, S.; Herrfurth, C.; Feussner, I.; Bernal, A.; Forero-Shelton, M.; Leidy, C. Variations in Carotenoid Content and Acyl Chain Composition in Exponential, Stationary and Biofilm States of Staphylococcus Aureus, and Their Influence on Membrane Biophysical Properties. Biochimica et Biophysica Acta - Biomembranes 2019, 1861 (5), 978-987. https://doi.org/10.1016/j.bbamem.2019.02.001.
Leidy, C.; Perez, M. I.; Méndez Reina, R. M.; Trier, S.; Herrfurth, C.; Lopez, G.-D.; Carazzone, C.; Feussner, I.; Bernal, A.; Forero-Shelton, M.; Suesca, E. Carotenoid Content and Composition in Exponential, Stationary and Biofilm States of Staphylococcus Aureus and Their Influence on Membrane Biophysical Properties. Biophysical Journal 2020, 118 (3), 321a. https://doi.org/10.1016/j.bpj.2019.11.1806.
Clauditz, A.; Resch, A.; Wieland, K. P.; Peschel, A.; Götz, F. Staphyloxanthin Plays a Role in the Fitness of Staphylococcus Aureus and Its Ability to Cope with Oxidative Stress. Infection and Immunity 2006, 74 (8), 4950-4953. https://doi.org/10.1128/IAI.00204-06.
García-Fernández, E.; Koch, G.; Wagner, R. M.; Fekete, A.; Stengel, S. T.; Schneider, J.; Mielich-Süss, B.; Geibel, S.; Markert, S. M.; Stigloher, C.; Lopez, D. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell 2017, 171 (6), 1354-1367. https://doi.org/10.1016/j.cell.2017.10.012.
Mishra, N. N.; Liu, G. Y.; Yeaman, M. R.; Nast, C. C.; Proctor, R. A.; McKinnell, J.; Bayer, A. S. Carotenoid-Related Alteration of Cell Membrane Fluidity Impacts Staphylococcus Aureus Susceptibility to Host Defense Peptides. Antimicrobial Agents and Chemotherapy 2011, 55 (2), 526-531. https://doi.org/10.1128/AAC.00680-10.
Alvarez, D. N.; Tong, S. Y. C.; Mishra, N. N.; Yang, S.-J.; Xiong, Y. Q. The Role of Staphylococcal Carotenogenesis in Resistance to Host Defense Peptides and in Vivo Virulence in Experimental Endocarditis Model. Pathogens and Disease 2015, 73 (7), ftv056. https://doi.org/10.1093/femspd/ftv056.
Liang, M. H.; Zhu, J.; Jiang, J. G. Carotenoids Biosynthesis and Cleavage Related Genes from Bacteria to Plants. Critical Reviews in Food Science and Nutrition 2018, 58 (14), 2314-2333. https://doi.org/10.1080/10408398.2017.1322552.
López, G. D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Critical Reviews in Analytical Chemistry 2021, 1-24. https://doi.org/10.1080/10408347.2021.2016366.
Das, A.; Yoon, S. H.; Lee, S. H.; Kim, J. Y.; Oh, D. K.; Kim, S. W. An Update on Microbial Carotenoid Production: Application of Recent Metabolic Engineering Tools. Applied Microbiology and Biotechnology 2007, 77 (3), 505-512. https://doi.org/10.1007/s00253-007-1206-3.
Mariutti, L. R. B.; Mercadante, A. Z. Carotenoid Esters Analysis and Occurrence: What Do We Know so Far? Archives of Biochemistry and Biophysics 2018, 648, 36-43. https://doi.org/10.1016/j.abb.2018.04.005.
Sliwka, H. R.; Partali, V. Key to Xenobiotic Carotenoids. Molecules 2012, 17 (3), 2877-2928. https://doi.org/10.3390/molecules17032877.
Kim, J. W.; Choi, B. H.; Kim, J. H.; Kang, H. J.; Ryu, H.; Lee, P. C. Complete Genome Sequence of Planococcus Faecalis AJ003T,Planococcus Faecalis AJ003 the Type Species of the Genus Planococcus and a Microbial C30 Carotenoid Producer. Journal of Biotechnology 2018, 266, 72-76. https://doi.org/10.1016/j.jbiotec.2017.12.005.
Perez-Fons, L.; Steiger, S.; Khaneja, R.; Bramley, P. M.; Cutting, S. M.; Sandmann, G.; Fraser, P. D. Identification and the Developmental Formation of Carotenoid Pigments in the Yellow/Orange Bacillus Spore-Formers. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 2011, 1811 (3), 177-185. https://doi.org/10.1016/j.bbalip.2010.12.009.
Asker, D.; Awad, T. S.; Beppu, T.; Ueda, K. Screening and Profiling of Natural Ketocarotenoids from Environmental Aquatic Bacterial Isolates. Food Chemistry 2018, 253, 247-254. https://doi.org/10.1016/j.foodchem.2018.01.066.
Kallscheuer, N.; Moreira, C.; Airs, R.; Llewellyn, C. A.; Wiegand, S.; Jogler, C.; Lage, O. M. Pink- and Orange-Pigmented Planctomycetes Produce Saproxanthin-Type Carotenoids Including a Rare C45 Carotenoid. Environmental Microbiology Reports 2019, 11 (6), 741-748. https://doi.org/10.1111/1758-2229.12796.
Heider, S. A. E.; Peters-Wendisch, P.; Wendisch, V. F.; Beekwilder, J.; Brautaset, T. Metabolic Engineering for the Microbial Production of Carotenoids and Related Products with a Focus on the Rare C50 Carotenoids. Applied Microbiology and Biotechnology 2014, 98 (10), 4355-4368. https://doi.org/10.1007/s00253-014-5693-8.
Yabuzaki, J. Carotenoids Database: Structures, Chemical Fingerprints and Distribution among Organisms. Database 2017, 2017, bax004. https://doi.org/10.1093/database/bax004.
Marshall, J. H.; Wilmoth, G. J. Pigments of Staphylococcus Aureus, a Series of Triterpenoid Carotenoids. Journal of Bacteriology 1981, 147 (3), 900-913. https://doi.org/10.1128/JB.147.3.900-913.1981.
Marshall, J. H.; Wilmoth, G. J. Proposed Pathway of Triterpenoid Carotenoid Biosynthesis in Staphylococcus Aureus: Evidence from a Study of Mutants. Journal of Biotechnology 1981, 147 (3), 914-919. https://doi.org/10.1128/JB.147.3.914-919.1981.
Zhang, J.; Suo, Y.; Zhang, D.; Jin, F.; Zhao, H.; Shi, C. Genetic and Virulent Difference between Pigmented and Non-Pigmented Staphylococcus Aureus. Frontiers in Microbiology 2018, 9 (APR). https://doi.org/10.3389/fmicb.2018.00598.
Song, Y.; Liu, C. I.; Lin, F. Y.; Joo, H. N.; Hensler, M.; Liu, Y. L.; Jeng, W. Y.; Low, J.; Liu, G. Y.; Nizet, V.; Wang, A. H. J.; Oldfield, E. Inhibition of Staphyloxanthin Virulence Factor Biosynthesis in Staphylococcus Aureus: In Vitro, in Vivo, and Crystallographic Results. Journal of Medicinal Chemistry 2009, 52 (13), 3869-3880. https://doi.org/10.1021/jm9001764.
Pelz, A.; Wieland, K. P.; Putzbach, K.; Hentschel, P.; Albert, K.; Götz, F. Structure and Biosynthesis of Staphyloxanthin from Staphylococcus Aureus. Journal of Biological Chemistry 2005, 280 (37), 32493-32498. https://doi.org/10.1074/jbc.M505070200.
Mussagy, C. U.; Winterburn, J.; Santos-Ebinuma, V. C.; Pereira, J. F. B. Production and Extraction of Carotenoids Produced by Microorganisms. Applied Microbiology and Biotechnology 2019, 103 (3), 1095-1114. https://doi.org/10.1007/s00253-018-9557-5.
Kim, S. H.; Lee, P. C. Functional Expression and Extension of Staphylococcal Staphyloxanthin Biosynthetic Pathway in Escherichia Coli. Journal of Biological Chemistry 2012, 287 (26), 21575-21583. https://doi.org/10.1074/jbc.M112.343020.
Leejae, S.; Hasap, L.; Voravuthikunchai, S. P. Inhibition of Staphyloxanthin Biosynthesis in Staphylococcus Aureus by Rhodomyrtone, a Novel Antibiotic Candidate. Journal of Medical Microbiology 2013, 62 (PART3), 421-428. https://doi.org/10.1099/jmm.0.047316-0.
Oldfield, E. Targeting Isoprenoid Biosynthesis for Drug Discovery: Bench to Bedside. Accounts of Chemical Research 2010, 43 (9), 1216-1226. https://doi.org/10.1021/ar100026v.
Wieland, B.; Feil, C.; Gloria-Maercker, E.; Thumm, G.; Lechner, M.; Bravo, J. M.; Poralla, K.; Götz, F. Genetic and Biochemical Analyses of the Biosynthesis of the Yellow Carotenoid 4,4'-Diaponeurosporene of Staphylococcus Aureus. Journal of Bacteriology 1994, 176 (24), 7719-7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994.
Liu, G. Y.; Essex, A.; Buchanan, J. T.; Datta, V.; Hoffman, H. M.; Bastian, J. F.; Fierer, J.; Nizet, V. Staphylococcus Aureus Golden Pigment Impairs Neutrophil Killing and Promotes Virulence through Its Antioxidant Activity. Journal of Experimental Medicine 2005, 202 (2), 209-215. https://doi.org/10.1084/jem.20050846.
Kurosu, M.; Begari, E. Vitamin K2 in Electron Transport System: Are Enzymes Involved in Vitamin K2 Biosynthesis Promising Drug Targets? Molecules 2010, 15 (3), 1531-1553. https://doi.org/10.3390/molecules15031531.
Wakeman, C. A.; Hammer, N. D.; Stauff, D. L.; Attia, A. S.; Anzaldi, L. L.; Dikalov, S. I.; Calcutt, M. W.; Skaar, E. P. Menaquinone Biosynthesis Potentiates Haem Toxicity in Staphylococcus Aureus. Molecular Microbiology 2012, 86 (6), 1376-1392. https://doi.org/10.1111/mmi.12063.
Taylor, R. F.; Bavies, B. H. The Triterpenoid Carotenoids and Related Terpenoids in Staphylococcus Aureus 209P. Can. J. Biochem. Cekl Biol. 1983, 61, 892-905. https://doi.org/10.1139/o83-114.
Britton, G. Carotenoid Research: History and New Perspectives for Chemistry in Biological Systems. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 2020, 1865 (11), 158699. https://doi.org/10.1016/j.bbalip.2020.158699.
Provesi, J. G.; Dias, C. O.; Amante, E. R. Changes in Carotenoids during Processing and Storage of Pumpkin Puree. Food Chemistry 2011, 128 (1), 195-202. https://doi.org/10.1016/j.foodchem.2011.03.027.
Coker, M. S.; Forbes, L. V.; Plowman-Holmes, M.; Murdoch, D. R.; Winterbourn, C. C.; Kettle, A. J. Interactions of Staphyloxanthin and Enterobactin with Myeloperoxidase and Reactive Chlorine Species. Archives of Biochemistry and Biophysics 2018, 646 (December 2017), 80-89. https://doi.org/10.1016/j.abb.2018.03.039.
Lu, Y.; Zhang, L.; Zhu, J.; Lan, L.; Li, J. Discovery of Benzocycloalkane Derivatives E Ffi Ciently Blocking Bacterial Virulence for the Treatment of Methicillin-Resistant S. Aureus (MRSA) Infections by Targeting Diapophytoene Desaturase (CrtN). J. Med. Chem. 2016, 59, 4831-4848. https://doi.org/10.1021/acs.jmedchem.6b00122.
Elmasri, W. A.; Zhu, R.; Peng, W.; Al-Hariri, M.; Kobeissy, F.; Tran, P.; Hamood, A. N.; Hegazy, M. F.; Paré, P. W.; Mechref, Y. Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus Aureus: A Proteomic Characterization. Journal of Proteome Research 2017, 16 (7), 2579-2586. https://doi.org/10.1021/acs.jproteome.7b00137.
Vermote, A.; Calenbergh, S. Van. Small-Molecule Potentiators for Conventional Antibiotics against Staphylococcus Aureus. ACS Infect. Dis. 2017, 10.1021/acsinfecdis.7b00084. https://doi.org/10.1021/acsinfecdis.7b00084.
Sashidhara, K. V.; Rao, K. B.; Kushwaha, P.; Modukuri, R. K.; Singh, P.; Soni, I.; Shukla, P. K.; Chopra, S.; Pasupuleti, M. Novel Chalcone-Thiazole Hybrids as Potent Inhibitors of Drug Resistant Staphylococcus Aureus. ACS Medicinal Chemistry Letters 2015, 6 (7), 809-813. https://doi.org/10.1021/acsmedchemlett.5b00169.
Lorent, J. H.; Xie, M.; Gilissen, F.; Killian, J. A. Effects of Cold Atmospheric Plasmas on Membranes. Biophysical Journal 2020, 118 (3), 235a. https://doi.org/10.1016/j.bpj.2019.11.1386.
Haralambiev, L.; Nitsh, A.; Einenkel, R.; Muzzio, D. O.; Gelbrich, N.; Burchardt, M.; Zygmunt, M.; Ekkerkamp, A.; Stope, M. B.; Gümbel, D. The Effect of Cold Atmospheric Plasma on the Membrane Permeability of Human Osteosarcoma Cells. Anticancer Research 2020, 40 (2), 841-846. https://doi.org/10.21873/anticanres.14016.
Von Woedtke, T.; Metelmann, H. R.; Weltmann, K. D. Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma. Contributions to Plasma Physics 2014, 54 (2), 104-117. https://doi.org/10.1002/ctpp.201310068.
Reuter, S.; Von Woedtke, T.; Weltmann, K. D. The KINPen - A Review on Physics and Chemistry of the Atmospheric Pressure Plasma Jet and Its Applications. Journal of Physics D: Applied Physics 2018, 51 (23). https://doi.org/10.1088/1361-6463/aab3ad.
Gangaraju Vamsi K. Lin Haifan. Noncovalent Keystone Interactions Controlling Biomembrane Structure. Chemistry - A European Journal 2008, 14 (6), 1690-1697. https://doi.org/10.1038/nrm2621.
Mishra, N. N.; Bayer, A. S.; Weidenmaier, C.; Grau, T.; Wanner, S.; Stefani, S.; Cafiso, V.; Bertuccio, T.; Yeaman, M. R.; Nast, C. C. Phenotypic and Genotypic Characterization of Staphylococcus Aureus Strains : Relative Roles of MprF and Dlt Operons. PLoS ONE 2014, 9 (9), e107426. https://doi.org/10.1371/journal.pone.0107426.
Sousa, T.; Castro, R. E.; Coutinho, A.; Rodrigues, C. M. P.; Prieto, M.; Fernandes, F. Measuring the Impact of Bile Acids on the Membrane Order of Primary Hepatocytes and Isolated Mitochondria by Fluorescence Imaging and Spectroscopy. In Experimental Cholestasis Research, Methods in Molecular Biology; Vinken, M., Ed.; Humana: New York, NY., 2019; Vol. 1981, pp 99-115. https://doi.org/10.1007/978-1-4939-9420-5_7.
Ribeiro, L. M. B. C.; Fumagalli, F.; Mello, R. B.; Froes, T. Q.; da Silva, M. V. S.; Villamizar Gómez, S. M.; Barros, T. F.; Emery, F. S.; Castilho, M. S. Structure-Activity Relationships and Mechanism of Action of Tetragomycin Derivatives as Inhibitors of Staphylococcus aureus Staphyloxanthin Biosynthesis. Microbial Pathogenesis 2020, 144 (December 2019), 104127. https://doi.org/10.1016/j.micpath.2020.104127.
Schultz, C.; Naumann, D. In Vivo Study of the State of Order of the Membranes of Gram-Negative Bacteria by Fourier-Transform Infrared Spectroscopy (FT-IR). FEBS Letters 1991, 294, 43-36. https://doi.org/10.1016/0014-5793(91)81339-a.
Lewis, R. N. A. H.; McElhaney, R. N. Membrane Lipid Phase Transitions and Phase Organization Studied by Fourier Transform Infrared Spectroscopy. Biochimica et Biophysica Acta - Biomembranes. 2013, pp 2347-2358. https://doi.org/10.1016/j.bbamem.2012.10.018.
Scherber, C. M.; Schottel, J. L.; Aksan, A. Membrane Phase Behavior of Escherichia Coli during Desiccation, Rehydration, and Growth Recovery. Biochimica et Biophysica Acta - Biomembranes 2009, 1788 (11), 2427-2435. https://doi.org/10.1016/j.bbamem.2009.08.011.
Ami, D.; Lavatelli, F.; Rognoni, P.; Palladini, G.; Raimondi, S.; Giorgetti, S.; Monti, L.; Doglia, S. M.; Natalello, A.; Merlini, G. In Situ Characterization of Protein Aggregates in Human Tissues Affected by Light Chain Amyloidosis: A FTIR Microspectroscopy Study. Scientific Reports 2016, 6 (1), 29096. https://doi.org/10.1038/srep29096.
Niu, X.-Q.; Zhang, D.-P.; Bian, Q.; Feng, X.-F.; Li, H.; Rao, Y.-F.; Shen, Y.-M.; Geng, F.-N.; Yuan, A.-R.; Ying, X.-Y.; Gao, J.-Q. Mechanism Investigation of Ethosomes Transdermal Permeation. International Journal of Pharmaceutics: X 2019, 1 (September), 100027. https://doi.org/10.1016/j.ijpx.2019.100027.
Ocampo, J.; Afanador, N.; Vives, M. J.; Moreno, J. C.; Leidy, C. The Antibacterial Activity of Phospholipase A2 Type IIA Is Regulated by the Cooperative Lipid Chain Melting Behavior in Staphylococcus Aureus. Biochimica et Biophysica Acta - Biomembranes 2010, 1798 (6), 1021-1028. https://doi.org/10.1016/j.bbamem.2009.11.017.
Martínez, A.; Manrique-Moreno, M.; Klaiss-Luna, M. C.; Stashenko, E.; Zafra, G.; Ortiz, C. Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia Coli and Staphylococcus Aureus. Antibiotics 2021, 10 (12). https://doi.org/10.3390/antibiotics10121474.
Sen, S.; Sirobhushanam, S.; Johnson, S. R.; Song, Y.; Tefft, R.; Gatto, C.; Wilkinson, B. J. Growth-Environment Dependent Modulation of Staphylococcus Aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids. PLoS ONE 2016, 11 (10), e0165300. https://doi.org/10.1371/journal.pone.0165300.
Vitko, N. P.; Richardson, A. R. Laboratory Maintenance of Methicillin-Resistant Staphylococcus Aureus (MRSA). In Current Protocols in Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp 1-21. https://doi.org/10.1002/9780471729259.mc09c02s28.
Reed, P.; Atilano, M. L.; Alves, R.; Hoiczyk, E.; Sher, X.; Reichmann, N. T.; Pereira, P. M.; Roemer, T.; Filipe, S. R.; Pereira-Leal, J. B.; Ligoxygakis, P.; Pinho, M. G. Staphylococcus Aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLOS Pathogens 2015, 11 (5), e1004891. https://doi.org/10.1371/journal.ppat.1004891.
Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology 1959, 37 (8), 911-917. https://doi.org/10.1139/o59-099.
Reis, A.; Rudnitskaya, A.; Blackburn, G. J.; Fauzi, N. M.; Pitt, A. R.; Spickett, C. M. A Comparison of Five Lipid Extraction Solvent Systems for Lipidomic Studies of Human LDL. Journal of Lipid Research 2013, 54 (7), 1812-1824. https://doi.org/10.1194/jlr.M034330.
Pérez-Gálvez, A.; Roca, M. Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. In Progress in Carotenoid Research; IntechOpen, 2018; pp 17-44. https://doi.org/10.5772/intechopen.79755.
Rivera, S. M.; Christou, P.; Canela-Garayoa, R. Identification of Carotenoids Using Mass Spectrometry. Mass Spectrometry Reviews 2014, 33, 353-372. https://doi.org/10.1002/mas.21390.
Neto, F. C.; Guaratini, T.; Costa-Lotufo, L.; Colepicolo, P.; Gates, P. J.; Lopes, N. P. Re-Investigation of the Fragmentation of Protonated Carotenoids by Electrospray Ionization and Nanospray Tandem Mass Spectrometry. Rapid Communications in Mass Spectrometry 2016, 30 (13), 1540-1548. https://doi.org/10.1002/rcm.7589.
Van Breemen, R. B.; Dong, L.; Pajkovic, N. D. Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry of Carotenoids. International Journal of Mass Spectrometry 2012, 312, 163-172. https://doi.org/10.1016/j.ijms.2011.07.030.
Dong, P.; Mohammad, H.; Hui, J.; Leanse, L. G.; Li, J.; Liang, L.; Dai, T.; Seleem, M. N.; Cheng, J. Photolysis of Staphyloxanthin in Methicillin-Resistant Staphylococcus Aureus Potentiates Killing by Reactive Oxygen Species. Advanced Science 2019, 6 (11), 1900030. https://doi.org/10.1002/advs.201900030.
Barretto, D. A.; Vootla, S. K. In Vitro Anticancer Activity of Staphyloxanthin Pigment Extracted from Staphylococcus Gallinarum KX912244, a Gut Microbe of Bombyx Mori. Indian Journal of Microbiology 2018, 58 (2), 146-158. https://doi.org/10.1007/s12088-018-0718-0.
Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Analytical Chemistry. 2016, pp 524-545. https://doi.org/10.1021/acs.analchem.5b04491.
Lam, S. M.; Tian, H.; Shui, G. Lipidomics, En Route to Accurate Quantitation. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 2017, 1862 (8), 752-761. https://doi.org/10.1016/j.bbalip.2017.02.008.
Rojo, D.; Canuto, G. A. B.; Castilho-Martins, E. A.; Tavares, M. F. M.; Barbas, C.; López-Gonzálvez, Á.; Rivas, L. A Multiplatform Metabolomic Approach to the Basis of Antimonial Action and Resistance in Leishmania Infantum. PLoS ONE 2015, 10 (7), 1-20. https://doi.org/10.1371/journal.pone.0130675.
Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric Methods in Data Processing of Mass Spectrometry-Based Metabolomics: A Review. Analytica Chimica Acta 2016, 914, 17-34. https://doi.org/10.1016/j.aca.2016.02.001.
Ren, S.; Hinzman, A. A.; Kang, E. L.; Szczesniak, R. D.; Lu, L. J. Computational and Statistical Analysis of Metabolomics Data. Metabolomics 2015, 11 (6), 1492-1513. https://doi.org/10.1007/s11306-015-0823-6.
Rubini, D.; Farisa Banu, S.; Veda Hari, B. N.; Ramya Devi, D.; Gowrishankar, S.; Karutha Pandian, S.; Nithyanand, P. Chitosan Extracted from Marine Biowaste Mitigates Staphyloxanthin Production and Biofilms of Methicillin- Resistant Staphylococcus Aureus. Food and Chemical Toxicology 2018, 118 (April), 733-744. https://doi.org/10.1016/j.fct.2018.06.017.
Selvaraj, A.; Valliammai, A.; Muthuramalingam, P.; Priya, A.; Suba, M.; Ramesh, M.; Karutha Pandian, S. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus Aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An In Vitro and In Vivo Approach. ACS Omega 2020, 5 (48), 31100-31114. https://doi.org/10.1021/acsomega.0c04252.
Valliammai, A.; Selvaraj, A.; Muthuramalingam, P.; Priya, A.; Ramesh, M.; Pandian, S. K. Staphyloxanthin Inhibitory Potential of Thymol Impairs Antioxidant Fitness, Enhances Neutrophil Mediated Killing and Alters Membrane Fluidity of Methicillin Resistant Staphylococcus Aureus. Biomedicine & Pharmacotherapy 2021, 141 (July), 111933. https://doi.org/10.1016/j.biopha.2021.111933.
Rocha-Roa, C.; Orjuela, J. D.; Leidy, C.; Cossio, P.; Aponte-Santamaría, C. Cardiolipin Prevents Pore Formation in Phosphatidylglycerol Bacterial Membrane Models. FEBS Letters 2021, 595 (21), 2701-2714. https://doi.org/10.1002/1873-3468.14206.
Figueroa, D. R.; Cabrera, J. E.; Delgado, J. A. M.; Pietro Miscione, G.; Leidy, C.; Aponte-Santamaria, C. A. Variations in the Biophysical Properties of DMPG and DPPG Membranes with Staphyloxanthin: A Molecular Dynamics Simulation Study. Biophysical Journal 2021, 120 (3), 43a. https://doi.org/10.1016/j.bpj.2020.11.509.
Rodríguez-Beltrán, É.; López, G.-D.; Anzola, J. M.; Rodríguez-Castillo, J. G.; Carazzone, C.; Murcia, M. I. Heterogeneous Fitness Landscape Cues, PknG High Expression, and Phthiocerol Dimycocerosate Low Production of Mycobacterium Tuberculosis ATCC25618 RpoB S450L in Enriched Broth. Tuberculosis 2022, 132 (November 2021), 102156. https://doi.org/10.1016/j.tube.2021.102156.
Poletto, P.; Álvarez-Rivera, G.; López, G.-D.; Borges, O. M. A.; Mendiola, J. A.; Ibáñez, E.; Cifuentes, A. Recovery of Ascorbic Acid, Phenolic Compounds and Carotenoids from Acerola by-Products: An Opportunity for Their Valorization. LWT 2021, 146 (May), 111654. https://doi.org/10.1016/j.lwt.2021.111654.
Galeano Garcia, P.; Neves dos Santos, F.; Zanotta, S.; Eberlin, M.; Carazzone, C. Metabolomics of Solanum Lycopersicum Infected with Phytophthora Infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules 2018, 23 (12), 3330. https://doi.org/10.3390/molecules23123330.
Kamela, C. S. N.; Supply, P.; Cobelens, F. G. J.; Gaudin, C.; Gonzalez-martin, J.; Jong, B. C. De. How Well Do Routine Molecular Diagnostics Detect Rifampin Heteroresistance in Mycobacterium Tuberculosis? Journal of Clinical Microbiology 2019, 57 (11), e00717-19. https://doi.org/https://doi.org/10.1128/JCM .00717-19.
Gonzalez, M.; Palacios-Rodriguez, P.; Hernandez-Restrepo, J.; González-Santoro, M.; Amézquita, A.; Brunetti, A. E.; Carazzone, C. First Characterization of Toxic Alkaloids and Volatile Organic Compounds (VOCs) in the Cryptic Dendrobatid Silverstoneia Punctiventris. Frontiers in Zoology 2021, 18 (1), 39. https://doi.org/10.1186/s12983-021-00420-1.
López, G.-D.; Suesca, E.; Álvarez-Rivera, G.; Rosato, A. E.; Ibáñez, E.; Cifuentes, A.; Leidy, C.; Carazzone, C. Carotenogenesis of Staphylococcus Aureus: New Insights and Impact on Membrane Biophysical Properties. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2021, 1866 (8), 158941. https://doi.org/10.1016/j.bbalip.2021.158941.
Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D. Lipid Extraction by Methyl-Terf-Butyl Ether for High-Throughput Lipidomics. Journal of Lipid Research 2008, 49 (5), 1137-1146. https://doi.org/10.1194/jlr.D700041-JLR200.
Hara, A.; Radin, N. S. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Analytical Biochemistry 1978, 90 (1), 420-426. https://doi.org/10.1016/0003-2697(78)90046-5.
Zhang, R.; Brennan, M.-L.; Shen, Z.; MacPherson, J. C.; Schmitt, D.; Molenda, C. E.; Hazen, S. L. Myeloperoxidase Functions as a Major Enzymatic Catalyst for Initiation of Lipid Peroxidation at Sites of Inflammation. Journal of Biological Chemistry 2002, 277 (48), 46116-46122. https://doi.org/10.1074/jbc.M209124200.
Bueno, M.; Vitali, C.; Sánchez-Martínez, J. D.; Mendiola, J. A.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Compressed CO2Technologies for the Recovery of Carotenoid-Enriched Extracts from Dunaliella Salina with Potential Neuroprotective Activity. ACS Sustainable Chemistry and Engineering 2020, 8 (30), 11413-11423. https://doi.org/10.1021/acssuschemeng.0c03991.
Torres, T. M. S.; Mendiola, J. A.; Álvarez-Rivera, G.; Mazzutti, S.; Ibáñez, E.; Cifuentes, A.; Ferreira, S. R. S. Protein Valorization from Ora-pro-Nobis Leaves by Compressed Fluids Biorefinery Extractions. Innovative Food Science and Emerging Technologies 2022, 76 (January). https://doi.org/10.1016/j.ifset.2022.102926.
Gilbert-López, B.; Mendiola, J. A.; Fontecha, J.; Van Den Broek, L. A. M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Downstream Processing of Isochrysis Galbana: A Step towards Microalgal Biorefinery. Green Chemistry 2015, 17 (9), 4599-4609. https://doi.org/10.1039/c5gc01256b.
Ballesteros-Vivas, D.; Alvarez-Rivera, G.; Ibánez, E.; Parada-Alfonso, F.; Cifuentes, A. Integrated Strategy for the Extraction and Profiling of Bioactive Metabolites from Passiflora Mollissima Seeds Combining Pressurized-Liquid Extraction and Gas/Liquid Chromatography-High Resolution Mass Spectrometry. Journal of Chromatography A 2019, 1595, 144-157. https://doi.org/10.1016/j.chroma.2019.02.031.
Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; 2019; pp 375-398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X.
Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R. M.; Kalina, J. Development of an Advanced HPLC-MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma. International Journal of Molecular Sciences 2016, 17 (10), 1719. https://doi.org/10.3390/ijms17101719.
Schex, R.; Lieb, V. M.; Jiménez, V. M.; Esquivel, P.; Schweiggert, R. M.; Carle, R.; Steingass, C. B. HPLC-DAD-APCI/ESI-MSn Analysis of Carotenoids and [alfa]-Tocopherol in Costa Rican Acrocomia Aculeata Fruits of Varying Maturity Stages. Food Research International 2018, 105, 645-653. https://doi.org/10.1016/j.foodres.2017.11.041.
Al-Kazaz, E. J.; Melconian, A. K.; Kandela, N. J. Extraction of Staphyloxanthin from Staphylococcus Aureus Isolated from Clinical Sources to Determine Its Antibacterial Activity Against Other Bacteria. Iraqi Journal of Science 2014, 55 (4B), 1823-1832.
Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Current Protocols in Molecular Biology 2016, 114 (1), 1-32. https://doi.org/10.1002/0471142727.mb3004s114.
dos Santos, L. C.; Álvarez-Rivera, G.; Sánchez-Martínez, J. D.; Johner, J. C. F.; Barrales, F. M.; de Oliveira, A. L.; Cifuentes, A.; Ibáñez, E.; Martínez, J. Comparison of Different Extraction Methods of Brazilian "Pacová" (Renealmia Petasites Gagnep.) Oilseeds for the Determination of Lipid and Terpene Composition, Antioxidant Capacity, and Inhibitory Effect on Neurodegenerative Enzymes. Food Chemistry: X 2021, 12. https://doi.org/10.1016/j.fochx.2021.100140.
Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology 1995, 28 (1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.
Mensor, L. L.; Menezes, F. S.; Leitao, G. G.; Reis, A. S.; Dos, T. C. S. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method . Phytother Res Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free. Phytotherapy Research 2001, 130, 127-130.
Torres, T. M. S.; Álvarez-Rivera, G.; Mazzutti, S.; Sánchez-Martínez, J. D.; Cifuentes, A.; Ibáñez, E.; Ferreira, S. R. S. Neuroprotective Potential of Extracts from Leaves of Ora-pro-Nobis (Pereskia Aculeata) Recovered by Clean Compressed Fluids. Journal of Supercritical Fluids 2021, 179 (May 2021). https://doi.org/10.1016/j.supflu.2021.105390.
Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J. A.; Deemer, E. K. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated [beta]-Cyclodextrin as the Solubility Enhancer. Journal of Agricultural and Food Chemistry 2002, 50 (7), 1815-1821. https://doi.org/10.1021/jf0113732.
Seel, W.; Baust, D.; Sons, D.; Albers, M.; Etzbach, L.; Fuss, J.; Lipski, A. Carotenoids Are Used as Regulators for Membrane Fluidity by Staphylococcus Xylosus. Scientific Reports 2020, 10 (1), 330. https://doi.org/10.1038/s41598-019-57006-5.
Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of Carotenoid Profiles in Goldenberry (Physalis Peruviana L.) Fruits at Various Ripening Stages and in Different Plant Tissues by HPLC-DAD-APCI-MSn. Food Chemistry 2018, 245 (October 2017), 508-517. https://doi.org/10.1016/j.foodchem.2017.10.120.
Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahim, O. H. M.; Suarez-Álvarez, S.; Ferragut, J. A.; Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. Pressurized Liquid Extraction of Neochloris Oleoabundans for the Recovery of Bioactive Carotenoids with Anti-Proliferative Activity against Human Colon Cancer Cells. Food Research International 2017, 99, 1048-1055. https://doi.org/10.1016/j.foodres.2016.05.021.
Chamberlain, N. R.; Mehrtens, B. G.; Xiong, Z.; Kapral, F. A.; Boardman, J. L.; Rearick, J. I. Correlation of Carotenoid Production, Decreased Membrane Fluidity, and Resistance to Oleic Acid Killing in Staphylococcus Aureus 18Z. Infection and Immunity 1991, 59 (12), 4332-4337. https://doi.org/10.1128/iai.59.12.4332-4337.1991.
Mijts, B. N.; Lee, P. C.; Schmidt-Dannert, C. Identification of a Carotenoid Oxygenase Synthesizing Acyclic Xanthophylls: Combinatorial Biosynthesis and Directed Evolution. Chemistry and Biology 2005, 12 (4), 453-460. https://doi.org/10.1016/j.chembiol.2005.02.010.
Chu, F. L.; Pirastru, L.; Popovic, R.; Sleno, L. Carotenogenesis Up-Regulation in Scenedesmus Sp. Using a Targeted Metabolomics Approach by Liquid Chromatography-High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry 2011, 59 (7), 3004-3013. https://doi.org/10.1021/jf105005q.
Amorim-Carrilho, K. T.; Cepeda, A.; Fente, C.; Regal, P. Review of Methods for Analysis of Carotenoids. TrAC - Trends in Analytical Chemistry 2014, 56, 49-73. https://doi.org/10.1016/j.trac.2013.12.011.
Novotny, J. A.; Kurilich, A. C.; Britz, S. J.; Clevidence, B. A. Plasma Appearance of Labeled [beta]-Carotene, Lutein, and Retinol in Humans after Consumption of Isotopically Labeled Kale. Journal of Lipid Research 2005, 46 (9), 1896-1903. https://doi.org/10.1194/jlr.M400504-JLR200.
O'neil, C. A.; Schwartz, S. J. Chromatographic Analysis of Cis/Trans Carotenoid Isomers*. Journal of Chromatography 1992, 624, 235-252. https://doi.org/10.1016/0021-9673(92)85682-j.
Saha, S.; Walia, S.; Sharma, K.; Banerjee, K. Suitability of Stationary Phase for LC Analysis of Biomolecules. Critical Reviews in Food Science and Nutrition 2019. https://doi.org/10.1080/10408398.2019.1665494.
Tiwari, K. B.; Gatto, C.; Wilkinson, B. J. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus Aureus Membrane. Molecules 2018, 23 (5). https://doi.org/10.3390/molecules23051201.
Mantsch, H. H.; McElhaney, R. N. Phospholipid Phase Transitions in Model and Biological Membranes as Studied by Infrared Spectroscopy. Chemistry and Physics of Lipids 1991, 57 (2-3), 213-226. https://doi.org/10.1016/0009-3084(91)90077-O.
Gauger, D. .; Selle, C.; Fritzsche, H.; Pohle, W. Chain-Length Dependence of the Hydration Properties of Saturated Phosphatidylcholines as Revealed by FTIR Spectroscopy. Journal of Molecular Structure 2001, 565-566, 25-29. https://doi.org/10.1016/S0022-2860(00)00777-8.
Domingo, J. C.; Mora, M.; Africa de Madariaga, M. Role of Headgroup Structure in the Phase Behaviour of N-Acylethanolamine Phospholipids: Hydrogen-Bonding Ability and Headgroup Size. Chemistry and Physics of Lipids 1994, 69 (3), 229-240. https://doi.org/10.1016/0009-3084(94)90004-3.
Bali, R.; Savino, L.; Ramirez, D. A.; Tsvetkova, N. M.; Bagatolli, L.; Tablin, F.; Crowe, J. H.; Leidy, C. Macroscopic Domain Formation during Cooling in the Platelet Plasma Membrane: An Issue of Low Cholesterol Content. Biochimica et Biophysica Acta - Biomembranes 2009, 1788 (6), 1229-1237. https://doi.org/10.1016/j.bbamem.2009.03.017.
Kim, S. H.; Kim, M. S.; Lee, B. Y.; Lee, P. C. Generation of Structurally Novel Short Carotenoids and Study of Their Biological Activity. Scientific Reports 2016, 6 (1), 21987. https://doi.org/10.1038/srep21987.
Hernández-Villa, L.; Manrique-Moreno, M.; Leidy, C.; Jemiota-Rzeminska, M.; Ortíz, C.; Strzalka, K. Biophysical Evaluation of Cardiolipin Content as a Regulator of the Membrane Lytic Effect of Antimicrobial Peptides. Biophysical Chemistry 2018, 238, 8-15. https://doi.org/10.1016/j.bpc.2018.04.001.
Suo, B.; Yang, H.; Wang, Y.; Lv, H.; Li, Z.; Xu, C.; Ai, Z. Comparative Proteomic and Morphological Change Analyses of Staphylococcus Aureus during Resuscitation from Prolonged Freezing. Frontiers in Microbiology 2018, 9, 1-11. https://doi.org/10.3389/fmicb.2018.00866.
Braungardt, H.; Singh, V. K. Impact of Deficiencies in Branched-Chain Fatty Acids and Staphyloxanthin in Staphylococcus Aureus. BioMed Research International 2019, 2019, 2603435. https://doi.org/10.1155/2019/2603435.
Umeno, D.; Tobias, A. V.; Arnold, F. H. Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution. Microbiology and Molecular Biology Reviews 2005, 69 (1), 51-78. https://doi.org/10.1128/mmbr.69.1.51-78.2005.
Martines, E. Interaction of Cold Atmospheric Plasmas with Cell Membranes in Plasma Medicine Studies. Japanese Journal of Applied Physics 2020, 59 (SA), SA0803. https://doi.org/10.7567/1347-4065/ab4860.
Ron, E. Y. C.; Plaza, M.; Kristjansdottir, T.; Sardari, R. R. R.; Bjornsdottir, S. H.; Gudmundsson, S.; Hreggvidsson, G. O.; Turner, C.; van Niel, E. W. J.; Nordberg-Karlsson, E. Characterization of Carotenoids in Rhodothermus Marinus. MicrobiologyOpen 2018, 7 (1), 7:e536. https://doi.org/10.1002/mbo3.536.
Montero, O.; Macìas-Sánchez, M. D.; Lama, C. M.; Lubián, L. M.; Mantell, C.; Rodríguez, M.; De La Ossa, E. M. Supercritical CO2 Extraction of [beta]-Carotene from a Marine Strain of the Cyanobacterium Synechococcus Species. Journal of Agricultural and Food Chemistry 2005, 53 (25), 9701-9707. https://doi.org/10.1021/jf051283n.
Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Analytica Chimica Acta 2011, 703 (1), 8-18. https://doi.org/10.1016/j.aca.2011.07.018.
Okiyama, D. C. G.; Soares, I. D.; Cuevas, M. S.; Crevelin, E. J.; Moraes, L. A. B.; Melo, M. P.; Oliveira, A. L.; Rodrigues, C. E. C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Research International 2018, 114 (May), 20-29. https://doi.org/10.1016/j.foodres.2018.07.055.
Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry 2005, 53 (10), 4290-4302. https://doi.org/10.1021/jf0502698.
Silva, T. R.; Tavares, R. S. N.; Canela-Garayoa, R.; Eras, J.; Rodrigues, M. V. N.; Neri-Numa, I. A.; Pastore, G. M.; Rosa, L. H.; Schultz, J. A. A.; Debonsi, H. M.; Cordeiro, L. R. G.; Oliveira, V. M. Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. Marine Biotechnology 2019, 21, 416-429. https://doi.org/10.1007/s10126-019-09892-z.
Cohen, A. C.; Dichiara, E.; Jofré, V.; Antoniolli, A.; Bottini, R.; Piccoli, P. Carotenoid Profile Produced by Bacillus Licheniformis Rt4M10 Isolated from Grapevines Grown in High Altitude and Their Antioxidant Activity. International Journal of Food Science & Technology 2018, 53 (12), 2697-2705. https://doi.org/10.1111/ijfs.13879.
Meléndez Granados, J. S. Biophysical Study on the Role of Staphyloxanthin in Promoting Desiccation Tolerance in Staphylococcus aureus, 2018.
Cebrián, G.; Sagarzazu, N.; Pagán, R.; Condón, S.; Mañas, P. Heat and Pulsed Electric Field Resistance of Pigmented and Non-Pigmented Enterotoxigenic Strains of Staphylococcus Aureus in Exponential and Stationary Phase of Growth. International Journal of Food Microbiology 2007, 118 (3), 304-311. https://doi.org/10.1016/j.ijfoodmicro.2007.07.051.
Yang, Y.; Wang, H.; Zhou, H.; Hu, Z.; Shang, W.; Rao, Y.; Peng, H.; Zheng, Y.; Hu, Q.; Zhang, R.; Luo, H.; Rao, X. Protective Effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus Aureus under Cold Atmospheric Plasma Treatment. Appl Environ Microbiol 2020, 86 (3). https://doi.org/10.1128/AEM.01998-19.
Duchesne, C.; Frescaline, N.; Blaise, O.; Lataillade, J.-J.; Banzet, S.; Dussurget, O.; Rousseau, A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus Aureus by Macrophages. mSphere 2021, 6 (3), e00217-21. https://doi.org/10.1128/mSphere.00217-21.
Guo, L.; Yang, L.; Qi, Y.; Niyazi, G.; Huang, L.; Gou, L.; Wang, Z.; Zhang, L.; Liu, D.; Wang, X.; Chen, H.; Kong, M. G. Cold Atmospheric-Pressure Plasma Caused Protein Damage in Methicillin-Resistant Staphylococcus Aureus Cells in Biofilms. Microorganisms 2021, 9 (5), 1072. https://doi.org/10.3390/microorganisms9051072.
Zhao, J.; Qian, J.; Zhuang, H.; Luo, J.; Huang, M.; Yan, W.; Zhang, J. Effect of Plasma-Activated Solution Treatment on Cell Biology of Staphylococcus Aureus and Quality of Fresh Lettuces. Foods 2021, 10 (12), 2976. https://doi.org/10.3390/foods10122976.
Hui, J.; Dong, P.; Liang, L.; Mandal, T.; Li, J.; Ulloa, E. R.; Zhan, Y.; Jusuf, S.; Zong, C.; Seleem, M. N.; Liu, G. Y.; Cui, Q.; Cheng, J. Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. Advanced Science 2020, 7 (6), 1903117. https://doi.org/10.1002/advs.201903117.
de Mendoza, D.; Klages Ulrich, A.; Cronan, J. E. Thermal Regulation of Membrane Fluidity in Escherichia Coli. Effects of Overproduction of Beta-Ketoacyl-Acyl Carrier Protein Synthase I. Journal of Biological Chemistry 1983, 258 (4), 2098-2101. https://doi.org/10.1016/S0021-9258(18)32888-6.
Vigh, L.; Los, D. A.; Horváth, I.; Murata, N. The Primary Signal in the Biological Perception of Temperature: Pd-Catalyzed Hydrogenation of Membrane Lipids Stimulated the Expression of the DesA Gene in Synechocystis PCC6803. Proceedings of the National Academy of Sciences 1993, 90 (19), 9090-9094. https://doi.org/10.1073/pnas.90.19.9090.
Gousset, K.; Wolkers, W. F.; Tsvetkova, N. M.; Oliver, A. E.; Field, C. L.; Walker, N. J.; Crowe, J. H.; Tablin, F. Evidence for a Physiological Role for Membrane Rafts in Human Platelets. Journal of Cellular Physiology 2002, 190 (1), 117-128. https://doi.org/10.1002/jcp.10039.
Mannock, D. A.; Lewis, R. N. A. H.; McElhaney, R. N. Comparative Calorimetric and Spectroscopic Studies of the Effects of Lanosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biophysical Journal 2006, 91 (9), 3327-3340. https://doi.org/10.1529/biophysj.106.084368.
Potrich, C.; Bastiani, H.; Colin, D. A.; Huck, S.; Prevost, G.; Dalla Serra, M. The Influence of Membrane Lipids in Staphylococcus Aureus Gamma-Hemolysins Pore Formation. J Membr Biol 2009, 227 (1), 13-24. https://doi.org/10.1007/s00232-008-9140-6.
Mercadante, A. Z.; Rodrigues, D. B.; Petry, F. C.; Mariutti, L. R. B. Carotenoid Esters in Foods - A Review and Practical Directions on Analysis and Occurrence. Food Research International 2017, 99, 830-850. https://doi.org/10.1016/j.foodres.2016.12.018.
Pinzón-Olarte, M. A. Optimización de Las Condiciones de Derivatización de Ácidos Grasos Para Análisis Por GC-MS de Lípidos de Membrana de Staphyloccus aureus Trabajo de grado, Universidad de los Andes, 2021.
Feng, X.; Hu, Y.; Zheng, Y.; Zhu, W.; Li, K.; Huang, C.-H.; Ko, T.-P.; Ren, F.; Chan, H.-C.; Nega, M.; Bogue, S.; López, D.; Kolter, R.; Götz, F.; Guo, R.-T.; Oldfield, E. Structural and Functional Analysis of Bacillus Subtilis YisP Reveals a Role of Its Product in Biofilm Production. Chemistry & Biology 2014, 21 (11), 1557-1563. https://doi.org/10.1016/j.chembiol.2014.08.018.
Kumar, S. V.; Taylor, G.; Hasim, S.; Collier, C. P.; Farmer, A. T.; Campagna, S. R.; Bible, A. N.; Doktycz, M. J.; Morrell-Falvey, J. Loss of Carotenoids from Membranes of Pantoea Sp. YR343 Results in Altered Lipid Composition and Changes in Membrane Biophysical Properties. Biochimica et Biophysica Acta - Biomembranes 2019, 1861 (7), 1338-1345. https://doi.org/10.1016/j.bbamem.2019.05.009.
Augustynska, D.; Jemiota-Rzemiå ska, M.; Burda, K.; Strzalka, K. Influence of Polar and Nonpolar Carotenoids on Structural and Adhesive Properties of Model Membranes. Chemico-Biological Interactions 2015, 239, 19-25. https://doi.org/10.1016/j.cbi.2015.06.021.
Gruszecki, W. I.; Strzalka, K. Carotenoids as Modulators of Lipid Membrane Physical Properties. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2005, 1740 (2), 108-115. https://doi.org/10.1016/j.bbadis.2004.11.015.
Gabrielska, J.; Gruszecki, W. I. Zeaxanthin (Dihydroxy-[beta]-Carotene) but Not [beta]-Carotene Rigidities Lipid Membranes: A 1H-NMR Study of Carotenoid-Egg Phosphatidylcholine Liposomes. Biochimica et Biophysica Acta - Biomembranes 1996, 1285 (2), 167-174. https://doi.org/10.1016/S0005-2736(96)00152-6.
Subczynski, W. K.; Markowska, E.; Gruszecki, W. I.; Sielewiesiuk, J. Effects of Polar Carotenoids on Dimyristoylphosphatidylcholine Membranes: A Spin-Label Study. Biochimica et Biophysica Acta (BBA) - Biomembranes 1992, 1105 (1), 97-108. https://doi.org/10.1016/0005-2736(92)90167-K.
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 190 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Doctorado en Ciencias - Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Química
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/3d3d6a3d-8da1-4024-b879-245838c65aa7/download
https://repositorio.uniandes.edu.co/bitstreams/9e9dcb28-1617-4dd8-b08e-efded034f2d5/download
https://repositorio.uniandes.edu.co/bitstreams/66921896-cf63-47fd-aebc-c49e0fc9a602/download
https://repositorio.uniandes.edu.co/bitstreams/eacdd22b-a578-435c-81b1-962a15095c0e/download
https://repositorio.uniandes.edu.co/bitstreams/10c82f34-6452-458a-a5ce-24a1ea91ce6d/download
https://repositorio.uniandes.edu.co/bitstreams/c0d4a127-3823-48b5-8355-28c435480cbe/download
https://repositorio.uniandes.edu.co/bitstreams/41db4b92-49e0-424c-b84b-b77932878357/download
https://repositorio.uniandes.edu.co/bitstreams/88eb2e74-5b46-4f2f-950c-7cd7e0b5c6cc/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
01db895b304ea114b5fe453a8ac9ee1c
b9913426a84e93b295441158c20dbd3e
975eb575452dbca109941049fb0f45cc
4491fe1afb58beaaef41a73cf7ff2e27
5aa5c691a1ffe97abd12c2966efcb8d6
d79d48ba9e403418ee995efae035b024
e3fda2ab6a63f32c9406143045103759
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818111873577385984
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carazzone, Chiaravirtual::9999-1Leidy, Chadvirtual::10000-1López Muñoz, Gerson Dirceu83ed36ea-1ace-4ba8-9df8-bfa4a643c24c600Sánchez-Camargo, AndreaOspina, Olga LuciaSantos, CledirLaboratory of Advanced Analytical Techniques in Natural Products (LATNAP)Laboratorio de Biofísica2022-08-31T14:22:20Z2022-08-31T14:22:20Z2022-08-22http://hdl.handle.net/1992/6032110.57784/1992/60321instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La estafiloxantina (STX) es un sacarolípido derivado de un carotenoide presente en Staphylococcus aureus (S. aureus), implicado en la tolerancia al estrés oxidativo y la resistencia a péptidos antimicrobianos. Además, la STX influye en las propiedades biofísicas de la membrana bacteriana y ha sido asociada a la formación de dominios lipídicos durante la resistencia a la meticilina. Sin embargo, se desconoce como S. aureus regula la formación de STX y otros carotenoides, la tolerancia al estrés oxidativo por parte de estos metabolitos, así como sus implicaciones en la viscosidad de la membrana. Por ello, en esta investigación se desarrolló un método de cromatografía líquida acoplado a espectrometría de masas en tándem (LC-MS/MS) para caracterizar simultáneamente todos los compuestos químicos asociados a la ruta biosintética de los carotenoides de S. aureus. Un total de 34 metabolitos relacionados a la biosíntesis de STX fueron identificados en una cepa silvestre, además se propuso una ruta biosintética alterna para la cepa SA147 que tenía inhibida la biosíntesis de los carotenoides, la cual se regeneró al contener el plásmido crtMN. La separación cromatográfica se obtuvo empleando columnas con rellenos C18 y C30, demostrando que la biosíntesis de los carotenoides se activa en la en la fase exponencial tardía (8h). Adicionalmente, el método LC-MS/MS permitió estudiar la conversión de carotenoides en el tiempo, evidenciando la progresión desde los precursores de carotenoides predominantes a las 8h de cultivo hasta la formación de los carotenoides finales en la fase estacionaria (24h). También se analizó la fase estacionaria tardía (48h) donde aumentó la proporción de células muertas, siendo STX uno de los componentes principales, pero no el único. Pues se elucidó un equilibrio químico entre el ácido 4,4'-diaponeouroesporenóico y STX durante la dinámica biosintética de los carotenoides, donde el sistema conformado por estas dos biomoléculas podría relacionarse como agentes reguladores de las propiedades biofísicas de la membrana bacteriana. Otro de los objetivos de esta investigación consistió en evaluar metodologías para la extracción de los carotenoides bacterianos, mediante la modernización del método clásico de extracción empleado por más de cuatro décadas, encontrando un incremento de significativo en los rendimientos. También se estudiaron métodos no convencionales de 18 extracción, siendo la extracción con líquidos presurizados (PLE) el método más selectivo a STX, al presentar los mejores rendimientos de recuperación cuando se utilizó etanol como disolvente. Estos resultados demostraron la posibilidad de reemplazar el metanol empleado en el método clásico por etanol, un disolvente que reduciría el impacto al ambiente. A su vez, se evaluó la capacidad antioxidante in vitro en cinco cepas de S. aureus mediante los ensayos DPPH y ORAC-lipofílico, demostrando que las cepas que producen carotenoides presentan la mejor capacidad antioxidante. Por otra parte, para evaluar la asociación entre la capacidad protectora de los carotenoides a condiciones de estrés y su incidencia en las propiedades de la membrana bacteriana, se determinó la viabilidad celular entre cepas que sintetizan carotenoides de las que no lo hacen. Encontrando una diferencia de un orden de magnitud en las unidades formadoras de colonias (UFC) cuando cepas de S. aureus y S. carnosus (contiene genes productores de carotenoides de S. aureus) fueron expuestas a una fuente generadora de especies reactivas de oxígeno y nitrógeno (plasma atmosférico frío, CAP), usado como método bactericida en infecciones cutáneas y bucales. Asimismo, la disminución estadísticamente significativa de los carotenoides cuantificados por el método LC-MS/MS indicó la eficiencia de CAP en degradar estos metabolitos en ambas bacterias. Además, el análisis de permeabilización de la membrana demostró una menor concentración de iones potasio liberado en las cepas productoras de carotenoides después de ser expuestas a CAP. Al analizar los extractos obtenidos después del tratamiento con CAP, ambas bacterias presentaron mayor fluidez debido a la oxidación de los carotenoides. Asimismo, al evaluar la concentración de carotenoides en las cepas de S. aureus expuestas a desecación durante uno y siete días, se demostró que la resistencia a desecación está relacionada con la mayor concentración de carotenoides, medición que también fue realizada con el método LC-MS/MS desarrollado. Adicionalmente, se determinaron las cantidades de los ácidos grasos mediante cromatografía gaseosa acoplada a espectrometría de masas (GC-MS). Estos análisis mostraron que los ácidos grasos de mayor abundancia en la membrana bacteriana tienen cadenas de 15 y 17 unidades de carbono, coincidiendo con los homólogos principales de STX, 19 los cuales fueron caracterizados por LC-MS/MS. Asimismo, se identificaron ácidos grasos entre 10 a 22 unidades de carbonos, algunos de las cuales también se encuentran enlazados al núcleo de STX, identificados por LC-MS/MS. Por último, empleando espectroscopia infrarroja por transformada de Fourier (FTIR) en sistemas de lípidos modelo (incluido un lípido deuterado) y sistemas in vivo, se confirmó que los carotenoides contribuyen a modular las propiedades biofísicas en la membrana de S. aureus. Se determinó que los carotenoides aumentan la rigidez de la membrana bacteriana a la temperatura de crecimiento (37°C) correspondiente a la fase líquido cristalina, que coincide a lo reportado usando sondas fluorescentes. Al mismo tiempo, los resultados FTIR también demostrarían que, con el aumento de la concentración de los carotenoides en la bacteria a bajas temperaturas ocurre un cambio en las temperaturas de transición (Tm) entre la fase gel y la líquido-cristalina, tornándose más fluida la membrana, algo por primera vez reportado para S. aureus. Resultados que confirmarían lo que se ha planteado para STX, carotenoide que cumpliría funciones semejantes al colesterol en células eucariotas, mientras que a altas temperaturas aumenta el nivel de empaquetamiento generando estabilidad, a bajas temperaturas se evita la agrupación de fosfolípidos por intercalación entre las colas lipídicas. En conclusión, mediante metodologías LC-MS/MS enfocadas al análisis de los carotenoides de S. aureus, así como el desarrollo de ensayos químicos y microbiológicos, fue posible elucidar la dinámica bioquímica que ocurre durante la biosíntesis metabólica de estos compuestos. Incluyendo la identificación de su diversidad molecular, comprendiendo con mayor detalle las propiedades de tolerancia a condiciones de estrés oxidativo asociadas a estos carotenoides. Sumado al estudio sobre el impacto que tienen en las propiedades biofísicas de la membrana bacteriana mediante análisis in vivo y con lípidos modelo empleando FTIR, sin la necesidad de sondas adicionales que se utilizan en métodos fluorescentes.Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid present in Staphylococcus aureus (S. aureus), implicated in tolerance to oxidative stress and resistance to antimicrobial peptides. In addition, STX influences the biophysical properties of the bacterial membrane and has been associated with the formation of lipid domains during methicillin resistance. However, it is unknown how S. aureus regulates the formation of STX and other carotenoids, the tolerance to oxidative stress by these metabolites, as well as their implications on membrane viscosity. Therefore, in this research, a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously characterize all chemical compounds associated with the carotenoid biosynthetic pathway of S. aureus. A total of 34 metabolites related to STX biosynthesis were identified in a wild-type strain, and an alternative biosynthetic pathway was proposed for strain SA147 that had inhibited carotenoid biosynthesis, which was regenerated by containing the crtMN plasmid. Chromatographic separation was obtained using C18- and C30-filled columns, showing that carotenoid biosynthesis is activated in the late exponential phase (8h). Additionally, the LC-MS/MS method allowed the study of carotenoid conversion over time, showing the progression from the predominant carotenoid precursors at 8h of culture to the formation of the final carotenoids in the stationary phase (24h). The late stationary phase (48h) was also analyzed where the proportion of dead cells increased, STX being one of the main components, but not the only one. A chemical equilibrium between 4,4'-diaponeourosporenoic acid and STX was elucidated during the biosynthetic dynamics of carotenoids, where the system formed by these two biomolecules could be related as regulatory agents of the biophysical properties of the bacterial membrane. Another objective of this research was to evaluate methodologies for the extraction of bacterial carotenoids by modernizing the classical extraction method used for more than four decades, finding a significant increase in yields. Non-conventional extraction methods were also studied, being pressurized liquid extraction (PLE) the most selective method to STX, presenting the best recovery yields when ethanol was used as solvent. These results demonstrated the possibility of replacing the methanol used in the classical method with 21 ethanol, a solvent that would reduce the impact on the environment. In turn, the in vitro antioxidant capacity of five strains of S. aureus was evaluated by means of DPPH and ORAC-lipophilic assays, showing that the strains that produce carotenoids present the best antioxidant capacity. On the other hand, to evaluate the association between the protective capacity of carotenoids under stress conditions and their impact on bacterial membrane properties, cell viability was determined between strains that synthesize carotenoids and those that do not. An order of magnitude difference in colony forming units (CFU) was found when strains of S. aureus and S. carnosus (containing carotenoid-producing genes from S. aureus) were exposed to a source of reactive oxygen and nitrogen species (cold atmospheric plasma, CAP), used as a bactericidal method in cutaneous and oral infections. Also, the statistically significant decrease of carotenoids quantified by LC-MS/MS method indicated the efficiency of CAP in degrading these metabolites in both bacteria. In addition, membrane permeabilization analysis showed a lower concentration of potassium ions released in the carotenoid-producing strains after exposure to CAP. Now, when analyzing the extracts obtained after CAP treatment, both bacteria showed higher fluidity due to carotenoid oxidation. Likewise, to evaluate the concentration of carotenoids in the S. aureus strains exposed to desiccation for one and seven days, it was demonstrated that resistance to desiccation is related to the higher concentration of carotenoids, a measurement that was also performed with the LC-MS/MS method developed. Additionally, the amounts of fatty acids were determined by gas chromatography coupled to mass spectrometry (GC-MS). These analyses showed that the most abundant fatty acids in the bacterial membrane have chains of 15 and 17 carbon units, coinciding with the main homologues of STX, which were characterized by LC-MS/MS. Also, fatty acids between 10 and 22 carbon units, some of which are also linked to the core of STX, were identified by LC-MS/MS. Finally, using Fourier transform infrared spectroscopy (FTIR) in model lipid systems (including a deuterated lipid) and in vivo systems, it was confirmed that carotenoids contribute to modulate biophysical properties in the membrane of S. aureus. Carotenoids 22 were found to increase the stiffness of the bacterial membrane at the growth temperature (37°C) corresponding to the liquid crystalline phase, which is consistent with that reported using fluorescent probes. At the same time, the FTIR results would also demonstrate that, with the increase in the concentration of carotenoids in the bacteria at low temperatures, a change in the transition temperatures (Tm) between the gel phase and the liquid-crystalline phase occurs, making the membrane more fluid, something reported for the first time for S. aureus. Results that would confirm what has been proposed for STX, a carotenoid that would fulfill similar functions to cholesterol in eukaryotic cells, while at high temperatures the level of packing increases, generating stability, at low temperatures the grouping of phospholipids is avoided by intercalation between the lipid tails. In conclusion, by means of LC-MS/MS methodologies focused on the analysis of S. aureus carotenoids, as well as the development of chemical and microbiological assays, it was possible to elucidate the biochemical dynamics that occur during the metabolic biosynthesis of these compounds. Including the identification of their molecular diversity, understanding in greater detail the properties of tolerance to oxidative stress conditions associated with these carotenoids. In addition to the study of their impact on the biophysical properties of the bacterial membrane by in vivo and model lipid analysis using FTIR, without the need for additional probes used in fluorescent methods.Este trabajo fue apoyado y financiado por el Ministerio de Ciencia, Tecnología e Innovación (MinCiencias) de Colombia con la convocatoria No. 785 - 2017 de Doctorados Nacionales, la Subvención No. 120480763040 y el proyecto No. 80740-532-2019.Esta investigación fue financiada con recursos de la Facultad de Ciencias, Universidad de los Andes mediante los proyectos Semilla (INV-2018-48-1338 y INV-2019-86-1843) de Gerson-Dirceu López y proyectos de investigación de los profesores: Chiara Carazzone (INV-2020-105-2084) y Chad Leidy (INV-2019-84-1824).Doctor en Ciencias - QuímicaDoctoradoQuímica AnalíticaProductos NaturalesMetabolomicsLipidomicsBiofísica de membranas190 páginasapplication/pdfspaUniversidad de los AndesDoctorado en Ciencias - QuímicaFacultad de CienciasDepartamento de QuímicaTargeted metabolomics por LC-MS/MS de la variación de carotenoides de Staphylococcus aureus asociados al estrés oxidativo y su relación con la fluidez de la membranaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDStaphylococcus aureusStaphyloxanthinCarotenoidsAntioxidant activitiesLC-MS/MSOxidative stressCold atmospheric plasmaBiophysical propertiesFTIRQuímicaRecklinghausen, V.; Ogston, S. A. Staphylococcus Aureus. In Foodborne Microbial Pathogens; Springer, Ed.; New York, NY, 2008; pp 125-134. https://doi.org/10.1007/978-0-387-74537-4_6.Tong, S. Y. C.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G. Staphylococcus Aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews 2015, 28 (3), 603-661. https://doi.org/10.1128/CMR.00134-14.Hewelt-Belka, W.; Nakonieczna, J.; Belka, M.; Baczek, T.; Namiesnik, J.; Kot-Wasik, A. Comprehensive Methodology for Staphylococcus Aureus Lipidomics by Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. Journal of Chromatography A 2014, 1362, 62-74. https://doi.org/10.1016/j.chroma.2014.08.020.Xue, L.; Chen, Y. Y.; Yan, Z.; Lu, W.; Wan, D.; Zhu, H. Staphyloxanthin: A Potential Target for Antivirulence Therapy. Infection and Drug Resistance 2019, 12, 2151-2160. https://doi.org/10.2147/IDR.S193649.Mishra, N. N.; Yang, S. J.; Sawa, A.; Rubio, A.; Nast, C. C.; Yeaman, M. R.; Bayer, A. S. Analysis of Cell Membrane Characteristics of in Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus Aureus. Antimicrobial Agents and Chemotherapy 2009, 53 (6), 2312-2318. https://doi.org/10.1128/AAC.01682-08.CDC. Antibiotic Resistance Threats in the United States, 2019; Atlanta, GA: U.S., 2019. https://doi.org/CS239559-B.Steenbergen, J. N.; Alder, J.; Thorne, G. M.; Tally, F. P. Daptomycin: A Lipopeptide Antibiotic for the Treatment of Serious Gram-Positive Infections. Journal of Antimicrobial Chemotherapy 2005, 55 (3), 283-288. https://doi.org/10.1093/jac/dkh546.Crass, R. L.; Powell, K. L.; Huang, A. M. Daptomycin for the Treatment of Staphylococcus Aureus Infections Complicated by Septic Pulmonary Emboli. Diagnostic Microbiology and Infectious Disease 2019, 93 (2), 131-135. https://doi.org/10.1016/j.diagmicrobio.2018.09.004.Dhand, A.; Sakoulas, G. Daptomycin in Combination with Other Antibiotics for the Treatment of Complicated Methicillin-Resistant Staphylococcus Aureus Bacteremia. Clinical Therapeutics 2014, 36 (10), 1303-1316. https://doi.org/10.1016/j.clinthera.2014.09.005.Heidary, M.; Khosravi, A. D.; Khoshnood, S.; Nasiri, M. J.; Soleimani, S.; Goudarzi, M. Daptomycin. Journal of Antimicrobial Chemotherapy 2018, 73 (1), 1-11. https://doi.org/10.1093/jac/dkx349.Kilelee, E.; Pokorny, A.; Yeaman, M. R.; Bayer, A. S. Lysyl-Phosphatidylglycerol Attenuates Membrane Perturbation Rather than Surface Association of the Cationic Antimicrobial Peptide 6W-RP-1 in a Model Membrane System : Implications for Daptomycin Resistance. Antimicrob. Agents Chemother. 2010, 54 (10), 4476-4479. https://doi.org/10.1128/AAC.00191-10.Zhang, T.; Muraih, J. K.; Tishbi, N.; Herskowitz, J.; Victor, R. L.; Silverman, J.; Uwumarenogie, S.; Taylor, S. D.; Palmer, M.; Mintzer, E. Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. J. Biol. Chem. 2014, 289 (17), 11584-11591. https://doi.org/10.1074/jbc.M114.554444.Sharma, D.; Mandal, S. M.; Manhas, R. K. Purification and Characterization of a Novel Lipopeptide from Streptomyces Amritsarensis Sp. Nov. Active against Methicillin-Resistant Staphylococcus Aureus. AMB Express 2014, 4 (1), 50. https://doi.org/10.1186/s13568-014-0050-y.Kilelee, E.; Pokorny, A.; Yeaman, M. R.; Bayer, A. S. Lysyl-Phosphatidylglycerol Attenuates Membrane Perturbation Rather than Surface Association of the Cationic Antimicrobial Peptide 6W-RP-1 in a Model Membrane System: Implications for Daptomycin Resistance. Antimicrobial Agents and Chemotherapy 2010, 54 (10), 4476-4479. https://doi.org/10.1128/AAC.00191-10.Zhang, T. H.; Muraih, J. K.; Tishbi, N.; Herskowitz, J.; Victor, R. L.; Silverman, J.; Uwumarenogie, S.; Taylor, S. D.; Palmer, M.; Mintzer, E. Cardiolipin Prevents Membrane Translocation and Permeabilization by Daptomycin. Journal of Biological Chemistry 2014, 289 (17), 11584-11591. https://doi.org/10.1074/jbc.M114.554444.Kuhn, S.; Slavetinsky, C. J.; Peschel, A. Synthesis and Function of Phospholipids in Staphylococcus Aureus. International Journal of Medical Microbiology 2015, 305 (2), 196-202. https://doi.org/10.1016/j.ijmm.2014.12.016.Mishra, N. N.; Bayer, S. Correlation of Cell Membrane Lipid Profiles with Daptomycin Resistance in Methicillin-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 2013, 57 (2), 1082-1085. https://doi.org/10.1128/AAC.02182-12.Oztas, Y.; Bosgelmez, I. An Introduction to Lipidomics : From Laboratory to Clinic. Acta Medica 2017, 48 (1), 8-17.Yang, K.; Han, X. Lipidomics : Techniques , Applications , and Outcomes Related to Biomedical Sciences. Trends in Biochemical Sciences 2016, 41 (11), 954-969. https://doi.org/10.1016/j.tibs.2016.08.010.White, D. C.; Frerman, F. E. Extraction, Characterization, and Cellular Localization of the Lipids of Staphylococcus Aureus. Journal of Bacteriology 1967, 94 (6), 1854-1867. https://doi.org/10.1128/jb.94.6.1854-1867.1967.White, D. C.; Frerman, F. E. Fatty Acid Composition of the Complex Lipids of Staphylococcus Aureus during the Formation of the Membrane-Bound Electron Transport System. Journal of Bacteriology 1968, 95 (6), 2198-2209.Joyce, G. H.; Hammond, R. K.; White, D. C. Changes in Membrane Lipid Composition in Exponentially Growing Staphylococcus Aureus During the Shift From. Microbiology 1970, 104 (1), 323-330.Hayami, M.; Okabe, A.; Kariyama, R.; Kanemasa, Y. Lipid Composition of Staphylococcus and Its Derived L-Forms. Microbiol. Immunol. 1979, 23 (6), 435-442.Hewelt-Belka, W.; Nakonieczna, J.; Belka, M.; Baczek, T.; Namiesnik, J.; Kot-Wasik, A. Untargeted Lipidomics Reveals Differences in the Lipid Pattern among Clinical Isolates of Staphylococcus Aureus Resistant and Sensitive to Antibiotics. Journal of Proteome Research 2016, 15 (3), 914-922. https://doi.org/10.1021/acs.jproteome.5b00915.Lather, P.; Mohanty, A. K.; Jha, P.; Garsa, A. K.; Sood, S. K. Changes Associated with Cell Membrane Composition of Staphylococcus Aureus on Acquisition of Resistance against Class IIa Bacteriocin and Its in Vitro Substantiation. European Food Research and Technology 2014, 240 (1), 101-107. https://doi.org/10.1007/s00217-014-2311-z.Perez-Lopez, M. I.; Mendez-Reina, R.; Trier, S.; Herrfurth, C.; Feussner, I.; Bernal, A.; Forero-Shelton, M.; Leidy, C. Variations in Carotenoid Content and Acyl Chain Composition in Exponential, Stationary and Biofilm States of Staphylococcus Aureus, and Their Influence on Membrane Biophysical Properties. Biochimica et Biophysica Acta - Biomembranes 2019, 1861 (5), 978-987. https://doi.org/10.1016/j.bbamem.2019.02.001.Leidy, C.; Perez, M. I.; Méndez Reina, R. M.; Trier, S.; Herrfurth, C.; Lopez, G.-D.; Carazzone, C.; Feussner, I.; Bernal, A.; Forero-Shelton, M.; Suesca, E. Carotenoid Content and Composition in Exponential, Stationary and Biofilm States of Staphylococcus Aureus and Their Influence on Membrane Biophysical Properties. Biophysical Journal 2020, 118 (3), 321a. https://doi.org/10.1016/j.bpj.2019.11.1806.Clauditz, A.; Resch, A.; Wieland, K. P.; Peschel, A.; Götz, F. Staphyloxanthin Plays a Role in the Fitness of Staphylococcus Aureus and Its Ability to Cope with Oxidative Stress. Infection and Immunity 2006, 74 (8), 4950-4953. https://doi.org/10.1128/IAI.00204-06.García-Fernández, E.; Koch, G.; Wagner, R. M.; Fekete, A.; Stengel, S. T.; Schneider, J.; Mielich-Süss, B.; Geibel, S.; Markert, S. M.; Stigloher, C.; Lopez, D. Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell 2017, 171 (6), 1354-1367. https://doi.org/10.1016/j.cell.2017.10.012.Mishra, N. N.; Liu, G. Y.; Yeaman, M. R.; Nast, C. C.; Proctor, R. A.; McKinnell, J.; Bayer, A. S. Carotenoid-Related Alteration of Cell Membrane Fluidity Impacts Staphylococcus Aureus Susceptibility to Host Defense Peptides. Antimicrobial Agents and Chemotherapy 2011, 55 (2), 526-531. https://doi.org/10.1128/AAC.00680-10.Alvarez, D. N.; Tong, S. Y. C.; Mishra, N. N.; Yang, S.-J.; Xiong, Y. Q. The Role of Staphylococcal Carotenogenesis in Resistance to Host Defense Peptides and in Vivo Virulence in Experimental Endocarditis Model. Pathogens and Disease 2015, 73 (7), ftv056. https://doi.org/10.1093/femspd/ftv056.Liang, M. H.; Zhu, J.; Jiang, J. G. Carotenoids Biosynthesis and Cleavage Related Genes from Bacteria to Plants. Critical Reviews in Food Science and Nutrition 2018, 58 (14), 2314-2333. https://doi.org/10.1080/10408398.2017.1322552.López, G. D.; Álvarez-Rivera, G.; Carazzone, C.; Ibáñez, E.; Leidy, C.; Cifuentes, A. Bacterial Carotenoids: Extraction, Characterization, and Applications. Critical Reviews in Analytical Chemistry 2021, 1-24. https://doi.org/10.1080/10408347.2021.2016366.Das, A.; Yoon, S. H.; Lee, S. H.; Kim, J. Y.; Oh, D. K.; Kim, S. W. An Update on Microbial Carotenoid Production: Application of Recent Metabolic Engineering Tools. Applied Microbiology and Biotechnology 2007, 77 (3), 505-512. https://doi.org/10.1007/s00253-007-1206-3.Mariutti, L. R. B.; Mercadante, A. Z. Carotenoid Esters Analysis and Occurrence: What Do We Know so Far? Archives of Biochemistry and Biophysics 2018, 648, 36-43. https://doi.org/10.1016/j.abb.2018.04.005.Sliwka, H. R.; Partali, V. Key to Xenobiotic Carotenoids. Molecules 2012, 17 (3), 2877-2928. https://doi.org/10.3390/molecules17032877.Kim, J. W.; Choi, B. H.; Kim, J. H.; Kang, H. J.; Ryu, H.; Lee, P. C. Complete Genome Sequence of Planococcus Faecalis AJ003T,Planococcus Faecalis AJ003 the Type Species of the Genus Planococcus and a Microbial C30 Carotenoid Producer. Journal of Biotechnology 2018, 266, 72-76. https://doi.org/10.1016/j.jbiotec.2017.12.005.Perez-Fons, L.; Steiger, S.; Khaneja, R.; Bramley, P. M.; Cutting, S. M.; Sandmann, G.; Fraser, P. D. Identification and the Developmental Formation of Carotenoid Pigments in the Yellow/Orange Bacillus Spore-Formers. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 2011, 1811 (3), 177-185. https://doi.org/10.1016/j.bbalip.2010.12.009.Asker, D.; Awad, T. S.; Beppu, T.; Ueda, K. Screening and Profiling of Natural Ketocarotenoids from Environmental Aquatic Bacterial Isolates. Food Chemistry 2018, 253, 247-254. https://doi.org/10.1016/j.foodchem.2018.01.066.Kallscheuer, N.; Moreira, C.; Airs, R.; Llewellyn, C. A.; Wiegand, S.; Jogler, C.; Lage, O. M. Pink- and Orange-Pigmented Planctomycetes Produce Saproxanthin-Type Carotenoids Including a Rare C45 Carotenoid. Environmental Microbiology Reports 2019, 11 (6), 741-748. https://doi.org/10.1111/1758-2229.12796.Heider, S. A. E.; Peters-Wendisch, P.; Wendisch, V. F.; Beekwilder, J.; Brautaset, T. Metabolic Engineering for the Microbial Production of Carotenoids and Related Products with a Focus on the Rare C50 Carotenoids. Applied Microbiology and Biotechnology 2014, 98 (10), 4355-4368. https://doi.org/10.1007/s00253-014-5693-8.Yabuzaki, J. Carotenoids Database: Structures, Chemical Fingerprints and Distribution among Organisms. Database 2017, 2017, bax004. https://doi.org/10.1093/database/bax004.Marshall, J. H.; Wilmoth, G. J. Pigments of Staphylococcus Aureus, a Series of Triterpenoid Carotenoids. Journal of Bacteriology 1981, 147 (3), 900-913. https://doi.org/10.1128/JB.147.3.900-913.1981.Marshall, J. H.; Wilmoth, G. J. Proposed Pathway of Triterpenoid Carotenoid Biosynthesis in Staphylococcus Aureus: Evidence from a Study of Mutants. Journal of Biotechnology 1981, 147 (3), 914-919. https://doi.org/10.1128/JB.147.3.914-919.1981.Zhang, J.; Suo, Y.; Zhang, D.; Jin, F.; Zhao, H.; Shi, C. Genetic and Virulent Difference between Pigmented and Non-Pigmented Staphylococcus Aureus. Frontiers in Microbiology 2018, 9 (APR). https://doi.org/10.3389/fmicb.2018.00598.Song, Y.; Liu, C. I.; Lin, F. Y.; Joo, H. N.; Hensler, M.; Liu, Y. L.; Jeng, W. Y.; Low, J.; Liu, G. Y.; Nizet, V.; Wang, A. H. J.; Oldfield, E. Inhibition of Staphyloxanthin Virulence Factor Biosynthesis in Staphylococcus Aureus: In Vitro, in Vivo, and Crystallographic Results. Journal of Medicinal Chemistry 2009, 52 (13), 3869-3880. https://doi.org/10.1021/jm9001764.Pelz, A.; Wieland, K. P.; Putzbach, K.; Hentschel, P.; Albert, K.; Götz, F. Structure and Biosynthesis of Staphyloxanthin from Staphylococcus Aureus. Journal of Biological Chemistry 2005, 280 (37), 32493-32498. https://doi.org/10.1074/jbc.M505070200.Mussagy, C. U.; Winterburn, J.; Santos-Ebinuma, V. C.; Pereira, J. F. B. Production and Extraction of Carotenoids Produced by Microorganisms. Applied Microbiology and Biotechnology 2019, 103 (3), 1095-1114. https://doi.org/10.1007/s00253-018-9557-5.Kim, S. H.; Lee, P. C. Functional Expression and Extension of Staphylococcal Staphyloxanthin Biosynthetic Pathway in Escherichia Coli. Journal of Biological Chemistry 2012, 287 (26), 21575-21583. https://doi.org/10.1074/jbc.M112.343020.Leejae, S.; Hasap, L.; Voravuthikunchai, S. P. Inhibition of Staphyloxanthin Biosynthesis in Staphylococcus Aureus by Rhodomyrtone, a Novel Antibiotic Candidate. Journal of Medical Microbiology 2013, 62 (PART3), 421-428. https://doi.org/10.1099/jmm.0.047316-0.Oldfield, E. Targeting Isoprenoid Biosynthesis for Drug Discovery: Bench to Bedside. Accounts of Chemical Research 2010, 43 (9), 1216-1226. https://doi.org/10.1021/ar100026v.Wieland, B.; Feil, C.; Gloria-Maercker, E.; Thumm, G.; Lechner, M.; Bravo, J. M.; Poralla, K.; Götz, F. Genetic and Biochemical Analyses of the Biosynthesis of the Yellow Carotenoid 4,4'-Diaponeurosporene of Staphylococcus Aureus. Journal of Bacteriology 1994, 176 (24), 7719-7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994.Liu, G. Y.; Essex, A.; Buchanan, J. T.; Datta, V.; Hoffman, H. M.; Bastian, J. F.; Fierer, J.; Nizet, V. Staphylococcus Aureus Golden Pigment Impairs Neutrophil Killing and Promotes Virulence through Its Antioxidant Activity. Journal of Experimental Medicine 2005, 202 (2), 209-215. https://doi.org/10.1084/jem.20050846.Kurosu, M.; Begari, E. Vitamin K2 in Electron Transport System: Are Enzymes Involved in Vitamin K2 Biosynthesis Promising Drug Targets? Molecules 2010, 15 (3), 1531-1553. https://doi.org/10.3390/molecules15031531.Wakeman, C. A.; Hammer, N. D.; Stauff, D. L.; Attia, A. S.; Anzaldi, L. L.; Dikalov, S. I.; Calcutt, M. W.; Skaar, E. P. Menaquinone Biosynthesis Potentiates Haem Toxicity in Staphylococcus Aureus. Molecular Microbiology 2012, 86 (6), 1376-1392. https://doi.org/10.1111/mmi.12063.Taylor, R. F.; Bavies, B. H. The Triterpenoid Carotenoids and Related Terpenoids in Staphylococcus Aureus 209P. Can. J. Biochem. Cekl Biol. 1983, 61, 892-905. https://doi.org/10.1139/o83-114.Britton, G. Carotenoid Research: History and New Perspectives for Chemistry in Biological Systems. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 2020, 1865 (11), 158699. https://doi.org/10.1016/j.bbalip.2020.158699.Provesi, J. G.; Dias, C. O.; Amante, E. R. Changes in Carotenoids during Processing and Storage of Pumpkin Puree. Food Chemistry 2011, 128 (1), 195-202. https://doi.org/10.1016/j.foodchem.2011.03.027.Coker, M. S.; Forbes, L. V.; Plowman-Holmes, M.; Murdoch, D. R.; Winterbourn, C. C.; Kettle, A. J. Interactions of Staphyloxanthin and Enterobactin with Myeloperoxidase and Reactive Chlorine Species. Archives of Biochemistry and Biophysics 2018, 646 (December 2017), 80-89. https://doi.org/10.1016/j.abb.2018.03.039.Lu, Y.; Zhang, L.; Zhu, J.; Lan, L.; Li, J. Discovery of Benzocycloalkane Derivatives E Ffi Ciently Blocking Bacterial Virulence for the Treatment of Methicillin-Resistant S. Aureus (MRSA) Infections by Targeting Diapophytoene Desaturase (CrtN). J. Med. Chem. 2016, 59, 4831-4848. https://doi.org/10.1021/acs.jmedchem.6b00122.Elmasri, W. A.; Zhu, R.; Peng, W.; Al-Hariri, M.; Kobeissy, F.; Tran, P.; Hamood, A. N.; Hegazy, M. F.; Paré, P. W.; Mechref, Y. Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus Aureus: A Proteomic Characterization. Journal of Proteome Research 2017, 16 (7), 2579-2586. https://doi.org/10.1021/acs.jproteome.7b00137.Vermote, A.; Calenbergh, S. Van. Small-Molecule Potentiators for Conventional Antibiotics against Staphylococcus Aureus. ACS Infect. Dis. 2017, 10.1021/acsinfecdis.7b00084. https://doi.org/10.1021/acsinfecdis.7b00084.Sashidhara, K. V.; Rao, K. B.; Kushwaha, P.; Modukuri, R. K.; Singh, P.; Soni, I.; Shukla, P. K.; Chopra, S.; Pasupuleti, M. Novel Chalcone-Thiazole Hybrids as Potent Inhibitors of Drug Resistant Staphylococcus Aureus. ACS Medicinal Chemistry Letters 2015, 6 (7), 809-813. https://doi.org/10.1021/acsmedchemlett.5b00169.Lorent, J. H.; Xie, M.; Gilissen, F.; Killian, J. A. Effects of Cold Atmospheric Plasmas on Membranes. Biophysical Journal 2020, 118 (3), 235a. https://doi.org/10.1016/j.bpj.2019.11.1386.Haralambiev, L.; Nitsh, A.; Einenkel, R.; Muzzio, D. O.; Gelbrich, N.; Burchardt, M.; Zygmunt, M.; Ekkerkamp, A.; Stope, M. B.; Gümbel, D. The Effect of Cold Atmospheric Plasma on the Membrane Permeability of Human Osteosarcoma Cells. Anticancer Research 2020, 40 (2), 841-846. https://doi.org/10.21873/anticanres.14016.Von Woedtke, T.; Metelmann, H. R.; Weltmann, K. D. Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma. Contributions to Plasma Physics 2014, 54 (2), 104-117. https://doi.org/10.1002/ctpp.201310068.Reuter, S.; Von Woedtke, T.; Weltmann, K. D. The KINPen - A Review on Physics and Chemistry of the Atmospheric Pressure Plasma Jet and Its Applications. Journal of Physics D: Applied Physics 2018, 51 (23). https://doi.org/10.1088/1361-6463/aab3ad.Gangaraju Vamsi K. Lin Haifan. Noncovalent Keystone Interactions Controlling Biomembrane Structure. Chemistry - A European Journal 2008, 14 (6), 1690-1697. https://doi.org/10.1038/nrm2621.Mishra, N. N.; Bayer, A. S.; Weidenmaier, C.; Grau, T.; Wanner, S.; Stefani, S.; Cafiso, V.; Bertuccio, T.; Yeaman, M. R.; Nast, C. C. Phenotypic and Genotypic Characterization of Staphylococcus Aureus Strains : Relative Roles of MprF and Dlt Operons. PLoS ONE 2014, 9 (9), e107426. https://doi.org/10.1371/journal.pone.0107426.Sousa, T.; Castro, R. E.; Coutinho, A.; Rodrigues, C. M. P.; Prieto, M.; Fernandes, F. Measuring the Impact of Bile Acids on the Membrane Order of Primary Hepatocytes and Isolated Mitochondria by Fluorescence Imaging and Spectroscopy. In Experimental Cholestasis Research, Methods in Molecular Biology; Vinken, M., Ed.; Humana: New York, NY., 2019; Vol. 1981, pp 99-115. https://doi.org/10.1007/978-1-4939-9420-5_7.Ribeiro, L. M. B. C.; Fumagalli, F.; Mello, R. B.; Froes, T. Q.; da Silva, M. V. S.; Villamizar Gómez, S. M.; Barros, T. F.; Emery, F. S.; Castilho, M. S. Structure-Activity Relationships and Mechanism of Action of Tetragomycin Derivatives as Inhibitors of Staphylococcus aureus Staphyloxanthin Biosynthesis. Microbial Pathogenesis 2020, 144 (December 2019), 104127. https://doi.org/10.1016/j.micpath.2020.104127.Schultz, C.; Naumann, D. In Vivo Study of the State of Order of the Membranes of Gram-Negative Bacteria by Fourier-Transform Infrared Spectroscopy (FT-IR). FEBS Letters 1991, 294, 43-36. https://doi.org/10.1016/0014-5793(91)81339-a.Lewis, R. N. A. H.; McElhaney, R. N. Membrane Lipid Phase Transitions and Phase Organization Studied by Fourier Transform Infrared Spectroscopy. Biochimica et Biophysica Acta - Biomembranes. 2013, pp 2347-2358. https://doi.org/10.1016/j.bbamem.2012.10.018.Scherber, C. M.; Schottel, J. L.; Aksan, A. Membrane Phase Behavior of Escherichia Coli during Desiccation, Rehydration, and Growth Recovery. Biochimica et Biophysica Acta - Biomembranes 2009, 1788 (11), 2427-2435. https://doi.org/10.1016/j.bbamem.2009.08.011.Ami, D.; Lavatelli, F.; Rognoni, P.; Palladini, G.; Raimondi, S.; Giorgetti, S.; Monti, L.; Doglia, S. M.; Natalello, A.; Merlini, G. In Situ Characterization of Protein Aggregates in Human Tissues Affected by Light Chain Amyloidosis: A FTIR Microspectroscopy Study. Scientific Reports 2016, 6 (1), 29096. https://doi.org/10.1038/srep29096.Niu, X.-Q.; Zhang, D.-P.; Bian, Q.; Feng, X.-F.; Li, H.; Rao, Y.-F.; Shen, Y.-M.; Geng, F.-N.; Yuan, A.-R.; Ying, X.-Y.; Gao, J.-Q. Mechanism Investigation of Ethosomes Transdermal Permeation. International Journal of Pharmaceutics: X 2019, 1 (September), 100027. https://doi.org/10.1016/j.ijpx.2019.100027.Ocampo, J.; Afanador, N.; Vives, M. J.; Moreno, J. C.; Leidy, C. The Antibacterial Activity of Phospholipase A2 Type IIA Is Regulated by the Cooperative Lipid Chain Melting Behavior in Staphylococcus Aureus. Biochimica et Biophysica Acta - Biomembranes 2010, 1798 (6), 1021-1028. https://doi.org/10.1016/j.bbamem.2009.11.017.Martínez, A.; Manrique-Moreno, M.; Klaiss-Luna, M. C.; Stashenko, E.; Zafra, G.; Ortiz, C. Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia Coli and Staphylococcus Aureus. Antibiotics 2021, 10 (12). https://doi.org/10.3390/antibiotics10121474.Sen, S.; Sirobhushanam, S.; Johnson, S. R.; Song, Y.; Tefft, R.; Gatto, C.; Wilkinson, B. J. Growth-Environment Dependent Modulation of Staphylococcus Aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids. PLoS ONE 2016, 11 (10), e0165300. https://doi.org/10.1371/journal.pone.0165300.Vitko, N. P.; Richardson, A. R. Laboratory Maintenance of Methicillin-Resistant Staphylococcus Aureus (MRSA). In Current Protocols in Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp 1-21. https://doi.org/10.1002/9780471729259.mc09c02s28.Reed, P.; Atilano, M. L.; Alves, R.; Hoiczyk, E.; Sher, X.; Reichmann, N. T.; Pereira, P. M.; Roemer, T.; Filipe, S. R.; Pereira-Leal, J. B.; Ligoxygakis, P.; Pinho, M. G. Staphylococcus Aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLOS Pathogens 2015, 11 (5), e1004891. https://doi.org/10.1371/journal.ppat.1004891.Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. Canadian Journal of Biochemistry and Physiology 1959, 37 (8), 911-917. https://doi.org/10.1139/o59-099.Reis, A.; Rudnitskaya, A.; Blackburn, G. J.; Fauzi, N. M.; Pitt, A. R.; Spickett, C. M. A Comparison of Five Lipid Extraction Solvent Systems for Lipidomic Studies of Human LDL. Journal of Lipid Research 2013, 54 (7), 1812-1824. https://doi.org/10.1194/jlr.M034330.Pérez-Gálvez, A.; Roca, M. Recent Developments in the Analysis of Carotenoids by Mass Spectrometry. In Progress in Carotenoid Research; IntechOpen, 2018; pp 17-44. https://doi.org/10.5772/intechopen.79755.Rivera, S. M.; Christou, P.; Canela-Garayoa, R. Identification of Carotenoids Using Mass Spectrometry. Mass Spectrometry Reviews 2014, 33, 353-372. https://doi.org/10.1002/mas.21390.Neto, F. C.; Guaratini, T.; Costa-Lotufo, L.; Colepicolo, P.; Gates, P. J.; Lopes, N. P. Re-Investigation of the Fragmentation of Protonated Carotenoids by Electrospray Ionization and Nanospray Tandem Mass Spectrometry. Rapid Communications in Mass Spectrometry 2016, 30 (13), 1540-1548. https://doi.org/10.1002/rcm.7589.Van Breemen, R. B.; Dong, L.; Pajkovic, N. D. Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry of Carotenoids. International Journal of Mass Spectrometry 2012, 312, 163-172. https://doi.org/10.1016/j.ijms.2011.07.030.Dong, P.; Mohammad, H.; Hui, J.; Leanse, L. G.; Li, J.; Liang, L.; Dai, T.; Seleem, M. N.; Cheng, J. Photolysis of Staphyloxanthin in Methicillin-Resistant Staphylococcus Aureus Potentiates Killing by Reactive Oxygen Species. Advanced Science 2019, 6 (11), 1900030. https://doi.org/10.1002/advs.201900030.Barretto, D. A.; Vootla, S. K. In Vitro Anticancer Activity of Staphyloxanthin Pigment Extracted from Staphylococcus Gallinarum KX912244, a Gut Microbe of Bombyx Mori. Indian Journal of Microbiology 2018, 58 (2), 146-158. https://doi.org/10.1007/s12088-018-0718-0.Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Analytical Chemistry. 2016, pp 524-545. https://doi.org/10.1021/acs.analchem.5b04491.Lam, S. M.; Tian, H.; Shui, G. Lipidomics, En Route to Accurate Quantitation. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 2017, 1862 (8), 752-761. https://doi.org/10.1016/j.bbalip.2017.02.008.Rojo, D.; Canuto, G. A. B.; Castilho-Martins, E. A.; Tavares, M. F. M.; Barbas, C.; López-Gonzálvez, Á.; Rivas, L. A Multiplatform Metabolomic Approach to the Basis of Antimonial Action and Resistance in Leishmania Infantum. PLoS ONE 2015, 10 (7), 1-20. https://doi.org/10.1371/journal.pone.0130675.Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric Methods in Data Processing of Mass Spectrometry-Based Metabolomics: A Review. Analytica Chimica Acta 2016, 914, 17-34. https://doi.org/10.1016/j.aca.2016.02.001.Ren, S.; Hinzman, A. A.; Kang, E. L.; Szczesniak, R. D.; Lu, L. J. Computational and Statistical Analysis of Metabolomics Data. Metabolomics 2015, 11 (6), 1492-1513. https://doi.org/10.1007/s11306-015-0823-6.Rubini, D.; Farisa Banu, S.; Veda Hari, B. N.; Ramya Devi, D.; Gowrishankar, S.; Karutha Pandian, S.; Nithyanand, P. Chitosan Extracted from Marine Biowaste Mitigates Staphyloxanthin Production and Biofilms of Methicillin- Resistant Staphylococcus Aureus. Food and Chemical Toxicology 2018, 118 (April), 733-744. https://doi.org/10.1016/j.fct.2018.06.017.Selvaraj, A.; Valliammai, A.; Muthuramalingam, P.; Priya, A.; Suba, M.; Ramesh, M.; Karutha Pandian, S. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus Aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An In Vitro and In Vivo Approach. ACS Omega 2020, 5 (48), 31100-31114. https://doi.org/10.1021/acsomega.0c04252.Valliammai, A.; Selvaraj, A.; Muthuramalingam, P.; Priya, A.; Ramesh, M.; Pandian, S. K. Staphyloxanthin Inhibitory Potential of Thymol Impairs Antioxidant Fitness, Enhances Neutrophil Mediated Killing and Alters Membrane Fluidity of Methicillin Resistant Staphylococcus Aureus. Biomedicine & Pharmacotherapy 2021, 141 (July), 111933. https://doi.org/10.1016/j.biopha.2021.111933.Rocha-Roa, C.; Orjuela, J. D.; Leidy, C.; Cossio, P.; Aponte-Santamaría, C. Cardiolipin Prevents Pore Formation in Phosphatidylglycerol Bacterial Membrane Models. FEBS Letters 2021, 595 (21), 2701-2714. https://doi.org/10.1002/1873-3468.14206.Figueroa, D. R.; Cabrera, J. E.; Delgado, J. A. M.; Pietro Miscione, G.; Leidy, C.; Aponte-Santamaria, C. A. Variations in the Biophysical Properties of DMPG and DPPG Membranes with Staphyloxanthin: A Molecular Dynamics Simulation Study. Biophysical Journal 2021, 120 (3), 43a. https://doi.org/10.1016/j.bpj.2020.11.509.Rodríguez-Beltrán, É.; López, G.-D.; Anzola, J. M.; Rodríguez-Castillo, J. G.; Carazzone, C.; Murcia, M. I. Heterogeneous Fitness Landscape Cues, PknG High Expression, and Phthiocerol Dimycocerosate Low Production of Mycobacterium Tuberculosis ATCC25618 RpoB S450L in Enriched Broth. Tuberculosis 2022, 132 (November 2021), 102156. https://doi.org/10.1016/j.tube.2021.102156.Poletto, P.; Álvarez-Rivera, G.; López, G.-D.; Borges, O. M. A.; Mendiola, J. A.; Ibáñez, E.; Cifuentes, A. Recovery of Ascorbic Acid, Phenolic Compounds and Carotenoids from Acerola by-Products: An Opportunity for Their Valorization. LWT 2021, 146 (May), 111654. https://doi.org/10.1016/j.lwt.2021.111654.Galeano Garcia, P.; Neves dos Santos, F.; Zanotta, S.; Eberlin, M.; Carazzone, C. Metabolomics of Solanum Lycopersicum Infected with Phytophthora Infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules 2018, 23 (12), 3330. https://doi.org/10.3390/molecules23123330.Kamela, C. S. N.; Supply, P.; Cobelens, F. G. J.; Gaudin, C.; Gonzalez-martin, J.; Jong, B. C. De. How Well Do Routine Molecular Diagnostics Detect Rifampin Heteroresistance in Mycobacterium Tuberculosis? Journal of Clinical Microbiology 2019, 57 (11), e00717-19. https://doi.org/https://doi.org/10.1128/JCM .00717-19.Gonzalez, M.; Palacios-Rodriguez, P.; Hernandez-Restrepo, J.; González-Santoro, M.; Amézquita, A.; Brunetti, A. E.; Carazzone, C. First Characterization of Toxic Alkaloids and Volatile Organic Compounds (VOCs) in the Cryptic Dendrobatid Silverstoneia Punctiventris. Frontiers in Zoology 2021, 18 (1), 39. https://doi.org/10.1186/s12983-021-00420-1.López, G.-D.; Suesca, E.; Álvarez-Rivera, G.; Rosato, A. E.; Ibáñez, E.; Cifuentes, A.; Leidy, C.; Carazzone, C. Carotenogenesis of Staphylococcus Aureus: New Insights and Impact on Membrane Biophysical Properties. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2021, 1866 (8), 158941. https://doi.org/10.1016/j.bbalip.2021.158941.Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D. Lipid Extraction by Methyl-Terf-Butyl Ether for High-Throughput Lipidomics. Journal of Lipid Research 2008, 49 (5), 1137-1146. https://doi.org/10.1194/jlr.D700041-JLR200.Hara, A.; Radin, N. S. Lipid Extraction of Tissues with a Low-Toxicity Solvent. Analytical Biochemistry 1978, 90 (1), 420-426. https://doi.org/10.1016/0003-2697(78)90046-5.Zhang, R.; Brennan, M.-L.; Shen, Z.; MacPherson, J. C.; Schmitt, D.; Molenda, C. E.; Hazen, S. L. Myeloperoxidase Functions as a Major Enzymatic Catalyst for Initiation of Lipid Peroxidation at Sites of Inflammation. Journal of Biological Chemistry 2002, 277 (48), 46116-46122. https://doi.org/10.1074/jbc.M209124200.Bueno, M.; Vitali, C.; Sánchez-Martínez, J. D.; Mendiola, J. A.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Compressed CO2Technologies for the Recovery of Carotenoid-Enriched Extracts from Dunaliella Salina with Potential Neuroprotective Activity. ACS Sustainable Chemistry and Engineering 2020, 8 (30), 11413-11423. https://doi.org/10.1021/acssuschemeng.0c03991.Torres, T. M. S.; Mendiola, J. A.; Álvarez-Rivera, G.; Mazzutti, S.; Ibáñez, E.; Cifuentes, A.; Ferreira, S. R. S. Protein Valorization from Ora-pro-Nobis Leaves by Compressed Fluids Biorefinery Extractions. Innovative Food Science and Emerging Technologies 2022, 76 (January). https://doi.org/10.1016/j.ifset.2022.102926.Gilbert-López, B.; Mendiola, J. A.; Fontecha, J.; Van Den Broek, L. A. M.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Downstream Processing of Isochrysis Galbana: A Step towards Microalgal Biorefinery. Green Chemistry 2015, 17 (9), 4599-4609. https://doi.org/10.1039/c5gc01256b.Ballesteros-Vivas, D.; Alvarez-Rivera, G.; Ibánez, E.; Parada-Alfonso, F.; Cifuentes, A. Integrated Strategy for the Extraction and Profiling of Bioactive Metabolites from Passiflora Mollissima Seeds Combining Pressurized-Liquid Extraction and Gas/Liquid Chromatography-High Resolution Mass Spectrometry. Journal of Chromatography A 2019, 1595, 144-157. https://doi.org/10.1016/j.chroma.2019.02.031.Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction. In Liquid-Phase Extraction; 2019; pp 375-398. https://doi.org/10.1016/B978-0-12-816911-7.00013-X.Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R. M.; Kalina, J. Development of an Advanced HPLC-MS/MS Method for the Determination of Carotenoids and Fat-Soluble Vitamins in Human Plasma. International Journal of Molecular Sciences 2016, 17 (10), 1719. https://doi.org/10.3390/ijms17101719.Schex, R.; Lieb, V. M.; Jiménez, V. M.; Esquivel, P.; Schweiggert, R. M.; Carle, R.; Steingass, C. B. HPLC-DAD-APCI/ESI-MSn Analysis of Carotenoids and [alfa]-Tocopherol in Costa Rican Acrocomia Aculeata Fruits of Varying Maturity Stages. Food Research International 2018, 105, 645-653. https://doi.org/10.1016/j.foodres.2017.11.041.Al-Kazaz, E. J.; Melconian, A. K.; Kandela, N. J. Extraction of Staphyloxanthin from Staphylococcus Aureus Isolated from Clinical Sources to Determine Its Antibacterial Activity Against Other Bacteria. Iraqi Journal of Science 2014, 55 (4B), 1823-1832.Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Current Protocols in Molecular Biology 2016, 114 (1), 1-32. https://doi.org/10.1002/0471142727.mb3004s114.dos Santos, L. C.; Álvarez-Rivera, G.; Sánchez-Martínez, J. D.; Johner, J. C. F.; Barrales, F. M.; de Oliveira, A. L.; Cifuentes, A.; Ibáñez, E.; Martínez, J. Comparison of Different Extraction Methods of Brazilian "Pacová" (Renealmia Petasites Gagnep.) Oilseeds for the Determination of Lipid and Terpene Composition, Antioxidant Capacity, and Inhibitory Effect on Neurodegenerative Enzymes. Food Chemistry: X 2021, 12. https://doi.org/10.1016/j.fochx.2021.100140.Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Science and Technology 1995, 28 (1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.Mensor, L. L.; Menezes, F. S.; Leitao, G. G.; Reis, A. S.; Dos, T. C. S. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method . Phytother Res Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free. Phytotherapy Research 2001, 130, 127-130.Torres, T. M. S.; Álvarez-Rivera, G.; Mazzutti, S.; Sánchez-Martínez, J. D.; Cifuentes, A.; Ibáñez, E.; Ferreira, S. R. S. Neuroprotective Potential of Extracts from Leaves of Ora-pro-Nobis (Pereskia Aculeata) Recovered by Clean Compressed Fluids. Journal of Supercritical Fluids 2021, 179 (May 2021). https://doi.org/10.1016/j.supflu.2021.105390.Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J. A.; Deemer, E. K. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated [beta]-Cyclodextrin as the Solubility Enhancer. Journal of Agricultural and Food Chemistry 2002, 50 (7), 1815-1821. https://doi.org/10.1021/jf0113732.Seel, W.; Baust, D.; Sons, D.; Albers, M.; Etzbach, L.; Fuss, J.; Lipski, A. Carotenoids Are Used as Regulators for Membrane Fluidity by Staphylococcus Xylosus. Scientific Reports 2020, 10 (1), 330. https://doi.org/10.1038/s41598-019-57006-5.Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of Carotenoid Profiles in Goldenberry (Physalis Peruviana L.) Fruits at Various Ripening Stages and in Different Plant Tissues by HPLC-DAD-APCI-MSn. Food Chemistry 2018, 245 (October 2017), 508-517. https://doi.org/10.1016/j.foodchem.2017.10.120.Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahim, O. H. M.; Suarez-Álvarez, S.; Ferragut, J. A.; Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. Pressurized Liquid Extraction of Neochloris Oleoabundans for the Recovery of Bioactive Carotenoids with Anti-Proliferative Activity against Human Colon Cancer Cells. Food Research International 2017, 99, 1048-1055. https://doi.org/10.1016/j.foodres.2016.05.021.Chamberlain, N. R.; Mehrtens, B. G.; Xiong, Z.; Kapral, F. A.; Boardman, J. L.; Rearick, J. I. Correlation of Carotenoid Production, Decreased Membrane Fluidity, and Resistance to Oleic Acid Killing in Staphylococcus Aureus 18Z. Infection and Immunity 1991, 59 (12), 4332-4337. https://doi.org/10.1128/iai.59.12.4332-4337.1991.Mijts, B. N.; Lee, P. C.; Schmidt-Dannert, C. Identification of a Carotenoid Oxygenase Synthesizing Acyclic Xanthophylls: Combinatorial Biosynthesis and Directed Evolution. Chemistry and Biology 2005, 12 (4), 453-460. https://doi.org/10.1016/j.chembiol.2005.02.010.Chu, F. L.; Pirastru, L.; Popovic, R.; Sleno, L. Carotenogenesis Up-Regulation in Scenedesmus Sp. Using a Targeted Metabolomics Approach by Liquid Chromatography-High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry 2011, 59 (7), 3004-3013. https://doi.org/10.1021/jf105005q.Amorim-Carrilho, K. T.; Cepeda, A.; Fente, C.; Regal, P. Review of Methods for Analysis of Carotenoids. TrAC - Trends in Analytical Chemistry 2014, 56, 49-73. https://doi.org/10.1016/j.trac.2013.12.011.Novotny, J. A.; Kurilich, A. C.; Britz, S. J.; Clevidence, B. A. Plasma Appearance of Labeled [beta]-Carotene, Lutein, and Retinol in Humans after Consumption of Isotopically Labeled Kale. Journal of Lipid Research 2005, 46 (9), 1896-1903. https://doi.org/10.1194/jlr.M400504-JLR200.O'neil, C. A.; Schwartz, S. J. Chromatographic Analysis of Cis/Trans Carotenoid Isomers*. Journal of Chromatography 1992, 624, 235-252. https://doi.org/10.1016/0021-9673(92)85682-j.Saha, S.; Walia, S.; Sharma, K.; Banerjee, K. Suitability of Stationary Phase for LC Analysis of Biomolecules. Critical Reviews in Food Science and Nutrition 2019. https://doi.org/10.1080/10408398.2019.1665494.Tiwari, K. B.; Gatto, C.; Wilkinson, B. J. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus Aureus Membrane. Molecules 2018, 23 (5). https://doi.org/10.3390/molecules23051201.Mantsch, H. H.; McElhaney, R. N. Phospholipid Phase Transitions in Model and Biological Membranes as Studied by Infrared Spectroscopy. Chemistry and Physics of Lipids 1991, 57 (2-3), 213-226. https://doi.org/10.1016/0009-3084(91)90077-O.Gauger, D. .; Selle, C.; Fritzsche, H.; Pohle, W. Chain-Length Dependence of the Hydration Properties of Saturated Phosphatidylcholines as Revealed by FTIR Spectroscopy. Journal of Molecular Structure 2001, 565-566, 25-29. https://doi.org/10.1016/S0022-2860(00)00777-8.Domingo, J. C.; Mora, M.; Africa de Madariaga, M. Role of Headgroup Structure in the Phase Behaviour of N-Acylethanolamine Phospholipids: Hydrogen-Bonding Ability and Headgroup Size. Chemistry and Physics of Lipids 1994, 69 (3), 229-240. https://doi.org/10.1016/0009-3084(94)90004-3.Bali, R.; Savino, L.; Ramirez, D. A.; Tsvetkova, N. M.; Bagatolli, L.; Tablin, F.; Crowe, J. H.; Leidy, C. Macroscopic Domain Formation during Cooling in the Platelet Plasma Membrane: An Issue of Low Cholesterol Content. Biochimica et Biophysica Acta - Biomembranes 2009, 1788 (6), 1229-1237. https://doi.org/10.1016/j.bbamem.2009.03.017.Kim, S. H.; Kim, M. S.; Lee, B. Y.; Lee, P. C. Generation of Structurally Novel Short Carotenoids and Study of Their Biological Activity. Scientific Reports 2016, 6 (1), 21987. https://doi.org/10.1038/srep21987.Hernández-Villa, L.; Manrique-Moreno, M.; Leidy, C.; Jemiota-Rzeminska, M.; Ortíz, C.; Strzalka, K. Biophysical Evaluation of Cardiolipin Content as a Regulator of the Membrane Lytic Effect of Antimicrobial Peptides. Biophysical Chemistry 2018, 238, 8-15. https://doi.org/10.1016/j.bpc.2018.04.001.Suo, B.; Yang, H.; Wang, Y.; Lv, H.; Li, Z.; Xu, C.; Ai, Z. Comparative Proteomic and Morphological Change Analyses of Staphylococcus Aureus during Resuscitation from Prolonged Freezing. Frontiers in Microbiology 2018, 9, 1-11. https://doi.org/10.3389/fmicb.2018.00866.Braungardt, H.; Singh, V. K. Impact of Deficiencies in Branched-Chain Fatty Acids and Staphyloxanthin in Staphylococcus Aureus. BioMed Research International 2019, 2019, 2603435. https://doi.org/10.1155/2019/2603435.Umeno, D.; Tobias, A. V.; Arnold, F. H. Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution. Microbiology and Molecular Biology Reviews 2005, 69 (1), 51-78. https://doi.org/10.1128/mmbr.69.1.51-78.2005.Martines, E. Interaction of Cold Atmospheric Plasmas with Cell Membranes in Plasma Medicine Studies. Japanese Journal of Applied Physics 2020, 59 (SA), SA0803. https://doi.org/10.7567/1347-4065/ab4860.Ron, E. Y. C.; Plaza, M.; Kristjansdottir, T.; Sardari, R. R. R.; Bjornsdottir, S. H.; Gudmundsson, S.; Hreggvidsson, G. O.; Turner, C.; van Niel, E. W. J.; Nordberg-Karlsson, E. Characterization of Carotenoids in Rhodothermus Marinus. MicrobiologyOpen 2018, 7 (1), 7:e536. https://doi.org/10.1002/mbo3.536.Montero, O.; Macìas-Sánchez, M. D.; Lama, C. M.; Lubián, L. M.; Mantell, C.; Rodríguez, M.; De La Ossa, E. M. Supercritical CO2 Extraction of [beta]-Carotene from a Marine Strain of the Cyanobacterium Synechococcus Species. Journal of Agricultural and Food Chemistry 2005, 53 (25), 9701-9707. https://doi.org/10.1021/jf051283n.Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Analytica Chimica Acta 2011, 703 (1), 8-18. https://doi.org/10.1016/j.aca.2011.07.018.Okiyama, D. C. G.; Soares, I. D.; Cuevas, M. S.; Crevelin, E. J.; Moraes, L. A. B.; Melo, M. P.; Oliveira, A. L.; Rodrigues, C. E. C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Research International 2018, 114 (May), 20-29. https://doi.org/10.1016/j.foodres.2018.07.055.Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry 2005, 53 (10), 4290-4302. https://doi.org/10.1021/jf0502698.Silva, T. R.; Tavares, R. S. N.; Canela-Garayoa, R.; Eras, J.; Rodrigues, M. V. N.; Neri-Numa, I. A.; Pastore, G. M.; Rosa, L. H.; Schultz, J. A. A.; Debonsi, H. M.; Cordeiro, L. R. G.; Oliveira, V. M. Chemical Characterization and Biotechnological Applicability of Pigments Isolated from Antarctic Bacteria. Marine Biotechnology 2019, 21, 416-429. https://doi.org/10.1007/s10126-019-09892-z.Cohen, A. C.; Dichiara, E.; Jofré, V.; Antoniolli, A.; Bottini, R.; Piccoli, P. Carotenoid Profile Produced by Bacillus Licheniformis Rt4M10 Isolated from Grapevines Grown in High Altitude and Their Antioxidant Activity. International Journal of Food Science & Technology 2018, 53 (12), 2697-2705. https://doi.org/10.1111/ijfs.13879.Meléndez Granados, J. S. Biophysical Study on the Role of Staphyloxanthin in Promoting Desiccation Tolerance in Staphylococcus aureus, 2018.Cebrián, G.; Sagarzazu, N.; Pagán, R.; Condón, S.; Mañas, P. Heat and Pulsed Electric Field Resistance of Pigmented and Non-Pigmented Enterotoxigenic Strains of Staphylococcus Aureus in Exponential and Stationary Phase of Growth. International Journal of Food Microbiology 2007, 118 (3), 304-311. https://doi.org/10.1016/j.ijfoodmicro.2007.07.051.Yang, Y.; Wang, H.; Zhou, H.; Hu, Z.; Shang, W.; Rao, Y.; Peng, H.; Zheng, Y.; Hu, Q.; Zhang, R.; Luo, H.; Rao, X. Protective Effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus Aureus under Cold Atmospheric Plasma Treatment. Appl Environ Microbiol 2020, 86 (3). https://doi.org/10.1128/AEM.01998-19.Duchesne, C.; Frescaline, N.; Blaise, O.; Lataillade, J.-J.; Banzet, S.; Dussurget, O.; Rousseau, A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus Aureus by Macrophages. mSphere 2021, 6 (3), e00217-21. https://doi.org/10.1128/mSphere.00217-21.Guo, L.; Yang, L.; Qi, Y.; Niyazi, G.; Huang, L.; Gou, L.; Wang, Z.; Zhang, L.; Liu, D.; Wang, X.; Chen, H.; Kong, M. G. Cold Atmospheric-Pressure Plasma Caused Protein Damage in Methicillin-Resistant Staphylococcus Aureus Cells in Biofilms. Microorganisms 2021, 9 (5), 1072. https://doi.org/10.3390/microorganisms9051072.Zhao, J.; Qian, J.; Zhuang, H.; Luo, J.; Huang, M.; Yan, W.; Zhang, J. Effect of Plasma-Activated Solution Treatment on Cell Biology of Staphylococcus Aureus and Quality of Fresh Lettuces. Foods 2021, 10 (12), 2976. https://doi.org/10.3390/foods10122976.Hui, J.; Dong, P.; Liang, L.; Mandal, T.; Li, J.; Ulloa, E. R.; Zhan, Y.; Jusuf, S.; Zong, C.; Seleem, M. N.; Liu, G. Y.; Cui, Q.; Cheng, J. Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. Advanced Science 2020, 7 (6), 1903117. https://doi.org/10.1002/advs.201903117.de Mendoza, D.; Klages Ulrich, A.; Cronan, J. E. Thermal Regulation of Membrane Fluidity in Escherichia Coli. Effects of Overproduction of Beta-Ketoacyl-Acyl Carrier Protein Synthase I. Journal of Biological Chemistry 1983, 258 (4), 2098-2101. https://doi.org/10.1016/S0021-9258(18)32888-6.Vigh, L.; Los, D. A.; Horváth, I.; Murata, N. The Primary Signal in the Biological Perception of Temperature: Pd-Catalyzed Hydrogenation of Membrane Lipids Stimulated the Expression of the DesA Gene in Synechocystis PCC6803. Proceedings of the National Academy of Sciences 1993, 90 (19), 9090-9094. https://doi.org/10.1073/pnas.90.19.9090.Gousset, K.; Wolkers, W. F.; Tsvetkova, N. M.; Oliver, A. E.; Field, C. L.; Walker, N. J.; Crowe, J. H.; Tablin, F. Evidence for a Physiological Role for Membrane Rafts in Human Platelets. Journal of Cellular Physiology 2002, 190 (1), 117-128. https://doi.org/10.1002/jcp.10039.Mannock, D. A.; Lewis, R. N. A. H.; McElhaney, R. N. Comparative Calorimetric and Spectroscopic Studies of the Effects of Lanosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biophysical Journal 2006, 91 (9), 3327-3340. https://doi.org/10.1529/biophysj.106.084368.Potrich, C.; Bastiani, H.; Colin, D. A.; Huck, S.; Prevost, G.; Dalla Serra, M. The Influence of Membrane Lipids in Staphylococcus Aureus Gamma-Hemolysins Pore Formation. J Membr Biol 2009, 227 (1), 13-24. https://doi.org/10.1007/s00232-008-9140-6.Mercadante, A. Z.; Rodrigues, D. B.; Petry, F. C.; Mariutti, L. R. B. Carotenoid Esters in Foods - A Review and Practical Directions on Analysis and Occurrence. Food Research International 2017, 99, 830-850. https://doi.org/10.1016/j.foodres.2016.12.018.Pinzón-Olarte, M. A. Optimización de Las Condiciones de Derivatización de Ácidos Grasos Para Análisis Por GC-MS de Lípidos de Membrana de Staphyloccus aureus Trabajo de grado, Universidad de los Andes, 2021.Feng, X.; Hu, Y.; Zheng, Y.; Zhu, W.; Li, K.; Huang, C.-H.; Ko, T.-P.; Ren, F.; Chan, H.-C.; Nega, M.; Bogue, S.; López, D.; Kolter, R.; Götz, F.; Guo, R.-T.; Oldfield, E. Structural and Functional Analysis of Bacillus Subtilis YisP Reveals a Role of Its Product in Biofilm Production. Chemistry & Biology 2014, 21 (11), 1557-1563. https://doi.org/10.1016/j.chembiol.2014.08.018.Kumar, S. V.; Taylor, G.; Hasim, S.; Collier, C. P.; Farmer, A. T.; Campagna, S. R.; Bible, A. N.; Doktycz, M. J.; Morrell-Falvey, J. Loss of Carotenoids from Membranes of Pantoea Sp. YR343 Results in Altered Lipid Composition and Changes in Membrane Biophysical Properties. Biochimica et Biophysica Acta - Biomembranes 2019, 1861 (7), 1338-1345. https://doi.org/10.1016/j.bbamem.2019.05.009.Augustynska, D.; Jemiota-Rzemiå ska, M.; Burda, K.; Strzalka, K. Influence of Polar and Nonpolar Carotenoids on Structural and Adhesive Properties of Model Membranes. Chemico-Biological Interactions 2015, 239, 19-25. https://doi.org/10.1016/j.cbi.2015.06.021.Gruszecki, W. I.; Strzalka, K. Carotenoids as Modulators of Lipid Membrane Physical Properties. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2005, 1740 (2), 108-115. https://doi.org/10.1016/j.bbadis.2004.11.015.Gabrielska, J.; Gruszecki, W. I. Zeaxanthin (Dihydroxy-[beta]-Carotene) but Not [beta]-Carotene Rigidities Lipid Membranes: A 1H-NMR Study of Carotenoid-Egg Phosphatidylcholine Liposomes. Biochimica et Biophysica Acta - Biomembranes 1996, 1285 (2), 167-174. https://doi.org/10.1016/S0005-2736(96)00152-6.Subczynski, W. K.; Markowska, E.; Gruszecki, W. I.; Sielewiesiuk, J. Effects of Polar Carotenoids on Dimyristoylphosphatidylcholine Membranes: A Spin-Label Study. Biochimica et Biophysica Acta (BBA) - Biomembranes 1992, 1105 (1), 97-108. https://doi.org/10.1016/0005-2736(92)90167-K.201522907Publicationhttps://scholar.google.es/citations?user=dVoSCGkAAAAJvirtual::9999-10000-0002-9791-5762virtual::9999-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001527902virtual::9999-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000674044virtual::10000-19e48e55a-f420-4196-b0f3-211822d024d7virtual::9999-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::10000-19e48e55a-f420-4196-b0f3-211822d024d7virtual::9999-129f524d9-be84-4fc7-b365-48c816849b2dvirtual::10000-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/3d3d6a3d-8da1-4024-b879-245838c65aa7/download4460e5956bc1d1639be9ae6146a50347MD55ORIGINALTesis_Final_GersonDLopezM_.pdfTesis_Final_GersonDLopezM_.pdfTesis de Doctorado Gerson-Dirceu Lópezapplication/pdf3415588https://repositorio.uniandes.edu.co/bitstreams/9e9dcb28-1617-4dd8-b08e-efded034f2d5/download01db895b304ea114b5fe453a8ac9ee1cMD53Formato autorización y entrega de Tesis.pdfFormato autorización y entrega de Tesis.pdfHIDEapplication/pdf335309https://repositorio.uniandes.edu.co/bitstreams/66921896-cf63-47fd-aebc-c49e0fc9a602/downloadb9913426a84e93b295441158c20dbd3eMD56TEXTTesis_Final_GersonDLopezM_.pdf.txtTesis_Final_GersonDLopezM_.pdf.txtExtracted texttext/plain381112https://repositorio.uniandes.edu.co/bitstreams/eacdd22b-a578-435c-81b1-962a15095c0e/download975eb575452dbca109941049fb0f45ccMD57Formato autorización y entrega de Tesis.pdf.txtFormato autorización y entrega de Tesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/10c82f34-6452-458a-a5ce-24a1ea91ce6d/download4491fe1afb58beaaef41a73cf7ff2e27MD59LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/c0d4a127-3823-48b5-8355-28c435480cbe/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILTesis_Final_GersonDLopezM_.pdf.jpgTesis_Final_GersonDLopezM_.pdf.jpgIM Thumbnailimage/jpeg13006https://repositorio.uniandes.edu.co/bitstreams/41db4b92-49e0-424c-b84b-b77932878357/downloadd79d48ba9e403418ee995efae035b024MD58Formato autorización y entrega de Tesis.pdf.jpgFormato autorización y entrega de Tesis.pdf.jpgIM Thumbnailimage/jpeg16604https://repositorio.uniandes.edu.co/bitstreams/88eb2e74-5b46-4f2f-950c-7cd7e0b5c6cc/downloade3fda2ab6a63f32c9406143045103759MD5101992/60321oai:repositorio.uniandes.edu.co:1992/603212024-08-26 15:23:59.395http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==