Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell
The depletion of the world's oil reserves and the problem of climate change due to the increase in carbon dioxide levels in the atmosphere have led to an increasing search for new alternative sources of clean energy. The ideal fuel to produce energy would be hydrogen since its combustion would...
- Autores:
-
Fonseca Bermúdez, Óscar Javier
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/75733
- Acceso en línea:
- https://hdl.handle.net/1992/75733
- Palabra clave:
- Gas adsorption
Cashew nutshell
Activated carbon
Hydrogen
Carbon dioxide
Methane
Ingeniería
Química
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNIANDES2_a4a6becd3b1616d68cbcc099494c9bca |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/75733 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
title |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
spellingShingle |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell Gas adsorption Cashew nutshell Activated carbon Hydrogen Carbon dioxide Methane Ingeniería Química |
title_short |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
title_full |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
title_fullStr |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
title_full_unstemmed |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
title_sort |
Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshell |
dc.creator.fl_str_mv |
Fonseca Bermúdez, Óscar Javier |
dc.contributor.advisor.none.fl_str_mv |
Giraldo Gutiérrez, Liliana Sierra Ramírez, Rocio Moreno Piraján, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Fonseca Bermúdez, Óscar Javier |
dc.contributor.jury.none.fl_str_mv |
Medellín Castillo, Nahum Andrés Vargas Delgadillo, Diana Paola Saldarriaga Elorza, Juan Fernando |
dc.contributor.researchgroup.none.fl_str_mv |
Facultad de Ciencias |
dc.subject.keyword.eng.fl_str_mv |
Gas adsorption Cashew nutshell Activated carbon Hydrogen Carbon dioxide Methane |
topic |
Gas adsorption Cashew nutshell Activated carbon Hydrogen Carbon dioxide Methane Ingeniería Química |
dc.subject.themes.none.fl_str_mv |
Ingeniería Química |
description |
The depletion of the world's oil reserves and the problem of climate change due to the increase in carbon dioxide levels in the atmosphere have led to an increasing search for new alternative sources of clean energy. The ideal fuel to produce energy would be hydrogen since its combustion would produce a large amount of energy while the only biproduct is water. The low density of hydrogen at room temperature means it must be stored at very high pressures, which is not recommended for use in everyday transportation vehicles. One of the alternatives to reduce storage pressure is the use of adsorbent materials. Activated carbon presents advantages over other adsorbent materials since it can be obtained with a large specific surface area, has a low production cost, has fast adsorption/desorption kinetics, and its surface chemistry can be easily modified. The main goal of this study is to prepare microporous materials for hydrogen storage from the agricultural residue known as cashew nut shell and determine the best conditions that allow us to obtain such materials. The cashew nutshell is a residue. As cashew tree plantations are increasing throughout Colombia, this has resulted in a considerable amount of residue. These shells contain an inedible oil that does not degrade easily; in addition, this oil prevents the shell from being used as a source of energy due to the toxic components that are released when burned. Therefore, finding an effective way to use these shells would have a positive benefit for the cashew industry. In the production of activated carbons, different activating agents and activation temperatures are used for each agent. The activated carbons obtained are texturally and chemically characterized and are then subjected to high-pressure hydrogen adsorption tests. The performance for storing hydrogen of these activated carbons is compared with other materials. It was found that the adsorption of hydrogen at high pressures is not only favored by a high surface area and micropore volume but also the ratio of the microporous to the mesoporous. The porous network morphology of each material must also be taken into account, which can facilitate the access of the gas to the micropores, increasing their adsorption capacity. This network morphology was especially developed by directly activating the precursor with potassium carbonate. Additionally, the research explores the performance of the materials obtained in comparison to other gases of interest, such as CH4 and CO2. In both cases, the material that presented the highest uptake was the one that was activated in a single step with potassium carbonate. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-12-12 |
dc.date.accessioned.none.fl_str_mv |
2025-01-28T18:14:00Z |
dc.date.available.none.fl_str_mv |
2025-01-28T18:14:00Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/1992/75733 |
dc.identifier.instname.none.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.none.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
https://hdl.handle.net/1992/75733 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
Morante JR, Andreu T, García G, Guilera J, Tarancón A, Torrell M. Hidrógeno, vector energético de una economía descarbonizada. Madrid, España.: 2020. Rodríguez-Reinoso F, & KK. Nanoporous materials for gas storage. Singapore: Springer ; 2019. US DOE. Fuel Cell Technologies Office of the US DOE (Hydrogen storage) 2017. Ahn C, GRH, & BJRC. Enhanced Hydrogen Dipole Physisorption. . 2005 Annual Merit Review Proceedings of the US Department of Energy 2005. CNG United. How you can benefit from CNG conversion 2018. http://www.cngunited.com/support/howyoucanbenefitfromcngconversion (accessed March 4, 2024). Wegrzyn J, Gurevich M. Adsorbent storage of natural gas. Appl Energy 1996;55:71–83. https://doi.org/10.1016/S0306-2619(96)00015-3. Burchell T, Rogers M. Low pressure storage of natural gas for vehicular applications. Journal of Fuels and Lubricants 2000;109:2242–6. Veziroglu TN, Barbir F. Hydrogen: the wonder fuel. Int J Hydrogen Energy 1992;17:391–404. https://doi.org/10.1016/0360-3199(92)90183-W. Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF. Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resour Conserv Recycl 2001;32:43–53. https://doi.org/10.1016/S0921-3449(00)00093-8. Cruz-Reina LJ. Valorization of cashew nut agricultural residues from Vichada: biorefinery approach, sustainability analysis, and perspectives. Universidad de Los Andes, 2023. Agrosavia. El marañón, una excelente proyección para el campo 2022. Duarte FND, Rodrigues JB, da Costa Lima M, Lima M dos S, Pacheco MTB, Pintado MME, et al. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J Sci Food Agric 2017;97:3712–9. https://doi.org/10.1002/JSFA.8232. Das P, Ganesh A. Bio-oil from pyrolysis of cashew nut shell—a near fuel. Biomass Bioenergy 2003;25:113–7. https://doi.org/10.1016/S0961-9534(02)00182-4. Almeida MO, Bezerra TT, Lima NMA, Sousa AF, Trevisan MTS, Ribeiro VGP, et al. Cardol-Derived Organophosphorothioates as Inhibitors of Acetylcholinesterase for Dengue Vector Control. J Braz Chem Soc 2019;30:2634–41. https://doi.org/10.21577/0103-5053.20190181. Sanger SH, Mohod AG, Khandetode YP, Shrirame HY, Deshmukh AS. Study of Carbonization for Cashew Nut Shell. Research Journal of Chemical Sciences 2011;1:43–55. Sharma P, Gaur VK, Sirohi R, Larroche C, Kim SH, Pandey A. Valorization of cashew nut processing residues for industrial applications. Ind Crops Prod 2020;152:112550. https://doi.org/10.1016/j.indcrop.2020.112550. Azelis. Grow the Bio-Based Content in your Formulas with CNSL Technology 2022. https://explore.azelis.com/en_US/ca_case/grow-the-bio-based-content-in-your-formulas-with-cnsl-technology (accessed March 5, 2024). Singh B, Singh V V, Boopathi M, Shah D. Pressure Swing Adsorption Based Air Filtration/Purification Systems for NBC Collective Protection. Def Life Sci J 2016;1:127. https://doi.org/10.14429/dlsj.1.10737. Truong LVA, Abatzoglou N. A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass Bioenergy 2005;29:142–51. https://doi.org/10.1016/J.BIOMBIOE.2005.03.001. Wang X, Ma X, Sun L, Song C. A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification. Green Chemistry 2007;9:695–702. https://doi.org/10.1039/B614621J. Tellez-Juarez M. Almacenamiento de hidrógeno en carbones porosos. Instituto Politécnico Nacional, 2013. Marsh H, Rodríguez-Reinoso F. Activated Carbon. Activated Carbon 2006:1–536. https://doi.org/10.1016/B978-0-08-044463-5.X5013-4. Lim WC, Srinivasakannan C, Balasubramanian N. Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J Anal Appl Pyrolysis 2010;88:181–6. https://doi.org/10.1016/J.JAAP.2010.04.004. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface chemistry of activated carbons. Carbon N Y 1999;37:1379–89. https://doi.org/10.1016/S0008-6223(98)00333-9. Banerjee S, Musa MdNor, Jaafar AB. Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int J Hydrogen Energy 2017;42:26–37. https://doi.org/10.1016/j.ijhydene.2016.11.115. Morris RE, Wheatley PS. Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition 2008;47:4966–81. https://doi.org/10.1002/ANIE.200703934. Izquierdo MT, Martínez de Yuso A, Rubio B, Pino MR. Conversion of almond shell to activated carbons: Methodical study of the chemical activation based on an experimental design and relationship with their characteristics. Biomass Bioenergy 2011;35:1235–44. https://doi.org/10.1016/J.BIOMBIOE.2010.12.016. Czarna-Juszkiewicz D, Cader J, Wdowin M. From coal ashes to solid sorbents for hydrogen storage. J Clean Prod 2020;270:122355. https://doi.org/10.1016/J.JCLEPRO.2020.122355. Ströbel R, Garche J, Moseley PT, Jörissen L, Wolf G. Hydrogen storage by carbon materials. J Power Sources 2006;159:781–801. https://doi.org/10.1016/J.JPOWSOUR.2006.03.047. Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C. Hydrogen storage in activated carbon materials: Role of the nanoporous texture. Carbon N Y 2004;12:2744–7. https://doi.org/doi:10.1016/j.carbon.2004.05.018. Li Y, Zhao D, Wang Y, Xue R, Shen Z, Li X. The mechanism of hydrogen storage in carbon materials. Int J Hydrogen Energy 2007;32:2513–7. https://doi.org/10.1016/J.IJHYDENE.2006.11.010. Castro MCM de. Preparación de carbones activados con KOH a partir de residuo de petróleo. Adsorción de hidrógeno 2013. Ramesh T, Rajalakshmi N, Dhathathreyan KS. Activated carbons derived from tamarind seeds for hydrogen storage. J Energy Storage 2015;4:89–95. https://doi.org/10.1016/J.EST.2015.09.005. Liu X, Zhang C, Geng Z, Cai M. High-pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon. Microporous and Mesoporous Materials 2014;194:60–5. https://doi.org/10.1016/J.MICROMESO.2014.04.005. Heo YJ, Park SJ. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. Journal of Industrial and Engineering Chemistry 2015;31:330–4. https://doi.org/10.1016/J.JIEC.2015.07.006. Arshad SH, Ngadi N, Aziz AA, Amin NS, Jusoh M, Wong S. Preparation of activated carbon from empty fruit bunch for hydrogen storage. J Energy Storage 2016;8:257–61. https://doi.org/10.1016/J.EST.2016.10.001. Tan Z, Gubbins KE. Adsorption in Carbon Micropores at Supercritical Temperatures. vol. 94. 1990. Matranga KR, Myers AL, Glandt ED. Storage of natural gas by adsorption on activated carbon. Chem Eng Sci 1992;47:1569–79. https://doi.org/10.1016/0009-2509(92)85005-V. Cracknell RF, Gordon P, Gubbins KE. Influence of pore geometry on the design of microporous materials for methane storage. J Phys Chem 1993;97:494–9. https://doi.org/10.1021/j100104a036. Chen XS, Mcenaney B, Mays TJ, Alcaniz-Monge J, Cazorla-Amoros d., Linares-Solano A. Theoretical and experimental studies of methane adsorption on microporous carbons. Carbon N Y 1997;35:1251–8. https://doi.org/10.1016/S0008-6223(97)00074-2. Garrido J, Linares-Solano A, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of N2 vs. C02 in the Characterization of Activated Carbons. n.d. Rodríguez-Reinoso F, Garrido J, Martin-Martinez JM, Molina-Sabio M, Torregrosa R. The_combined_use_of_different_approaches. Carbon N Y 1989;27:23–32. Martín CF, Plaza MG, Pis JJ, Rubiera F, Pevida C, Centeno TA. On the limits of CO2 capture capacity of carbons. Sep Purif Technol 2010;74:225–9. https://doi.org/10.1016/j.seppur.2010.06.009. Zhang Z, Zhou J, Xing W, Xue Q, Yan Z, Zhuo S, et al. Critical role of small micropores in high CO2 uptake. Physical Chemistry Chemical Physics 2013;15:2523. https://doi.org/10.1039/c2cp44436d. Lee JH, Kwac K, Lee HJ, Lim SY, Jung DS, Jung Y, et al. Optimal Activation of Porous Carbon for High Performance CO 2 Capture. ChemNanoMat 2016;2:528–33. https://doi.org/10.1002/cnma.201600082. Presser V, McDonough J, Yeon S-H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 2011;4:3059. https://doi.org/10.1039/c1ee01176f. Moreno-Piraján JC, Giraldo-Gutierrez L, Gómez-Granados F. Porous Materials. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-65991-2. Cazorla-Amorós D, Alcañ Iz-Monge J, Linares-Solano A. Characterization of Activated Carbon Fibers by CO 2 Adsorption. 1996. Srinivas G, Krungleviciute V, Guo Z-X, Yildirim T. Exceptional CO 2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ Sci 2014;7:335–42. https://doi.org/10.1039/C3EE42918K. Olivieri A, Escandar G. Practical Three-Way Calibration. Elsevier; 2014. https://doi.org/10.1016/C2012-0-07419-4. Davoodabadi A, Mahmoudi A, Ghasemi H. The potential of hydrogen hydrate as a future hydrogen storage medium. IScience 2021;24:101907. https://doi.org/10.1016/j.isci.2020.101907 Ahmadpour A, Do DD. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon N Y 1997;35:1723–32. https://doi.org/10.1016/S0008-6223(97)00127-9 Sharma P, Gaur VK, Sirohi R, Larroche C, Kim SH, Pandey A. Valorization of cashew nut processing residues for industrial applications. Ind Crops Prod 2020;152:112550. https://doi.org/10.1016/j.indcrop.2020.112550. Yuliana M, Huynh L-H, Ho Q-P, Truong C-T, Ju Y-H. Defatted cashew nut shell starch as renewable polymeric material: Isolation and characterization. Carbohydr Polym 2012;87:2576–81. https://doi.org/10.1016/j.carbpol.2011.11.044. Papadopoulou E, Chrissafis K. Thermal study of phenol–formaldehyde resin modified with cashew nut shell liquid. Thermochim Acta 2011;512:105–9. https://doi.org/10.1016/j.tca.2010.09.008. Serafin J, Dziejarski B, Fonseca-Bermúdez ÓJ, Giraldo L, Sierra-Ramírez R, Bonillo MG, et al. Bioorganic activated carbon from cashew nut shells for H2 adsorption and H2/CO2, H2/CH4, CO2/CH4, H2/CO2/CH4 selectivity in industrial applications. Int J Hydrogen Energy 2024;86:662–76. https://doi.org/10.1016/j.ijhydene.2024.08.417. Marsh H, Rodríguez-Reinoso F. Activation Processes (Chemical). Activated Carbon, Elsevier; 2006, p. 322–65. https://doi.org/10.1016/B978-008044463-5/50020-0. Gong J, Liu R, Sun Y, Xu J, Liang M, Sun Y, et al. Preparation of high-performance nitrogen doped porous carbon from cork biomass by K2CO3 activation for adsorption of rhodamine B. Ind Crops Prod 2024;208:117846. https://doi.org/10.1016/j.indcrop.2023.117846. McCusker LB, Liebau F, Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous and Mesoporous Materials 2003;58:3–13. https://doi.org/10.1016/S1387-1811(02)00545-0. Serafin J, Narkiewicz U, Morawski AW, Wróbel RJ, Michalkiewicz B. Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. Journal of CO2 Utilization 2017;18:73–9. https://doi.org/10.1016/j.jcou.2017.01.006. Castro MCMD. Preparación de carbones activados con KOH a partir de residuo de petróleo: adsorción de hidrógeno . Universidad de Alicante, 2013. Marsh H, Yan DS, O’Grady TM, Wennerberg A. Formation of active carbons from cokes using potassium hydroxide. Carbon N Y 1984;22:603–11. https://doi.org/10.1016/0008-6223(84)90096-4. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH. Carbon N Y 2003;41:267–75. https://doi.org/10.1016/S0008-6223(02)00279-8. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon N Y 2005;43:786–95. https://doi.org/10.1016/j.carbon.2004.11.005. Linares-Solano A, Lillo-Rodenas MA, Marco Lozar JP, Kunowsky M, Romero Anaya AJ. NaOH and KOH for preparing activated carbons used in energy and environmental applications. International Journal of Energy, Environment and Economics 2012;20:59–91. Fu J, Zhang J, Jin C, Wang Z, Wang T, Cheng X, et al. Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process. Bioresour Technol 2020;310:123413. https://doi.org/10.1016/j.biortech.2020.123413. Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, et al. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 2021;763:144204. https://doi.org/10.1016/j.scitotenv.2020.144204. Serafin J, Dziejarski B, Cruz Junior OF, Sreńscek-Nazzal J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon N Y 2023;201:633–47. https://doi.org/10.1016/j.carbon.2022.09.013. Kim J-H, Lee G, Park J-E, Kim S-H. Limitation of K2CO3 as a Chemical Agent for Upgrading Activated Carbon. Processes 2021;9:1000. https://doi.org/10.3390/pr9061000. Chen Y, Zhai S-R, Liu N, Song Y, An Q-D, Song X-W. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation. Bioresour Technol 2013;144:401–9. https://doi.org/10.1016/j.biortech.2013.07.002. Wu F, Zhang H, Liu W, Zhang Q, Li Q, Zheng S, et al. Transformation process of boehmite to γ-Al 2 O 3 induced by high-energy ball milling. CrystEngComm 2024;26:1099–105. https://doi.org/10.1039/D3CE01113E. Conte G, Policicchio A, Idrees M, Desiderio G, Agostino RG. Tuning the ultra-microporosity in hierarchical porous carbons derived from amorphous cellulose towards a sustainable solution for hydrogen storage. Int J Hydrogen Energy 2024;50:763–73. https://doi.org/10.1016/j.ijhydene.2023.08.128. Li J-R, Yu J, Lu W, Sun L-B, Sculley J, Balbuena PB, et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Commun 2013;4:1538. https://doi.org/10.1038/ncomms2552. Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour Technol Rep 2019;7:100266. https://doi.org/10.1016/j.biteb.2019.100266. Zhao Y-L, Zhang X, Li M-Z, Li J-R. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024;53:2056–98. https://doi.org/10.1039/D3CS00285C. Li H, Qi Y, Chen J, Yang M, Qiu H. Development of amine-pillar[5]arene modified porous silica for CO2 adsorption, and CO2/CH4, CO2/N2 separation. Sep Purif Technol 2024;337:126400. https://doi.org/10.1016/j.seppur.2024.126400. Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007;143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052. Gholizadeh F, Izadbakhsh A, Huang J, Zi-Feng Y. Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane. Microporous and Mesoporous Materials 2021;310:110616. https://doi.org/10.1016/j.micromeso.2020.110616. Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today 2010;150:2–7. https://doi.org/10.1016/j.cattod.2009.04.010. Dai F, Zhuang Q, Huang G, Deng H, Zhang X. Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega 2023;8:17064–76. https://doi.org/10.1021/acsomega.3c01336. Liu L, Li Y, Fan S. Preparation of KOH and H3PO4 Modified Biochar and Its Application in Methylene Blue Removal from Aqueous Solution. Processes 2019;7:891. https://doi.org/10.3390/pr7120891. Keresztury G, Incze M, Sóti F, Imre L. CO2 inclusion bands in i.r. spectra of KBr pellets. Spectrochim Acta A 1980;36:1007–8. https://doi.org/10.1016/0584-8539(80)80181-4. Soukup K, Hejtmánek V, Cruz GJF, Jandová V, Solcova O. Excess Adsorption Isotherms of Hydrogen on Activated Carbons from Agricultural Waste Materials. Chem Eng Technol 2017;40:900–6. https://doi.org/10.1002/ceat.201600610. Ströbel R, Garche J, Moseley PT, Jörissen L, Wolf G. Hydrogen storage by carbon materials. J Power Sources 2006;159:781–801. https://doi.org/10.1016/j.jpowsour.2006.03.047. Masika E, Mokaya R. Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Progress in Natural Science: Materials International 2013;23:308–16. https://doi.org/10.1016/j.pnsc.2013.04.007. Ramesh T, Rajalakshmi N, Dhathathreyan KS. Activated carbons derived from tamarind seeds for hydrogen storage. J Energy Storage 2015;4:89–95. https://doi.org/10.1016/j.est.2015.09.005. Liu X, Zhang C, Geng Z, Cai M. High-pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon. Microporous and Mesoporous Materials 2014;194:60–5. https://doi.org/10.1016/j.micromeso.2014.04.005. Heo Y-J, Park S-J. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. Journal of Industrial and Engineering Chemistry 2015;31:330–4. https://doi.org/10.1016/j.jiec.2015.07.006. Czarna-Juszkiewicz D, Cader J, Wdowin M. From coal ashes to solid sorbents for hydrogen storage. J Clean Prod 2020;270:122355. https://doi.org/10.1016/j.jclepro.2020.122355. Mehra P, Paul A. Decoding Carbon-Based Materials’ Properties for High CO 2 Capture and Selectivity. ACS Omega 2022;7:34538–46. https://doi.org/10.1021/acsomega.2c04269. Cazorla-Amorós D, Alcañiz-Monge J, Linares-Solano A. Characterization of Activated Carbon Fibers by CO 2 Adsorption. Langmuir 1996;12:2820–4. https://doi.org/10.1021/la960022s. Coromina HM, Walsh DA, Mokaya R. Biomass-derived activated carbon with simultaneously enhanced CO 2 uptake for both pre and post combustion capture applications. J Mater Chem A Mater 2016;4:280–9. https://doi.org/10.1039/C5TA09202G. Srinivas G, Krungleviciute V, Guo Z-X, Yildirim T. Exceptional CO 2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ Sci 2014;7:335–42. https://doi.org/10.1039/C3EE42918K. Garg S, Das P. Microporous carbon from cashew nutshell pyrolytic biochar and its potential application as CO2 adsorbent. Biomass Convers Biorefin 2020;10:1043–61. https://doi.org/10.1007/s13399-019-00506-1. Singh G, Lakhi KS, Ramadass K, Kim S, Stockdale D, Vinu A. A combined strategy of acid-assisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2 capture. Microporous and Mesoporous Materials 2018;271:23–32. https://doi.org/10.1016/j.micromeso.2018.05.035. Zhang C, Song W, Ma Q, Xie L, Zhang X, Guo H. Enhancement of CO 2 Capture on Biomass-Based Carbon from Black Locust by KOH Activation and Ammonia Modification. Energy & Fuels 2016;30:4181–90. https://doi.org/10.1021/acs.energyfuels.5b02764. Travis W, Gadipelli S, Guo Z. Superior CO 2 adsorption from waste coffee ground derived carbons. RSC Adv 2015;5:29558–62. https://doi.org/10.1039/C4RA13026J. Ello AS, de Souza LKC, Trokourey A, Jaroniec M. Coconut shell-based microporous carbons for CO2 capture. Microporous and Mesoporous Materials 2013;180:280–3. https://doi.org/10.1016/j.micromeso.2013.07.008. Sangchoom W, Mokaya R. Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO 2 and Hydrogen Storage. ACS Sustain Chem Eng 2015;3:1658–67. https://doi.org/10.1021/acssuschemeng.5b00351. Li Y, Ruan G, Jalilov AS, Tarkunde YR, Fei H, Tour JM. Biochar as a renewable source for high-performance CO2 sorbent. Carbon N Y 2016;107:344–51. https://doi.org/10.1016/j.carbon.2016.06.010. Rodríguez-Reinoso F, Almansa C, Molina-Sabio M. Contribution to the Evaluation of Density of Methane Adsorbed on Activated Carbon. J Phys Chem B 2005;109:20227–31. https://doi.org/10.1021/jp053840e. García Blanco AA, Vallone AF, Korili SA, Gil A, Sapag K. A comparative study of several microporous materials to store methane by adsorption. Microporous and Mesoporous Materials 2016;224:323–31. https://doi.org/10.1016/j.micromeso.2016.01.002. Lozano-Castelló D, Alcañiz-Monge J, de la Casa-Lillo MA, Cazorla-Amorós D, Linares-Solano A. Advances in the study of methane storage in porous carbonaceous materials. Fuel 2002;81:1777–803. https://doi.org/10.1016/S0016-2361(02)00124-2. Vargas DP, Giraldo L, Moreno-Piraján JC. Carbon dioxide and methane adsorption at high pressure on activated carbon materials. Adsorption 2013;19:1075–82. https://doi.org/10.1007/s10450-013-9532-5. Kemp KC, Baek S Bin, Lee W-G, Meyyappan M, Kim KS. Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology 2015;26:385602. https://doi.org/10.1088/0957-4484/26/38/385602. Azevedo DCS, Araújo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials 2007;100:361–4. https://doi.org/10.1016/j.micromeso.2006.11.024. Bagheri N, Abedi J. Adsorption of methane on corn cobs based activated carbon. Chemical Engineering Research and Design 2011;89:2038–43. https://doi.org/10.1016/j.cherd.2011.02.002. Oguz Erdogan F. A comparative study on methane adsorption onto various adsorbents including activated carbons, zeolites, MWCNT, and MCM-41. International Journal of Coal Preparation and Utilization 2022;42:2078–98. https://doi.org/10.1080/19392699.2020.1798941. Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F. High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? Chemistry of Materials 2015;27:959–64. https://doi.org/10.1021/cm5042524. Myers AL, Prausnitz JM. Thermodynamics of mixed‐gas adsorption. AIChE Journal 1965;11:121–7. https://doi.org/10.1002/aic.690110125. Ray KG, Olmsted DL, Houndonougbo Y, Laird BB, Asta M. Origins of CH 4 /CO 2 Adsorption Selectivity in Zeolitic Imidazolate Frameworks: A van der Waals Density Functional Study. The Journal of Physical Chemistry C 2013;117:14642–51. https://doi.org/10.1021/jp404251m. Rios RB, Stragliotto FM, Peixoto HR, Torres AEB, Bastos-Neto M, Azevedo DCS, et al. Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Brazilian Journal of Chemical Engineering 2013;30:939–51. https://doi.org/10.1590/S0104-66322013000400024. Abdeljaoued A, Querejeta N, Durán I, Álvarez-Gutiérrez N, Pevida C, Chahbani M. Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO2/CH4 Separation. Energies (Basel) 2018;11:1748. https://doi.org/10.3390/en11071748. Khalili S, Khoshandam B, Jahanshahi M. A comparative study of CO2 and CH4 adsorption using activated carbon prepared from pine cone by phosphoric acid activation. Korean Journal of Chemical Engineering 2016;33:2943–52. https://doi.org/10.1007/s11814-016-0138-y. Abdul Kareem FA, Shariff AM, Ullah S, Mellon N, Keong LK. Adsorption of pure and predicted binary (CO2:CH4) mixtures on 13X-Zeolite: Equilibrium and kinetic properties at offshore conditions. Microporous and Mesoporous Materials 2018;267:221–34. https://doi.org/10.1016/j.micromeso.2018.04.007. Mofarahi M, Gholipour F. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous and Mesoporous Materials 2014;200:1–10. https://doi.org/10.1016/j.micromeso.2014.08.022. Arefi Pour A, Sharifnia S, Neishabori Salehi R, Ghodrati M. Adsorption separation of CO2 /CH 4 on the synthesized NaA zeolite shaped with montmorillonite clay in natural gas purification process. J Nat Gas Sci Eng 2016;36:630–43. https://doi.org/10.1016/j.jngse.2016.11.006. Parinyakit S, Worathanakul P. Static and Dynamic Simulation of Single and Binary Component Adsorption of CO2 and CH4 on Fixed Bed Using Molecular Sieve of Zeolite 4A. Processes 2021;9:1250. https://doi.org/10.3390/pr9071250. Shen J, Wang X, Chen Y. Adsorbents for adsorption separation of CO 2 and CH 4: A literature review. Can J Chem Eng 2023;101:7115–33. https://doi.org/10.1002/cjce.24942. Rallapalli P, Prasanth KP, Patil D, Somani RS, Jasra R V., Bajaj HC. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)]. Journal of Porous Materials 2011;18:205–10. https://doi.org/10.1007/s10934-010-9371-7. Ullah S, Bustam MA, Assiri MA, Al-Sehemi AG, Gonfa G, Mukhtar A, et al. Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study. Microporous and Mesoporous Materials 2020;294:109844. https://doi.org/10.1016/j.micromeso.2019.109844. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40:1361–403. https://doi.org/10.1021/ja02242a004. Tóth J. On thermodynamical inconsistency of isotherm equations: Gibbs’s thermodynamics. J Colloid Interface Sci 2003;262:25–31. https://doi.org/10.1016/S0021-9797(03)00236-4. Sips R. On the Structure of a Catalyst Surface. J Chem Phys 1948;16:490–5. https://doi.org/10.1063/1.1746922. Ayawei N, Ebelegi AN, Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J Chem 2017;2017:1–11. https://doi.org/10.1155/2017/3039817. So SH, Sung SJ, Yang SJ, Park CR. Where to go for the Development of High-Performance H2 Storage Materials at Ambient Conditions? Electronic Materials Letters 2023;19:1–18. https://doi.org/10.1007/s13391-022-00368-2. Ding F, Yakobson BI. Challenges in hydrogen adsorptions: from physisorption to chemisorption. Front Phys (Beijing) 2011;6:142–50. https://doi.org/10.1007/s11467-011-0171-6. Lim KL, Kazemian H, Yaakob Z, Daud WRW. Solid‐state Materials and Methods for Hydrogen Storage: A Critical Review. Chem Eng Technol 2010;33:213–26. https://doi.org/10.1002/ceat.200900376. Jena P. Materials for Hydrogen Storage: Past, Present, and Future. J Phys Chem Lett 2011;2:206–11. https://doi.org/10.1021/jz1015372. Sakintuna B, Lamaridarkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy 2007;32:1121–40. https://doi.org/10.1016/j.ijhydene.2006.11.022. Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex Hydrides for Hydrogen Storage. Chem Rev 2007;107:4111–32. https://doi.org/10.1021/cr0501846. Bourane A, Elanany M, Pham T V., Katikaneni SP. An overview of organic liquid phase hydrogen carriers. Int J Hydrogen Energy 2016;41:23075–91. https://doi.org/10.1016/j.ijhydene.2016.07.167. Ramirez-Vidal P, Sdanghi G, Celzard A, Fierro V. High hydrogen release by cryo-adsorption and compression on porous materials. Int J Hydrogen Energy 2022;47:8892–915. https://doi.org/10.1016/j.ijhydene.2021.12.235. Usman MR. Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews 2022;167:112743. https://doi.org/10.1016/j.rser.2022.112743. Rodríguez-Reinoso F, Silvestre-Albero J. Methane Storage on Nanoporous Carbons, 2019, p. 209–26. https://doi.org/10.1007/978-981-13-3504-4_8. Poirier E. Hydrogen adsorption in carbon nanostructures. Int J Hydrogen Energy 2001;26:831–5. https://doi.org/10.1016/S0360-3199(01)00014-3. Jagiello J, Kenvin J, Celzard A, Fierro V. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon N Y 2019;144:206–15. https://doi.org/10.1016/j.carbon.2018.12.028. Jagiello J, Ania C, Parra JB, Cook C. Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon N Y 2015;91:330–7. https://doi.org/10.1016/j.carbon.2015.05.004. Wang TC, Bury W, Gómez-Gualdrón DA, Vermeulen NA, Mondloch JE, Deria P, et al. Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. J Am Chem Soc 2015;137:3585–91. https://doi.org/10.1021/ja512973b. Thommes M, Kaneko K, Neimark A V., Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015;87:1051–69. https://doi.org/10.1515/pac-2014-1117. Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon N Y 2007;45:293–303. https://doi.org/10.1016/j.carbon.2006.09.022. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
133 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Química y de Alimentos |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/afbc7549-74f6-46b8-b643-e7158778857f/download https://repositorio.uniandes.edu.co/bitstreams/17f2cd77-cb8a-46f3-92e4-fb42ca3018be/download https://repositorio.uniandes.edu.co/bitstreams/7cf5f20a-316c-4490-8442-8bfbf74a1fca/download https://repositorio.uniandes.edu.co/bitstreams/8453b50e-cdf2-4d96-bb09-6c9b9c1b799e/download https://repositorio.uniandes.edu.co/bitstreams/de98a095-dae5-4b27-aa60-d21ea6d6a47a/download https://repositorio.uniandes.edu.co/bitstreams/917e4685-919e-4b3c-b310-fddea169954f/download https://repositorio.uniandes.edu.co/bitstreams/523f295e-d595-4359-9951-62a3d56c06c1/download https://repositorio.uniandes.edu.co/bitstreams/94bcf9dc-4ac7-4af4-9e58-31485c86008e/download |
bitstream.checksum.fl_str_mv |
2dbb124bb555457074af0cbeb6ae1cf7 a72199e11fe3893f4ffe2bd3961f756e 4460e5956bc1d1639be9ae6146a50347 ae9e573a68e7f92501b6913cc846c39f 280d00c160f66742d0dbbdddee83aa22 7b050fc15efa5a5237928c4f12ad519a 2e1383e31b75d30fbece06cdb7a40272 be3ccfed562dcbac2f870f80a1ebf425 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1831927646000250880 |
spelling |
Giraldo Gutiérrez, LilianaSierra Ramírez, Rociovirtual::22700-1Moreno Piraján, Juan Carlosvirtual::22701-1Fonseca Bermúdez, Óscar JavierMedellín Castillo, Nahum AndrésVargas Delgadillo, Diana PaolaSaldarriaga Elorza, Juan FernandoFacultad de Ciencias2025-01-28T18:14:00Z2025-01-28T18:14:00Z2024-12-12https://hdl.handle.net/1992/75733instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The depletion of the world's oil reserves and the problem of climate change due to the increase in carbon dioxide levels in the atmosphere have led to an increasing search for new alternative sources of clean energy. The ideal fuel to produce energy would be hydrogen since its combustion would produce a large amount of energy while the only biproduct is water. The low density of hydrogen at room temperature means it must be stored at very high pressures, which is not recommended for use in everyday transportation vehicles. One of the alternatives to reduce storage pressure is the use of adsorbent materials. Activated carbon presents advantages over other adsorbent materials since it can be obtained with a large specific surface area, has a low production cost, has fast adsorption/desorption kinetics, and its surface chemistry can be easily modified. The main goal of this study is to prepare microporous materials for hydrogen storage from the agricultural residue known as cashew nut shell and determine the best conditions that allow us to obtain such materials. The cashew nutshell is a residue. As cashew tree plantations are increasing throughout Colombia, this has resulted in a considerable amount of residue. These shells contain an inedible oil that does not degrade easily; in addition, this oil prevents the shell from being used as a source of energy due to the toxic components that are released when burned. Therefore, finding an effective way to use these shells would have a positive benefit for the cashew industry. In the production of activated carbons, different activating agents and activation temperatures are used for each agent. The activated carbons obtained are texturally and chemically characterized and are then subjected to high-pressure hydrogen adsorption tests. The performance for storing hydrogen of these activated carbons is compared with other materials. It was found that the adsorption of hydrogen at high pressures is not only favored by a high surface area and micropore volume but also the ratio of the microporous to the mesoporous. The porous network morphology of each material must also be taken into account, which can facilitate the access of the gas to the micropores, increasing their adsorption capacity. This network morphology was especially developed by directly activating the precursor with potassium carbonate. Additionally, the research explores the performance of the materials obtained in comparison to other gases of interest, such as CH4 and CO2. In both cases, the material that presented the highest uptake was the one that was activated in a single step with potassium carbonate.Apoyo Financiero para Doctorados de la Universidad de Los AndesDoctorado133 páginasapplication/pdfengUniversidad de los AndesDoctorado en IngenieríaFacultad de IngenieríaDepartamento de Ingeniería Química y de AlimentosAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Study of monocomponent gas adsorption capacity of activated carbons obtained from cashew nutshellTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttps://purl.org/redcol/resource_type/TDGas adsorptionCashew nutshellActivated carbonHydrogenCarbon dioxideMethaneIngenieríaQuímicaMorante JR, Andreu T, García G, Guilera J, Tarancón A, Torrell M. Hidrógeno, vector energético de una economía descarbonizada. Madrid, España.: 2020.Rodríguez-Reinoso F, & KK. Nanoporous materials for gas storage. Singapore: Springer ; 2019.US DOE. Fuel Cell Technologies Office of the US DOE (Hydrogen storage) 2017.Ahn C, GRH, & BJRC. Enhanced Hydrogen Dipole Physisorption. . 2005 Annual Merit Review Proceedings of the US Department of Energy 2005.CNG United. How you can benefit from CNG conversion 2018. http://www.cngunited.com/support/howyoucanbenefitfromcngconversion (accessed March 4, 2024).Wegrzyn J, Gurevich M. Adsorbent storage of natural gas. Appl Energy 1996;55:71–83. https://doi.org/10.1016/S0306-2619(96)00015-3.Burchell T, Rogers M. Low pressure storage of natural gas for vehicular applications. Journal of Fuels and Lubricants 2000;109:2242–6.Veziroglu TN, Barbir F. Hydrogen: the wonder fuel. Int J Hydrogen Energy 1992;17:391–404. https://doi.org/10.1016/0360-3199(92)90183-W.Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF. Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob. Resour Conserv Recycl 2001;32:43–53. https://doi.org/10.1016/S0921-3449(00)00093-8.Cruz-Reina LJ. Valorization of cashew nut agricultural residues from Vichada: biorefinery approach, sustainability analysis, and perspectives. Universidad de Los Andes, 2023.Agrosavia. El marañón, una excelente proyección para el campo 2022.Duarte FND, Rodrigues JB, da Costa Lima M, Lima M dos S, Pacheco MTB, Pintado MME, et al. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J Sci Food Agric 2017;97:3712–9. https://doi.org/10.1002/JSFA.8232.Das P, Ganesh A. Bio-oil from pyrolysis of cashew nut shell—a near fuel. Biomass Bioenergy 2003;25:113–7. https://doi.org/10.1016/S0961-9534(02)00182-4.Almeida MO, Bezerra TT, Lima NMA, Sousa AF, Trevisan MTS, Ribeiro VGP, et al. Cardol-Derived Organophosphorothioates as Inhibitors of Acetylcholinesterase for Dengue Vector Control. J Braz Chem Soc 2019;30:2634–41. https://doi.org/10.21577/0103-5053.20190181.Sanger SH, Mohod AG, Khandetode YP, Shrirame HY, Deshmukh AS. Study of Carbonization for Cashew Nut Shell. Research Journal of Chemical Sciences 2011;1:43–55.Sharma P, Gaur VK, Sirohi R, Larroche C, Kim SH, Pandey A. Valorization of cashew nut processing residues for industrial applications. Ind Crops Prod 2020;152:112550. https://doi.org/10.1016/j.indcrop.2020.112550.Azelis. Grow the Bio-Based Content in your Formulas with CNSL Technology 2022. https://explore.azelis.com/en_US/ca_case/grow-the-bio-based-content-in-your-formulas-with-cnsl-technology (accessed March 5, 2024).Singh B, Singh V V, Boopathi M, Shah D. Pressure Swing Adsorption Based Air Filtration/Purification Systems for NBC Collective Protection. Def Life Sci J 2016;1:127. https://doi.org/10.14429/dlsj.1.10737.Truong LVA, Abatzoglou N. A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass Bioenergy 2005;29:142–51. https://doi.org/10.1016/J.BIOMBIOE.2005.03.001.Wang X, Ma X, Sun L, Song C. A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification. Green Chemistry 2007;9:695–702. https://doi.org/10.1039/B614621J.Tellez-Juarez M. Almacenamiento de hidrógeno en carbones porosos. Instituto Politécnico Nacional, 2013.Marsh H, Rodríguez-Reinoso F. Activated Carbon. Activated Carbon 2006:1–536. https://doi.org/10.1016/B978-0-08-044463-5.X5013-4.Lim WC, Srinivasakannan C, Balasubramanian N. Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J Anal Appl Pyrolysis 2010;88:181–6. https://doi.org/10.1016/J.JAAP.2010.04.004.Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface chemistry of activated carbons. Carbon N Y 1999;37:1379–89. https://doi.org/10.1016/S0008-6223(98)00333-9.Banerjee S, Musa MdNor, Jaafar AB. Economic assessment and prospect of hydrogen generated by OTEC as future fuel. Int J Hydrogen Energy 2017;42:26–37. https://doi.org/10.1016/j.ijhydene.2016.11.115.Morris RE, Wheatley PS. Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition 2008;47:4966–81. https://doi.org/10.1002/ANIE.200703934.Izquierdo MT, Martínez de Yuso A, Rubio B, Pino MR. Conversion of almond shell to activated carbons: Methodical study of the chemical activation based on an experimental design and relationship with their characteristics. Biomass Bioenergy 2011;35:1235–44. https://doi.org/10.1016/J.BIOMBIOE.2010.12.016.Czarna-Juszkiewicz D, Cader J, Wdowin M. From coal ashes to solid sorbents for hydrogen storage. J Clean Prod 2020;270:122355. https://doi.org/10.1016/J.JCLEPRO.2020.122355.Ströbel R, Garche J, Moseley PT, Jörissen L, Wolf G. Hydrogen storage by carbon materials. J Power Sources 2006;159:781–801. https://doi.org/10.1016/J.JPOWSOUR.2006.03.047.Texier-Mandoki N, Dentzer J, Piquero T, Saadallah S, David P, Vix-Guterl C. Hydrogen storage in activated carbon materials: Role of the nanoporous texture. Carbon N Y 2004;12:2744–7. https://doi.org/doi:10.1016/j.carbon.2004.05.018.Li Y, Zhao D, Wang Y, Xue R, Shen Z, Li X. The mechanism of hydrogen storage in carbon materials. Int J Hydrogen Energy 2007;32:2513–7. https://doi.org/10.1016/J.IJHYDENE.2006.11.010.Castro MCM de. Preparación de carbones activados con KOH a partir de residuo de petróleo. Adsorción de hidrógeno 2013.Ramesh T, Rajalakshmi N, Dhathathreyan KS. Activated carbons derived from tamarind seeds for hydrogen storage. J Energy Storage 2015;4:89–95. https://doi.org/10.1016/J.EST.2015.09.005.Liu X, Zhang C, Geng Z, Cai M. High-pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon. Microporous and Mesoporous Materials 2014;194:60–5. https://doi.org/10.1016/J.MICROMESO.2014.04.005.Heo YJ, Park SJ. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. Journal of Industrial and Engineering Chemistry 2015;31:330–4. https://doi.org/10.1016/J.JIEC.2015.07.006.Arshad SH, Ngadi N, Aziz AA, Amin NS, Jusoh M, Wong S. Preparation of activated carbon from empty fruit bunch for hydrogen storage. J Energy Storage 2016;8:257–61. https://doi.org/10.1016/J.EST.2016.10.001.Tan Z, Gubbins KE. Adsorption in Carbon Micropores at Supercritical Temperatures. vol. 94. 1990.Matranga KR, Myers AL, Glandt ED. Storage of natural gas by adsorption on activated carbon. Chem Eng Sci 1992;47:1569–79. https://doi.org/10.1016/0009-2509(92)85005-V.Cracknell RF, Gordon P, Gubbins KE. Influence of pore geometry on the design of microporous materials for methane storage. J Phys Chem 1993;97:494–9. https://doi.org/10.1021/j100104a036.Chen XS, Mcenaney B, Mays TJ, Alcaniz-Monge J, Cazorla-Amoros d., Linares-Solano A. Theoretical and experimental studies of methane adsorption on microporous carbons. Carbon N Y 1997;35:1251–8. https://doi.org/10.1016/S0008-6223(97)00074-2.Garrido J, Linares-Solano A, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of N2 vs. C02 in the Characterization of Activated Carbons. n.d.Rodríguez-Reinoso F, Garrido J, Martin-Martinez JM, Molina-Sabio M, Torregrosa R. The_combined_use_of_different_approaches. Carbon N Y 1989;27:23–32.Martín CF, Plaza MG, Pis JJ, Rubiera F, Pevida C, Centeno TA. On the limits of CO2 capture capacity of carbons. Sep Purif Technol 2010;74:225–9. https://doi.org/10.1016/j.seppur.2010.06.009.Zhang Z, Zhou J, Xing W, Xue Q, Yan Z, Zhuo S, et al. Critical role of small micropores in high CO2 uptake. Physical Chemistry Chemical Physics 2013;15:2523. https://doi.org/10.1039/c2cp44436d.Lee JH, Kwac K, Lee HJ, Lim SY, Jung DS, Jung Y, et al. Optimal Activation of Porous Carbon for High Performance CO 2 Capture. ChemNanoMat 2016;2:528–33. https://doi.org/10.1002/cnma.201600082.Presser V, McDonough J, Yeon S-H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ Sci 2011;4:3059. https://doi.org/10.1039/c1ee01176f.Moreno-Piraján JC, Giraldo-Gutierrez L, Gómez-Granados F. Porous Materials. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-65991-2.Cazorla-Amorós D, Alcañ Iz-Monge J, Linares-Solano A. Characterization of Activated Carbon Fibers by CO 2 Adsorption. 1996.Srinivas G, Krungleviciute V, Guo Z-X, Yildirim T. Exceptional CO 2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ Sci 2014;7:335–42. https://doi.org/10.1039/C3EE42918K.Olivieri A, Escandar G. Practical Three-Way Calibration. Elsevier; 2014. https://doi.org/10.1016/C2012-0-07419-4.Davoodabadi A, Mahmoudi A, Ghasemi H. The potential of hydrogen hydrate as a future hydrogen storage medium. IScience 2021;24:101907. https://doi.org/10.1016/j.isci.2020.101907Ahmadpour A, Do DD. The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon N Y 1997;35:1723–32. https://doi.org/10.1016/S0008-6223(97)00127-9Sharma P, Gaur VK, Sirohi R, Larroche C, Kim SH, Pandey A. Valorization of cashew nut processing residues for industrial applications. Ind Crops Prod 2020;152:112550. https://doi.org/10.1016/j.indcrop.2020.112550.Yuliana M, Huynh L-H, Ho Q-P, Truong C-T, Ju Y-H. Defatted cashew nut shell starch as renewable polymeric material: Isolation and characterization. Carbohydr Polym 2012;87:2576–81. https://doi.org/10.1016/j.carbpol.2011.11.044.Papadopoulou E, Chrissafis K. Thermal study of phenol–formaldehyde resin modified with cashew nut shell liquid. Thermochim Acta 2011;512:105–9. https://doi.org/10.1016/j.tca.2010.09.008.Serafin J, Dziejarski B, Fonseca-Bermúdez ÓJ, Giraldo L, Sierra-Ramírez R, Bonillo MG, et al. Bioorganic activated carbon from cashew nut shells for H2 adsorption and H2/CO2, H2/CH4, CO2/CH4, H2/CO2/CH4 selectivity in industrial applications. Int J Hydrogen Energy 2024;86:662–76. https://doi.org/10.1016/j.ijhydene.2024.08.417.Marsh H, Rodríguez-Reinoso F. Activation Processes (Chemical). Activated Carbon, Elsevier; 2006, p. 322–65. https://doi.org/10.1016/B978-008044463-5/50020-0.Gong J, Liu R, Sun Y, Xu J, Liang M, Sun Y, et al. Preparation of high-performance nitrogen doped porous carbon from cork biomass by K2CO3 activation for adsorption of rhodamine B. Ind Crops Prod 2024;208:117846. https://doi.org/10.1016/j.indcrop.2023.117846.McCusker LB, Liebau F, Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous and Mesoporous Materials 2003;58:3–13. https://doi.org/10.1016/S1387-1811(02)00545-0.Serafin J, Narkiewicz U, Morawski AW, Wróbel RJ, Michalkiewicz B. Highly microporous activated carbons from biomass for CO 2 capture and effective micropores at different conditions. Journal of CO2 Utilization 2017;18:73–9. https://doi.org/10.1016/j.jcou.2017.01.006.Castro MCMD. Preparación de carbones activados con KOH a partir de residuo de petróleo: adsorción de hidrógeno . Universidad de Alicante, 2013.Marsh H, Yan DS, O’Grady TM, Wennerberg A. Formation of active carbons from cokes using potassium hydroxide. Carbon N Y 1984;22:603–11. https://doi.org/10.1016/0008-6223(84)90096-4.Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH. Carbon N Y 2003;41:267–75. https://doi.org/10.1016/S0008-6223(02)00279-8.Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon N Y 2005;43:786–95. https://doi.org/10.1016/j.carbon.2004.11.005.Linares-Solano A, Lillo-Rodenas MA, Marco Lozar JP, Kunowsky M, Romero Anaya AJ. NaOH and KOH for preparing activated carbons used in energy and environmental applications. International Journal of Energy, Environment and Economics 2012;20:59–91.Fu J, Zhang J, Jin C, Wang Z, Wang T, Cheng X, et al. Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process. Bioresour Technol 2020;310:123413. https://doi.org/10.1016/j.biortech.2020.123413.Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, et al. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 2021;763:144204. https://doi.org/10.1016/j.scitotenv.2020.144204.Serafin J, Dziejarski B, Cruz Junior OF, Sreńscek-Nazzal J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon N Y 2023;201:633–47. https://doi.org/10.1016/j.carbon.2022.09.013.Kim J-H, Lee G, Park J-E, Kim S-H. Limitation of K2CO3 as a Chemical Agent for Upgrading Activated Carbon. Processes 2021;9:1000. https://doi.org/10.3390/pr9061000.Chen Y, Zhai S-R, Liu N, Song Y, An Q-D, Song X-W. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation. Bioresour Technol 2013;144:401–9. https://doi.org/10.1016/j.biortech.2013.07.002.Wu F, Zhang H, Liu W, Zhang Q, Li Q, Zheng S, et al. Transformation process of boehmite to γ-Al 2 O 3 induced by high-energy ball milling. CrystEngComm 2024;26:1099–105. https://doi.org/10.1039/D3CE01113E.Conte G, Policicchio A, Idrees M, Desiderio G, Agostino RG. Tuning the ultra-microporosity in hierarchical porous carbons derived from amorphous cellulose towards a sustainable solution for hydrogen storage. Int J Hydrogen Energy 2024;50:763–73. https://doi.org/10.1016/j.ijhydene.2023.08.128.Li J-R, Yu J, Lu W, Sun L-B, Sculley J, Balbuena PB, et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Commun 2013;4:1538. https://doi.org/10.1038/ncomms2552.Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour Technol Rep 2019;7:100266. https://doi.org/10.1016/j.biteb.2019.100266.Zhao Y-L, Zhang X, Li M-Z, Li J-R. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024;53:2056–98. https://doi.org/10.1039/D3CS00285C.Li H, Qi Y, Chen J, Yang M, Qiu H. Development of amine-pillar[5]arene modified porous silica for CO2 adsorption, and CO2/CH4, CO2/N2 separation. Sep Purif Technol 2024;337:126400. https://doi.org/10.1016/j.seppur.2024.126400.Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007;143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052.Gholizadeh F, Izadbakhsh A, Huang J, Zi-Feng Y. Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane. Microporous and Mesoporous Materials 2021;310:110616. https://doi.org/10.1016/j.micromeso.2020.110616.Figueiredo JL, Pereira MFR. The role of surface chemistry in catalysis with carbons. Catal Today 2010;150:2–7. https://doi.org/10.1016/j.cattod.2009.04.010.Dai F, Zhuang Q, Huang G, Deng H, Zhang X. Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega 2023;8:17064–76. https://doi.org/10.1021/acsomega.3c01336.Liu L, Li Y, Fan S. Preparation of KOH and H3PO4 Modified Biochar and Its Application in Methylene Blue Removal from Aqueous Solution. Processes 2019;7:891. https://doi.org/10.3390/pr7120891.Keresztury G, Incze M, Sóti F, Imre L. CO2 inclusion bands in i.r. spectra of KBr pellets. Spectrochim Acta A 1980;36:1007–8. https://doi.org/10.1016/0584-8539(80)80181-4.Soukup K, Hejtmánek V, Cruz GJF, Jandová V, Solcova O. Excess Adsorption Isotherms of Hydrogen on Activated Carbons from Agricultural Waste Materials. Chem Eng Technol 2017;40:900–6. https://doi.org/10.1002/ceat.201600610.Ströbel R, Garche J, Moseley PT, Jörissen L, Wolf G. Hydrogen storage by carbon materials. J Power Sources 2006;159:781–801. https://doi.org/10.1016/j.jpowsour.2006.03.047.Masika E, Mokaya R. Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Progress in Natural Science: Materials International 2013;23:308–16. https://doi.org/10.1016/j.pnsc.2013.04.007.Ramesh T, Rajalakshmi N, Dhathathreyan KS. Activated carbons derived from tamarind seeds for hydrogen storage. J Energy Storage 2015;4:89–95. https://doi.org/10.1016/j.est.2015.09.005.Liu X, Zhang C, Geng Z, Cai M. High-pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon. Microporous and Mesoporous Materials 2014;194:60–5. https://doi.org/10.1016/j.micromeso.2014.04.005.Heo Y-J, Park S-J. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. Journal of Industrial and Engineering Chemistry 2015;31:330–4. https://doi.org/10.1016/j.jiec.2015.07.006.Czarna-Juszkiewicz D, Cader J, Wdowin M. From coal ashes to solid sorbents for hydrogen storage. J Clean Prod 2020;270:122355. https://doi.org/10.1016/j.jclepro.2020.122355.Mehra P, Paul A. Decoding Carbon-Based Materials’ Properties for High CO 2 Capture and Selectivity. ACS Omega 2022;7:34538–46. https://doi.org/10.1021/acsomega.2c04269.Cazorla-Amorós D, Alcañiz-Monge J, Linares-Solano A. Characterization of Activated Carbon Fibers by CO 2 Adsorption. Langmuir 1996;12:2820–4. https://doi.org/10.1021/la960022s.Coromina HM, Walsh DA, Mokaya R. Biomass-derived activated carbon with simultaneously enhanced CO 2 uptake for both pre and post combustion capture applications. J Mater Chem A Mater 2016;4:280–9. https://doi.org/10.1039/C5TA09202G.Srinivas G, Krungleviciute V, Guo Z-X, Yildirim T. Exceptional CO 2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ Sci 2014;7:335–42. https://doi.org/10.1039/C3EE42918K.Garg S, Das P. Microporous carbon from cashew nutshell pyrolytic biochar and its potential application as CO2 adsorbent. Biomass Convers Biorefin 2020;10:1043–61. https://doi.org/10.1007/s13399-019-00506-1.Singh G, Lakhi KS, Ramadass K, Kim S, Stockdale D, Vinu A. A combined strategy of acid-assisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2 capture. Microporous and Mesoporous Materials 2018;271:23–32. https://doi.org/10.1016/j.micromeso.2018.05.035.Zhang C, Song W, Ma Q, Xie L, Zhang X, Guo H. Enhancement of CO 2 Capture on Biomass-Based Carbon from Black Locust by KOH Activation and Ammonia Modification. Energy & Fuels 2016;30:4181–90. https://doi.org/10.1021/acs.energyfuels.5b02764.Travis W, Gadipelli S, Guo Z. Superior CO 2 adsorption from waste coffee ground derived carbons. RSC Adv 2015;5:29558–62. https://doi.org/10.1039/C4RA13026J.Ello AS, de Souza LKC, Trokourey A, Jaroniec M. Coconut shell-based microporous carbons for CO2 capture. Microporous and Mesoporous Materials 2013;180:280–3. https://doi.org/10.1016/j.micromeso.2013.07.008.Sangchoom W, Mokaya R. Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO 2 and Hydrogen Storage. ACS Sustain Chem Eng 2015;3:1658–67. https://doi.org/10.1021/acssuschemeng.5b00351.Li Y, Ruan G, Jalilov AS, Tarkunde YR, Fei H, Tour JM. Biochar as a renewable source for high-performance CO2 sorbent. Carbon N Y 2016;107:344–51. https://doi.org/10.1016/j.carbon.2016.06.010.Rodríguez-Reinoso F, Almansa C, Molina-Sabio M. Contribution to the Evaluation of Density of Methane Adsorbed on Activated Carbon. J Phys Chem B 2005;109:20227–31. https://doi.org/10.1021/jp053840e.García Blanco AA, Vallone AF, Korili SA, Gil A, Sapag K. A comparative study of several microporous materials to store methane by adsorption. Microporous and Mesoporous Materials 2016;224:323–31. https://doi.org/10.1016/j.micromeso.2016.01.002.Lozano-Castelló D, Alcañiz-Monge J, de la Casa-Lillo MA, Cazorla-Amorós D, Linares-Solano A. Advances in the study of methane storage in porous carbonaceous materials. Fuel 2002;81:1777–803. https://doi.org/10.1016/S0016-2361(02)00124-2.Vargas DP, Giraldo L, Moreno-Piraján JC. Carbon dioxide and methane adsorption at high pressure on activated carbon materials. Adsorption 2013;19:1075–82. https://doi.org/10.1007/s10450-013-9532-5.Kemp KC, Baek S Bin, Lee W-G, Meyyappan M, Kim KS. Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology 2015;26:385602. https://doi.org/10.1088/0957-4484/26/38/385602.Azevedo DCS, Araújo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL. Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials 2007;100:361–4. https://doi.org/10.1016/j.micromeso.2006.11.024.Bagheri N, Abedi J. Adsorption of methane on corn cobs based activated carbon. Chemical Engineering Research and Design 2011;89:2038–43. https://doi.org/10.1016/j.cherd.2011.02.002.Oguz Erdogan F. A comparative study on methane adsorption onto various adsorbents including activated carbons, zeolites, MWCNT, and MCM-41. International Journal of Coal Preparation and Utilization 2022;42:2078–98. https://doi.org/10.1080/19392699.2020.1798941.Casco ME, Martínez-Escandell M, Gadea-Ramos E, Kaneko K, Silvestre-Albero J, Rodríguez-Reinoso F. High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position? Chemistry of Materials 2015;27:959–64. https://doi.org/10.1021/cm5042524.Myers AL, Prausnitz JM. Thermodynamics of mixed‐gas adsorption. AIChE Journal 1965;11:121–7. https://doi.org/10.1002/aic.690110125.Ray KG, Olmsted DL, Houndonougbo Y, Laird BB, Asta M. Origins of CH 4 /CO 2 Adsorption Selectivity in Zeolitic Imidazolate Frameworks: A van der Waals Density Functional Study. The Journal of Physical Chemistry C 2013;117:14642–51. https://doi.org/10.1021/jp404251m.Rios RB, Stragliotto FM, Peixoto HR, Torres AEB, Bastos-Neto M, Azevedo DCS, et al. Studies on the adsorption behavior of CO2-CH4 mixtures using activated carbon. Brazilian Journal of Chemical Engineering 2013;30:939–51. https://doi.org/10.1590/S0104-66322013000400024.Abdeljaoued A, Querejeta N, Durán I, Álvarez-Gutiérrez N, Pevida C, Chahbani M. Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO2/CH4 Separation. Energies (Basel) 2018;11:1748. https://doi.org/10.3390/en11071748.Khalili S, Khoshandam B, Jahanshahi M. A comparative study of CO2 and CH4 adsorption using activated carbon prepared from pine cone by phosphoric acid activation. Korean Journal of Chemical Engineering 2016;33:2943–52. https://doi.org/10.1007/s11814-016-0138-y.Abdul Kareem FA, Shariff AM, Ullah S, Mellon N, Keong LK. Adsorption of pure and predicted binary (CO2:CH4) mixtures on 13X-Zeolite: Equilibrium and kinetic properties at offshore conditions. Microporous and Mesoporous Materials 2018;267:221–34. https://doi.org/10.1016/j.micromeso.2018.04.007.Mofarahi M, Gholipour F. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous and Mesoporous Materials 2014;200:1–10. https://doi.org/10.1016/j.micromeso.2014.08.022.Arefi Pour A, Sharifnia S, Neishabori Salehi R, Ghodrati M. Adsorption separation of CO2 /CH 4 on the synthesized NaA zeolite shaped with montmorillonite clay in natural gas purification process. J Nat Gas Sci Eng 2016;36:630–43. https://doi.org/10.1016/j.jngse.2016.11.006.Parinyakit S, Worathanakul P. Static and Dynamic Simulation of Single and Binary Component Adsorption of CO2 and CH4 on Fixed Bed Using Molecular Sieve of Zeolite 4A. Processes 2021;9:1250. https://doi.org/10.3390/pr9071250.Shen J, Wang X, Chen Y. Adsorbents for adsorption separation of CO 2 and CH 4: A literature review. Can J Chem Eng 2023;101:7115–33. https://doi.org/10.1002/cjce.24942.Rallapalli P, Prasanth KP, Patil D, Somani RS, Jasra R V., Bajaj HC. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)]. Journal of Porous Materials 2011;18:205–10. https://doi.org/10.1007/s10934-010-9371-7.Ullah S, Bustam MA, Assiri MA, Al-Sehemi AG, Gonfa G, Mukhtar A, et al. Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study. Microporous and Mesoporous Materials 2020;294:109844. https://doi.org/10.1016/j.micromeso.2019.109844.Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40:1361–403. https://doi.org/10.1021/ja02242a004.Tóth J. On thermodynamical inconsistency of isotherm equations: Gibbs’s thermodynamics. J Colloid Interface Sci 2003;262:25–31. https://doi.org/10.1016/S0021-9797(03)00236-4.Sips R. On the Structure of a Catalyst Surface. J Chem Phys 1948;16:490–5. https://doi.org/10.1063/1.1746922.Ayawei N, Ebelegi AN, Wankasi D. Modelling and Interpretation of Adsorption Isotherms. J Chem 2017;2017:1–11. https://doi.org/10.1155/2017/3039817.So SH, Sung SJ, Yang SJ, Park CR. Where to go for the Development of High-Performance H2 Storage Materials at Ambient Conditions? Electronic Materials Letters 2023;19:1–18. https://doi.org/10.1007/s13391-022-00368-2.Ding F, Yakobson BI. Challenges in hydrogen adsorptions: from physisorption to chemisorption. Front Phys (Beijing) 2011;6:142–50. https://doi.org/10.1007/s11467-011-0171-6.Lim KL, Kazemian H, Yaakob Z, Daud WRW. Solid‐state Materials and Methods for Hydrogen Storage: A Critical Review. Chem Eng Technol 2010;33:213–26. https://doi.org/10.1002/ceat.200900376.Jena P. Materials for Hydrogen Storage: Past, Present, and Future. J Phys Chem Lett 2011;2:206–11. https://doi.org/10.1021/jz1015372.Sakintuna B, Lamaridarkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review. Int J Hydrogen Energy 2007;32:1121–40. https://doi.org/10.1016/j.ijhydene.2006.11.022.Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Complex Hydrides for Hydrogen Storage. Chem Rev 2007;107:4111–32. https://doi.org/10.1021/cr0501846.Bourane A, Elanany M, Pham T V., Katikaneni SP. An overview of organic liquid phase hydrogen carriers. Int J Hydrogen Energy 2016;41:23075–91. https://doi.org/10.1016/j.ijhydene.2016.07.167.Ramirez-Vidal P, Sdanghi G, Celzard A, Fierro V. High hydrogen release by cryo-adsorption and compression on porous materials. Int J Hydrogen Energy 2022;47:8892–915. https://doi.org/10.1016/j.ijhydene.2021.12.235.Usman MR. Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews 2022;167:112743. https://doi.org/10.1016/j.rser.2022.112743.Rodríguez-Reinoso F, Silvestre-Albero J. Methane Storage on Nanoporous Carbons, 2019, p. 209–26. https://doi.org/10.1007/978-981-13-3504-4_8.Poirier E. Hydrogen adsorption in carbon nanostructures. Int J Hydrogen Energy 2001;26:831–5. https://doi.org/10.1016/S0360-3199(01)00014-3.Jagiello J, Kenvin J, Celzard A, Fierro V. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon N Y 2019;144:206–15. https://doi.org/10.1016/j.carbon.2018.12.028.Jagiello J, Ania C, Parra JB, Cook C. Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon N Y 2015;91:330–7. https://doi.org/10.1016/j.carbon.2015.05.004.Wang TC, Bury W, Gómez-Gualdrón DA, Vermeulen NA, Mondloch JE, Deria P, et al. Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. J Am Chem Soc 2015;137:3585–91. https://doi.org/10.1021/ja512973b.Thommes M, Kaneko K, Neimark A V., Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015;87:1051–69. https://doi.org/10.1515/pac-2014-1117.Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon N Y 2007;45:293–303. https://doi.org/10.1016/j.carbon.2006.09.022.201022213Publicationhttps://scholar.google.es/citations?user=2vO8IrIAAAAJvirtual::22700-10000-0002-2074-7772virtual::22700-10000-0001-9880-4696virtual::22701-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001335625virtual::22700-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000095885virtual::22701-163cc4434-a603-4f55-ba7c-3ed214b9fd0evirtual::22700-191b6cfcd-3340-433b-9cc0-699ec733f19bvirtual::22701-163cc4434-a603-4f55-ba7c-3ed214b9fd0evirtual::22700-191b6cfcd-3340-433b-9cc0-699ec733f19bvirtual::22701-1ORIGINALStudy of monocomponent gas adsorption capacity of activated carbons.pdfStudy of monocomponent gas adsorption capacity of activated carbons.pdfapplication/pdf4070773https://repositorio.uniandes.edu.co/bitstreams/afbc7549-74f6-46b8-b643-e7158778857f/download2dbb124bb555457074af0cbeb6ae1cf7MD52Autorización 2.pdfAutorización 2.pdfHIDEapplication/pdf505556https://repositorio.uniandes.edu.co/bitstreams/17f2cd77-cb8a-46f3-92e4-fb42ca3018be/downloada72199e11fe3893f4ffe2bd3961f756eMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/7cf5f20a-316c-4490-8442-8bfbf74a1fca/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/8453b50e-cdf2-4d96-bb09-6c9b9c1b799e/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTStudy of monocomponent gas adsorption capacity of activated carbons.pdf.txtStudy of monocomponent gas adsorption capacity of activated carbons.pdf.txtExtracted texttext/plain111590https://repositorio.uniandes.edu.co/bitstreams/de98a095-dae5-4b27-aa60-d21ea6d6a47a/download280d00c160f66742d0dbbdddee83aa22MD56Autorización 2.pdf.txtAutorización 2.pdf.txtExtracted texttext/plain1837https://repositorio.uniandes.edu.co/bitstreams/917e4685-919e-4b3c-b310-fddea169954f/download7b050fc15efa5a5237928c4f12ad519aMD58THUMBNAILStudy of monocomponent gas adsorption capacity of activated carbons.pdf.jpgStudy of monocomponent gas adsorption capacity of activated carbons.pdf.jpgGenerated Thumbnailimage/jpeg10248https://repositorio.uniandes.edu.co/bitstreams/523f295e-d595-4359-9951-62a3d56c06c1/download2e1383e31b75d30fbece06cdb7a40272MD57Autorización 2.pdf.jpgAutorización 2.pdf.jpgGenerated Thumbnailimage/jpeg11824https://repositorio.uniandes.edu.co/bitstreams/94bcf9dc-4ac7-4af4-9e58-31485c86008e/downloadbe3ccfed562dcbac2f870f80a1ebf425MD591992/75733oai:repositorio.uniandes.edu.co:1992/757332025-03-05 10:11:35.659http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K |