Pipeline two-phase flow pressure drop algorithm for multiple inclinations

A Generalized Additive Model (GAM) is used to predict the pressure drop in two-phase flow at different inclinations and angles. The nonparametric nature of the method lets it have a high prediction capacity, but also has a great degree of interpretability due to the possibility to visualize the marg...

Full description

Autores:
Cepeda Vega, Andrés Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/45118
Acceso en línea:
http://hdl.handle.net/1992/45118
Palabra clave:
Flujo bifásico
Modelos log-lineales
Tuberías
Fluidización
Ingeniería
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIANDES2_a4624215155e3bddd9985e6b90686b01
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/45118
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Pipeline two-phase flow pressure drop algorithm for multiple inclinations
title Pipeline two-phase flow pressure drop algorithm for multiple inclinations
spellingShingle Pipeline two-phase flow pressure drop algorithm for multiple inclinations
Flujo bifásico
Modelos log-lineales
Tuberías
Fluidización
Ingeniería
title_short Pipeline two-phase flow pressure drop algorithm for multiple inclinations
title_full Pipeline two-phase flow pressure drop algorithm for multiple inclinations
title_fullStr Pipeline two-phase flow pressure drop algorithm for multiple inclinations
title_full_unstemmed Pipeline two-phase flow pressure drop algorithm for multiple inclinations
title_sort Pipeline two-phase flow pressure drop algorithm for multiple inclinations
dc.creator.fl_str_mv Cepeda Vega, Andrés Felipe
dc.contributor.advisor.none.fl_str_mv Ríos Ratkovich, Nicolás
dc.contributor.author.none.fl_str_mv Cepeda Vega, Andrés Felipe
dc.contributor.jury.none.fl_str_mv Gómez Ramírez, Jorge Mario
Valencia Arboleda, Carlos Felipe
Amaya Gómez, Rafael
dc.subject.armarc.es_CO.fl_str_mv Flujo bifásico
Modelos log-lineales
Tuberías
Fluidización
topic Flujo bifásico
Modelos log-lineales
Tuberías
Fluidización
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description A Generalized Additive Model (GAM) is used to predict the pressure drop in two-phase flow at different inclinations and angles. The nonparametric nature of the method lets it have a high prediction capacity, but also has a great degree of interpretability due to the possibility to visualize the marginal effect of each predictor, unlike other machine learning methods. Also, the use of dimensionless numbers as predictors has a generalizability appeal. The GAM shows an outstanding capacity to predict the pressure gradient, having 99.1% adjusted R^2 and a mean relative error of 12.93%. This is even while ignoring bubbly flow in the training sample. A regularization double penalty approach was used, but most of the predictors are necessary to maintain the high predictive ability of the GAM. The model performs adequately on new data points not used on the training of the model randomly sampling the database. The splines and p-values of each term are shown, which help interpret the importance of the variables and their relationships with the pressure gradient.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-09-03T15:14:14Z
dc.date.available.none.fl_str_mv 2020-09-03T15:14:14Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/45118
dc.identifier.pdf.none.fl_str_mv u830433.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/45118
identifier_str_mv u830433.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 21 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería Química
Ingeniería Industrial
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Química
Departamento de Ingeniería Industrial
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/ef127af4-e791-440e-baa2-bd329a8a42d0/download
https://repositorio.uniandes.edu.co/bitstreams/1b8b6c55-2770-4386-9a0d-7897249b8e27/download
https://repositorio.uniandes.edu.co/bitstreams/586822a2-e1f3-4a25-8ce7-15b98c9f9737/download
bitstream.checksum.fl_str_mv 05a8f8173d18d13dc3d332a47a5e8dca
96f152c886ef6b48961ce73d0cefe3e7
b0b089ddf4e71f968aed7896cce802c0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133828311908352
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ríos Ratkovich, Nicolásvirtual::2247-1Cepeda Vega, Andrés Felipe43770d88-9b76-43ff-adfa-1646e5463433600Gómez Ramírez, Jorge MarioValencia Arboleda, Carlos FelipeAmaya Gómez, Rafael2020-09-03T15:14:14Z2020-09-03T15:14:14Z2019http://hdl.handle.net/1992/45118u830433.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/A Generalized Additive Model (GAM) is used to predict the pressure drop in two-phase flow at different inclinations and angles. The nonparametric nature of the method lets it have a high prediction capacity, but also has a great degree of interpretability due to the possibility to visualize the marginal effect of each predictor, unlike other machine learning methods. Also, the use of dimensionless numbers as predictors has a generalizability appeal. The GAM shows an outstanding capacity to predict the pressure gradient, having 99.1% adjusted R^2 and a mean relative error of 12.93%. This is even while ignoring bubbly flow in the training sample. A regularization double penalty approach was used, but most of the predictors are necessary to maintain the high predictive ability of the GAM. The model performs adequately on new data points not used on the training of the model randomly sampling the database. The splines and p-values of each term are shown, which help interpret the importance of the variables and their relationships with the pressure gradient.Un modelo aditivo generalizado (GAM) se usa para predecir el gradiente de presión en flujo bifásico para diferentes inclinaciones y ángulos. El método es no paramétrico lo que le permite tener una alta capacidad de predicción, pero también un buen grado de interpretabilidad debido a la posibilidad de visualizar los efectos marginales de cada predictor. A diferencia de otros métodos de machine learning. También, el uso de números adimensionales como predictores le da el atractivo de ser generalizable. El GAM muestra una excelente capacidad para predecir el gradiente de presión, teniendo un R^2 ajustado de 99.1% y un error relativo promedio de 12.93%. Esto aún cuando el patrón de flujo burbuja se ignora en la muestra de entrenamiento. Una regularización con doble penalización fue usada, pero la mayoría de predictores son necesarios para mantener la alta capacidad predictiva del GAM. El modelo funciona correctamente en nuevos puntos de datos no usados en el entrenamiento del modelo. Los splines y valores-p de cada termino adimensional son mostrados, que permiten interpretar la importancia de las variables y sus relaciones con el gradiente de presión.Ingeniero QuímicoIngeniero IndustrialPregrado21 hojasapplication/pdfengUniversidad de los AndesIngeniería QuímicaIngeniería IndustrialFacultad de IngenieríaDepartamento de Ingeniería QuímicaDepartamento de Ingeniería Industrialinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaPipeline two-phase flow pressure drop algorithm for multiple inclinationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPFlujo bifásicoModelos log-linealesTuberíasFluidizaciónIngenieríaPublicationhttps://scholar.google.es/citations?user=7ISqcHUAAAAJvirtual::2247-10000-0003-2094-3420virtual::2247-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001509207virtual::2247-1b11b7f3b-5856-46a2-8e45-86d408c8f25fvirtual::2247-1b11b7f3b-5856-46a2-8e45-86d408c8f25fvirtual::2247-1THUMBNAILu830433.pdf.jpgu830433.pdf.jpgIM Thumbnailimage/jpeg19159https://repositorio.uniandes.edu.co/bitstreams/ef127af4-e791-440e-baa2-bd329a8a42d0/download05a8f8173d18d13dc3d332a47a5e8dcaMD55ORIGINALu830433.pdfapplication/pdf1497030https://repositorio.uniandes.edu.co/bitstreams/1b8b6c55-2770-4386-9a0d-7897249b8e27/download96f152c886ef6b48961ce73d0cefe3e7MD51TEXTu830433.pdf.txtu830433.pdf.txtExtracted texttext/plain57806https://repositorio.uniandes.edu.co/bitstreams/586822a2-e1f3-4a25-8ce7-15b98c9f9737/downloadb0b089ddf4e71f968aed7896cce802c0MD541992/45118oai:repositorio.uniandes.edu.co:1992/451182024-03-13 12:09:31.971http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co