Quantum boltzmann machine :emergence & applications

Lately, there has been an extensive state-of-the-art research in Machine Learning methods, due to their important features such as universality in approximations and dimensional reduction. In this way, the present work aims at exploiting these properties of Machine Learning on physical many-body pro...

Full description

Autores:
Aldana Páez, Miguel Francisco
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/40288
Acceso en línea:
http://hdl.handle.net/1992/40288
Palabra clave:
Aprendizaje automático (Inteligencia artificial)
Teoría cuántica
Física
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_a36023930ecf72452f44d25f01b79ae7
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/40288
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.es_CO.fl_str_mv Quantum boltzmann machine :emergence & applications
title Quantum boltzmann machine :emergence & applications
spellingShingle Quantum boltzmann machine :emergence & applications
Aprendizaje automático (Inteligencia artificial)
Teoría cuántica
Física
title_short Quantum boltzmann machine :emergence & applications
title_full Quantum boltzmann machine :emergence & applications
title_fullStr Quantum boltzmann machine :emergence & applications
title_full_unstemmed Quantum boltzmann machine :emergence & applications
title_sort Quantum boltzmann machine :emergence & applications
dc.creator.fl_str_mv Aldana Páez, Miguel Francisco
dc.contributor.advisor.none.fl_str_mv Quiroga Puello, Luis
dc.contributor.author.none.fl_str_mv Aldana Páez, Miguel Francisco
dc.subject.keyword.es_CO.fl_str_mv Aprendizaje automático (Inteligencia artificial)
Teoría cuántica
topic Aprendizaje automático (Inteligencia artificial)
Teoría cuántica
Física
dc.subject.themes.none.fl_str_mv Física
description Lately, there has been an extensive state-of-the-art research in Machine Learning methods, due to their important features such as universality in approximations and dimensional reduction. In this way, the present work aims at exploiting these properties of Machine Learning on physical many-body problems, in which a restricted Boltzmann Machine (RBM) is trained with quantum Monte Carlo data to best represent the ground state of an N spin system under the transverse field Ising model Hamiltonian in one dimension. During the path coursed along the development of this project, we first review classical well-implemented methods such as the single-layer perceptron, multi-layer perceptron for the XOR problem with back-propagation algorithm, discrete Hopfield network for pattern reconstruction, continuous Hopfield network with Simulated Annealing for solving the traveling salesman problem with 10 cities and the Boltzmann machine for feature extraction. Then, we review a few aspects of what is called a Quantum Boltzmann Machine and the basics of the transverse field Ising model. Finally, we train an RBM consisting of N visible neurons, hidden density neurons alpha=M/N=2 and 1-step contrastive divergence (CD_1), by minimizing the Kullbach-Liebler divergence of the RBM and the training data set coming from the algorithmic variant of quantum Monte Carlo, known as discrete Path-Integral Monte Carlo. For this last step, we use Trotter-Suzuki decomposition with m Trotter slices and the Wolff-s cluster algorithm. After training the RBM, we calculate magnetic observables based on the RBM-s wave-function such as longitudinal and transverse magnetization, for different values of transverse field and we do an estimation of the critical field at which the transverse Ising model system suffers a quantum phase transition from ferromagnet to paramagnet
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-10T17:02:56Z
dc.date.available.none.fl_str_mv 2020-06-10T17:02:56Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/40288
dc.identifier.pdf.none.fl_str_mv u808116.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/40288
identifier_str_mv u808116.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 108 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Física
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Física
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/df1fb934-cbe4-4d55-83a9-d9393f96fe66/download
https://repositorio.uniandes.edu.co/bitstreams/10f85ec8-5b7c-4d41-ae99-8fedcf1d121f/download
https://repositorio.uniandes.edu.co/bitstreams/258a5ca6-7883-4b96-867c-53626c3a9c36/download
bitstream.checksum.fl_str_mv 687b1c2545df9b447238918b575db783
27db25f5b8de88223ec9c1ce21eaf036
764becf510add917c5c3e55c7dacf94e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134033480482816
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quiroga Puello, Luisvirtual::14703-1Aldana Páez, Miguel Francisco824a2649-3f63-4c0c-bae3-42ad85a442885002020-06-10T17:02:56Z2020-06-10T17:02:56Z2018http://hdl.handle.net/1992/40288u808116.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Lately, there has been an extensive state-of-the-art research in Machine Learning methods, due to their important features such as universality in approximations and dimensional reduction. In this way, the present work aims at exploiting these properties of Machine Learning on physical many-body problems, in which a restricted Boltzmann Machine (RBM) is trained with quantum Monte Carlo data to best represent the ground state of an N spin system under the transverse field Ising model Hamiltonian in one dimension. During the path coursed along the development of this project, we first review classical well-implemented methods such as the single-layer perceptron, multi-layer perceptron for the XOR problem with back-propagation algorithm, discrete Hopfield network for pattern reconstruction, continuous Hopfield network with Simulated Annealing for solving the traveling salesman problem with 10 cities and the Boltzmann machine for feature extraction. Then, we review a few aspects of what is called a Quantum Boltzmann Machine and the basics of the transverse field Ising model. Finally, we train an RBM consisting of N visible neurons, hidden density neurons alpha=M/N=2 and 1-step contrastive divergence (CD_1), by minimizing the Kullbach-Liebler divergence of the RBM and the training data set coming from the algorithmic variant of quantum Monte Carlo, known as discrete Path-Integral Monte Carlo. For this last step, we use Trotter-Suzuki decomposition with m Trotter slices and the Wolff-s cluster algorithm. After training the RBM, we calculate magnetic observables based on the RBM-s wave-function such as longitudinal and transverse magnetization, for different values of transverse field and we do an estimation of the critical field at which the transverse Ising model system suffers a quantum phase transition from ferromagnet to paramagnetÚltimamente, se ha realizado extensa investigación en el área de Machine Learning, dadas sus características importantes tales como universalidad en las aproximaciones y reducción dimensional. En esta dirección, el presente trabajo de grado está enfocado en aprovechar estas propiedades del Machine Learning en problemas físicos de muchos cuerpos, en donde una máquina de Boltzmann restringida (RBM) es entrenada con datos producidos por quantum Monte Carlo, para obtener la mejor representación del estado base de un sistema de N espínes bajo el Hamiltoniano del modelo de Ising transversal en una dimensión. A lo largo del recorrido del desarrollo de este proyecto, revisamos métodos clásicos ya conocidos tales como el perceptrón de una capa, perceptrón multicapas para el problema XOR con el algoritmo back-propagation, red discreta de Hopfield para reconstrucción de patrones, red de Hopfield continua con Recocido Simulado para resolver el problema del hombre de negocios viajero con 10 ciudades y finalmente, la máquina de Boltzmann para estudiar extracción de carácteres para problemas generativos. Luego, revisamos algunos aspectos de lo que se llama máquina de Boltzmann cuántica y conceptos básicos del modelo de Ising transversal en una dimensión. Finalmente, entrenamos una RBM compuesta de N neuronas visibles, densidad de neuronas escondidas alpha=M/N=2 y divergencia contrastiva de 1 paso (CD_1), minimizando la divergencia de Kullbach-Liebler de la distribución de RBM con respecto a la distribución de los datos de entrenamiento arrojados por la variante algorítmica de quantum Monte Carlo, conocida como Path-Integral Monte Carlo. Para este último paso, usamos la descomposición de Trotter-Suzuki con m capas de Trotter junto con el algoritmo de Wolff-s cluster. Luego de haber entrenado la RBM, calculamos observables magnéticas basadas en la función de onda de la RBM, tales como magnetización longitudinal y transversal, para distintos valores de campo magnético transversalFísicoPregrado108 hojasapplication/pdfengUniandesFísicaFacultad de CienciasDepartamento de Físicainstname:Universidad de los Andesreponame:Repositorio Institucional SénecaQuantum boltzmann machine :emergence & applicationsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPAprendizaje automático (Inteligencia artificial)Teoría cuánticaFísicaPublication473b402a-8853-4e07-97ac-ffb17de82e35virtual::14703-1473b402a-8853-4e07-97ac-ffb17de82e35virtual::14703-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000077194virtual::14703-1THUMBNAILu808116.pdf.jpgu808116.pdf.jpgIM Thumbnailimage/jpeg2503https://repositorio.uniandes.edu.co/bitstreams/df1fb934-cbe4-4d55-83a9-d9393f96fe66/download687b1c2545df9b447238918b575db783MD55ORIGINALu808116.pdfapplication/pdf3180422https://repositorio.uniandes.edu.co/bitstreams/10f85ec8-5b7c-4d41-ae99-8fedcf1d121f/download27db25f5b8de88223ec9c1ce21eaf036MD51TEXTu808116.pdf.txtu808116.pdf.txtExtracted texttext/plain133715https://repositorio.uniandes.edu.co/bitstreams/258a5ca6-7883-4b96-867c-53626c3a9c36/download764becf510add917c5c3e55c7dacf94eMD541992/40288oai:repositorio.uniandes.edu.co:1992/402882024-03-13 15:16:13.211http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co