Pipeline two-phase flow pressure drop algorithm for multiple inclinations
A Generalized Additive Model (GAM) is used to predict the pressure drop in two-phase flow at different inclinations and angles. The nonparametric nature of the method lets it have a high prediction capacity, but also has a great degree of interpretability due to the possibility to visualize the marg...
- Autores:
-
Cepeda Vega, Andrés Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/45118
- Acceso en línea:
- http://hdl.handle.net/1992/45118
- Palabra clave:
- Flujo bifásico
Modelos log-lineales
Tuberías
Fluidización
Ingeniería
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIANDES2_a4624215155e3bddd9985e6b90686b01 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/45118 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.es_CO.fl_str_mv |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
title |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
spellingShingle |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations Flujo bifásico Modelos log-lineales Tuberías Fluidización Ingeniería |
title_short |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
title_full |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
title_fullStr |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
title_full_unstemmed |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
title_sort |
Pipeline two-phase flow pressure drop algorithm for multiple inclinations |
dc.creator.fl_str_mv |
Cepeda Vega, Andrés Felipe |
dc.contributor.advisor.none.fl_str_mv |
Ríos Ratkovich, Nicolás |
dc.contributor.author.none.fl_str_mv |
Cepeda Vega, Andrés Felipe |
dc.contributor.jury.none.fl_str_mv |
Gómez Ramírez, Jorge Mario Valencia Arboleda, Carlos Felipe Amaya Gómez, Rafael |
dc.subject.armarc.es_CO.fl_str_mv |
Flujo bifásico Modelos log-lineales Tuberías Fluidización |
topic |
Flujo bifásico Modelos log-lineales Tuberías Fluidización Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
A Generalized Additive Model (GAM) is used to predict the pressure drop in two-phase flow at different inclinations and angles. The nonparametric nature of the method lets it have a high prediction capacity, but also has a great degree of interpretability due to the possibility to visualize the marginal effect of each predictor, unlike other machine learning methods. Also, the use of dimensionless numbers as predictors has a generalizability appeal. The GAM shows an outstanding capacity to predict the pressure gradient, having 99.1% adjusted R^2 and a mean relative error of 12.93%. This is even while ignoring bubbly flow in the training sample. A regularization double penalty approach was used, but most of the predictors are necessary to maintain the high predictive ability of the GAM. The model performs adequately on new data points not used on the training of the model randomly sampling the database. The splines and p-values of each term are shown, which help interpret the importance of the variables and their relationships with the pressure gradient. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-03T15:14:14Z |
dc.date.available.none.fl_str_mv |
2020-09-03T15:14:14Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/45118 |
dc.identifier.pdf.none.fl_str_mv |
u830433.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/45118 |
identifier_str_mv |
u830433.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
21 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería Química Ingeniería Industrial |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Química Departamento de Ingeniería Industrial |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/ef127af4-e791-440e-baa2-bd329a8a42d0/download https://repositorio.uniandes.edu.co/bitstreams/1b8b6c55-2770-4386-9a0d-7897249b8e27/download https://repositorio.uniandes.edu.co/bitstreams/586822a2-e1f3-4a25-8ce7-15b98c9f9737/download |
bitstream.checksum.fl_str_mv |
05a8f8173d18d13dc3d332a47a5e8dca 96f152c886ef6b48961ce73d0cefe3e7 b0b089ddf4e71f968aed7896cce802c0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133828311908352 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ríos Ratkovich, Nicolásvirtual::2247-1Cepeda Vega, Andrés Felipe43770d88-9b76-43ff-adfa-1646e5463433600Gómez Ramírez, Jorge MarioValencia Arboleda, Carlos FelipeAmaya Gómez, Rafael2020-09-03T15:14:14Z2020-09-03T15:14:14Z2019http://hdl.handle.net/1992/45118u830433.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/A Generalized Additive Model (GAM) is used to predict the pressure drop in two-phase flow at different inclinations and angles. The nonparametric nature of the method lets it have a high prediction capacity, but also has a great degree of interpretability due to the possibility to visualize the marginal effect of each predictor, unlike other machine learning methods. Also, the use of dimensionless numbers as predictors has a generalizability appeal. The GAM shows an outstanding capacity to predict the pressure gradient, having 99.1% adjusted R^2 and a mean relative error of 12.93%. This is even while ignoring bubbly flow in the training sample. A regularization double penalty approach was used, but most of the predictors are necessary to maintain the high predictive ability of the GAM. The model performs adequately on new data points not used on the training of the model randomly sampling the database. The splines and p-values of each term are shown, which help interpret the importance of the variables and their relationships with the pressure gradient.Un modelo aditivo generalizado (GAM) se usa para predecir el gradiente de presión en flujo bifásico para diferentes inclinaciones y ángulos. El método es no paramétrico lo que le permite tener una alta capacidad de predicción, pero también un buen grado de interpretabilidad debido a la posibilidad de visualizar los efectos marginales de cada predictor. A diferencia de otros métodos de machine learning. También, el uso de números adimensionales como predictores le da el atractivo de ser generalizable. El GAM muestra una excelente capacidad para predecir el gradiente de presión, teniendo un R^2 ajustado de 99.1% y un error relativo promedio de 12.93%. Esto aún cuando el patrón de flujo burbuja se ignora en la muestra de entrenamiento. Una regularización con doble penalización fue usada, pero la mayoría de predictores son necesarios para mantener la alta capacidad predictiva del GAM. El modelo funciona correctamente en nuevos puntos de datos no usados en el entrenamiento del modelo. Los splines y valores-p de cada termino adimensional son mostrados, que permiten interpretar la importancia de las variables y sus relaciones con el gradiente de presión.Ingeniero QuímicoIngeniero IndustrialPregrado21 hojasapplication/pdfengUniversidad de los AndesIngeniería QuímicaIngeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería QuímicaDepartamento de Ingeniería Industrialinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaPipeline two-phase flow pressure drop algorithm for multiple inclinationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPFlujo bifásicoModelos log-linealesTuberíasFluidizaciónIngenieríaPublicationhttps://scholar.google.es/citations?user=7ISqcHUAAAAJvirtual::2247-10000-0003-2094-3420virtual::2247-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001509207virtual::2247-1b11b7f3b-5856-46a2-8e45-86d408c8f25fvirtual::2247-1b11b7f3b-5856-46a2-8e45-86d408c8f25fvirtual::2247-1THUMBNAILu830433.pdf.jpgu830433.pdf.jpgIM Thumbnailimage/jpeg19159https://repositorio.uniandes.edu.co/bitstreams/ef127af4-e791-440e-baa2-bd329a8a42d0/download05a8f8173d18d13dc3d332a47a5e8dcaMD55ORIGINALu830433.pdfapplication/pdf1497030https://repositorio.uniandes.edu.co/bitstreams/1b8b6c55-2770-4386-9a0d-7897249b8e27/download96f152c886ef6b48961ce73d0cefe3e7MD51TEXTu830433.pdf.txtu830433.pdf.txtExtracted texttext/plain57806https://repositorio.uniandes.edu.co/bitstreams/586822a2-e1f3-4a25-8ce7-15b98c9f9737/downloadb0b089ddf4e71f968aed7896cce802c0MD541992/45118oai:repositorio.uniandes.edu.co:1992/451182024-03-13 12:09:31.971http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |