Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático.
La amazonia es una zona megadiversa de gran importancia en la biología evolutiva, esta alberga más de 500 especies de anfibios. Para estimar los patrones de biodiversidad se pueden utilizar índices de biodiversidad, los cuales pueden estar relacionados con las diferencias ambientales. En este anális...
- Autores:
-
Doqueresana Ortega, Yuber Steven
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/57703
- Acceso en línea:
- http://hdl.handle.net/1992/57703
- Palabra clave:
- Aprendizaje automatizado
Amazonía
Biodiversidad
Filogeografía
Anfibios
Diversidad biológica
Genética de anfibios
Biología
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_9ef97891eb6e0e48b88091eb43f14173 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/57703 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
title |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
spellingShingle |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. Aprendizaje automatizado Amazonía Biodiversidad Filogeografía Anfibios Diversidad biológica Genética de anfibios Biología |
title_short |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
title_full |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
title_fullStr |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
title_full_unstemmed |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
title_sort |
Predictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático. |
dc.creator.fl_str_mv |
Doqueresana Ortega, Yuber Steven |
dc.contributor.advisor.none.fl_str_mv |
Paz Velez, Andrea Crawford, Andrew Jackson |
dc.contributor.author.none.fl_str_mv |
Doqueresana Ortega, Yuber Steven |
dc.contributor.researchgroup.es_CO.fl_str_mv |
BIOMICS |
dc.subject.keyword.none.fl_str_mv |
Aprendizaje automatizado Amazonía Biodiversidad Filogeografía |
topic |
Aprendizaje automatizado Amazonía Biodiversidad Filogeografía Anfibios Diversidad biológica Genética de anfibios Biología |
dc.subject.armarc.none.fl_str_mv |
Anfibios Diversidad biológica Genética de anfibios |
dc.subject.themes.es_CO.fl_str_mv |
Biología |
description |
La amazonia es una zona megadiversa de gran importancia en la biología evolutiva, esta alberga más de 500 especies de anfibios. Para estimar los patrones de biodiversidad se pueden utilizar índices de biodiversidad, los cuales pueden estar relacionados con las diferencias ambientales. En este análisis se estimó como la influencia de la heterogeneidad del ambiente afecta la diversidad de dos familias de anuros, Centrolenidae y Aromobatidae, usando 33 diferentes variables ambientales como predictores: topografía, ríos, propiedades de suelos, el clima actual y pasado. Se realizó un modelo de ensamblaje de aprendizaje automatizado que incluye 4 algoritmos supervisados, que miden la importancia de las variables como predictores de los índices de riqueza de especies y diversidad filogenética. Las variables ambientales predijeron el 23% de la riqueza de especies para centrolenidos y un 16% de la diversidad filogenética en los aromobatidos. Cuando se unieron ambas familias por índice de biodiversidad el poder predictivo del modelo fue del 15% del conjunto de datos para ambos índices. La isotermalidad fue la variable con mayor importancia dentro de los modelos, la evapotranspiración y la cobertura vegetal también tuvieron un rol importante. Se pretende incluir más grupos taxonómicos como familias para mejorar el poder predictivo del modelo. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-06T15:54:07Z |
dc.date.available.none.fl_str_mv |
2022-06-06T15:54:07Z |
dc.date.issued.none.fl_str_mv |
2022-06-07 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/57703 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/57703 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.relation.references.es_CO.fl_str_mv |
Aleixo, A. (2004). Historical diversification of a terra-firme forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of amazonian diversification. Evolution, 58(6), 1303-1317. https://doi.org/10.1111/J.0014-3820.2004.TB01709.X Amatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). Data Descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5. https://doi.org/10.1038/SDATA.2018.40 AmphibiaWeb. (2021). AmphibiaWeb. University of California. https://amphibiaweb.org/index.html Antonelli, A., Quijada-Mascareñas, A., Crawford, A. J., Bates, J. M., Velazco, P. M., & Wüster, W. (2010). Molecular Studies and Phylogeography of Amazonian Tetrapods and their Relation to Geological and Climatic Models. In Amazonia, Landscape and Species Evolution: A Look into the Past. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444306408.CH24 Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics TAXON, 60(2), 403-414. https://doi.org/10.1002/TAX.602010 Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039. https://doi.org/10.1073/PNAS.1713819115 Barratt, C. D., Bwong, B. A., Onstein, R. E., Rosauer, D. F., Menegon, M., Doggart, N., Nagel, P., Kissling, W. D., & Loader, S. P. (2017). Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa. Diversity and Distributions, 23(8), 875-887. https://doi.org/10.1111/DDI.12582 Bayat, M., Burkhart, H., Namiranian, M., Hamidi, S. K., Heidari, S., & Hassani, M. (2021). Assessing Biotic and Abiotic Effects on Biodiversity Index Using Machine Learning. Forests 2021, Vol. 12, Page 461, 12(4), 461. https://doi.org/10.3390/F12040461 Bhattacharya, M. (2013). Machine Learning for Bioclimatic Modelling. International Journal of Advanced Computer Science and Applications, 4(2). https://doi.org/10.14569/IJACSA.2013.040201 Blaustein, A. R., Wake, D. B., & Sousa, W. P. (1994). Amphibian Declines: Judging Stability, Persistence, and Susceptibility of Populations to Local and Global Extinctions. Conservation Biology, 8(1), 60-71. https://doi.org/10.1046/J.1523-1739.1994.08010060.X Boubli, J. P., Ribas, C., Lynch Alfaro, J. W., Alfaro, M. E., da Silva, M. N. F., Pinho, G. M., & Farias, I. P. (2015). Spatial and temporal patterns of diversification on the Amazon: A test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Molecular Phylogenetics and Evolution, 82(PB), 400-412. https://doi.org/10.1016/J.YMPEV.2014.09.005 Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324 Brown, Hill, Carnaval, & Haywood. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nature - Scientific Data, 5:180254. http://www.paleoclim.org/ Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A., & Vilà, C. (2014). Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41(1), 66-80. https://doi.org/10.1111/JBI.12208 Colinvaux, P. A., Irion, G., Räsänen, M. E., Bush, M. B., & Nunes de Mello, J. A. S. (2001). A paradigm to be discarded: Geological and paleoecological data falsify the HAFFER & PRANCE refuge hypothesis of Amazonian speciation. Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas, 16(3/4), 609-646. Covarrubias, S., González, C., & Gutiérrez-Rodríguez, C. (2021). Effects of natural and anthropogenic features on functional connectivity of anurans: a review of landscape genetics studies in temperate, subtropical and tropical species. Journal of Zoology, 313(3), 159-171. https://doi.org/10.1111/JZO.12851 Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 2012 9:8, 9(8), 772-772. https://doi.org/10.1038/nmeth.2109 Davies Jonathan, T., & Buckley, L. B. (2011). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2414-2425. https://doi.org/10.1098/RSTB.2011.0058 De Melo, W. A., Lima-Ribeiro, M. S., Terribile, L. C., & Collevatti, R. G. (2016). Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis. PloS One, 11(7). https://doi.org/10.1371/JOURNAL.PONE.0159314 Dirzo, R., & Raven, P. H. (2003). Global State of Biodiversity and Loss. Https://Doi.Org/10.1146/Annurev.Energy.28.050302.105532, 28, 137¿167. https://doi.org/10.1146/ANNUREV.ENERGY.28.050302.105532 Faith, D. P. (1992a). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1-10. https://doi.org/10.1016/0006-3207(92)91201-3 Faith, D. P. (1992b). Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics, 8(4), 361-373. https://doi.org/10.1111/J.1096-0031.1992.TB00078.X Fernandes, A., Cohn-Haft, M., Hrbek, T., & Farias, I. (2015). Rivers acting as barriers for bird dispersal in the Amazon. Revista Brasileira de Ornitologia - Brazilian Journal of Ornithology, 22(4), 363-373. http://www.revbrasilornitol.com.br/BJO/article/view/1034 Ferreira, A. S., Lima, A. P., Jehle, R., Ferrão, M., & Stow, A. (2020). The Influence of Environmental Variation on the Genetic Structure of a Poison Frog Distributed Across Continuous Amazonian Rainforest. Journal of Heredity, 111(5), 457-470. https://doi.org/10.1093/JHERED/ESAA034 Fontes, D., Cordeiro, R. C., Martins, G. S., Behling, H., Turcq, B., Sifeddine, A., Seoane, J. C. S., Moreira, L. S., & Rodrigues, R. A. (2017). Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quaternary Science Reviews, 173, 161-180. https://doi.org/10.1016/J.QUASCIREV.2017.08.021 Fraga, R. de, & Carvalho, V. T. de. (2021). Testing the Wallace's riverine barrier hypothesis based on frog and Squamata reptile assemblages from a tributary of the lower Amazon River. Https://Doi.Org/10.1080/01650521.2020.1870838. https://doi.org/10.1080/01650521.2020.1870838 Fritz, S. A., & Rahbek, C. (2012). Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39(8), 1373-1382. https://doi.org/10.1111/J.1365-2699.2012.02757.X Garzón-Orduña, I. J., Benetti-Longhini, J. E., & Brower, A. V. Z. (2014). Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. Journal of Biogeography, 41(9), 1631-1638. https://doi.org/10.1111/JBI.12330 Gascon, C., Malcolm, J. R., Patton, J. L., Silva, M. N. F. da, Bogart, J. P., Lougheed, S. C., Peres, C. A., Neckel, S., & Boag, P. T. (2000). Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences, 97(25), 13672-13677. https://doi.org/10.1073/PNAS.230136397 Gaston, K. J., & Spicer, J. I. (2004). Biodiversity: an introduction. Godinho, M. B. D. C., & Da Silva, F. R. (2018). The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports 2018 8:1, 8(1), 1-11. https://doi.org/10.1038/s41598-018-21879-9 Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391. https://doi.org/10.1046/J.1461-0248.2001.00230.X Grant, T., Frost, D., Caldwell, J., Gagliardo, R., Haddad, C., Kok, P., Means, B., Noonan, B., Schargel, W., & Wheeler, W. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (amphibia: athesphatanura: dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1-262. https://bioone.org/journals/bulletin-of-the-american-museum-of-natural-history/volume-2006/issue-299/0003-0090(2006)299%5B1%3APSODFA%5D2.0.CO%3B2/PHYLOGENETIC-SYSTEMATICS-OF-DART-POISON-FROGS-AND-THEIR-RELATIVES-AMPHIBIA/10.1206/0003-0090(2006)299[1:PSODF Green, J. L., Hastings, A., Arzberger, P., Ayala, F. J., Cottingham, K. L., Cuddington, K., Davis, F., Dunne, J. A., Fortin, M.-J., Gerber, L., & Neubert, M. (2005). Complexity in Ecology and Conservation: Mathematical, Statistical, and Computational Challenges. BioScience, 55(6), 501-510. https://doi.org/10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2 Guayasamin, Juan M., Castroviejo-Fisher, S., Ayarzagüena, J., Trueb, L., & Vilà, C. (2008). Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 48(2), 574-595. https://doi.org/10.1016/J.YMPEV.2008.04.012 Guayasamin, Juan Manuel., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., & Vilá Carles. (2009). Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2100, 1-97. http://www.mapress.com/zootaxa/2009/f/zt02100p097.pdf Haffer, J. (1969). Speciation in amazonian forest birds. Science, 165(3889), 131-137. https://doi.org/10.1126/SCIENCE.165.3889.131 Halliday, T. R. (2008). Why amphibians are important. International Zoo Yearbook, 42(1), 7-14. https://doi.org/10.1111/J.1748-1090.2007.00037.X Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J. F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., Porter, E. E., & Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12), 3105-3117. https://doi.org/10.1890/03-8006 Haykin, S. (1999). Neural networks: a comprehensive foundation. In Neural Networks - A Comprehensive Foundation (2nd ed.). Prentice Hall. Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences, 270(1512), 313-321. https://doi.org/10.1098/RSPB.2002.2218 Higgins, D. G., & Sharp, P. M. (1988). CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73(1), 237-244. https://doi.org/10.1016/0378-1119(88)90330-7 Hijmans, R., Etten, J. Van, Summer, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., & Busseto, L. (2022). raster: Geographic Data Analysis and Modeling (3.5-15). https://cran.r-project.org/web/packages/raster/index.html Huelsenbeck, J. P., & Rannala, B. (2004). Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models. Systematic Biology, 53(6), 904-913. https://doi.org/10.1080/10635150490522629 ITIS. (2019). ITIS - Report: Aromobatidae. www.itis.gov Iyer, A. A., & Briggman, K. L. (2021). Amphibian behavioral diversity offers insights into evolutionary neurobiology. Current Opinion in Neurobiology, 71, 19-28. https://doi.org/10.1016/J.CONB.2021.07.015 Kalamandeen, M., Gloor, E., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., Spracklen, B., Adami, M., Aragaõ, L. E. O. C., & Galbraith, D. (2018). Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-19358-2 Karatzoglou, A., Hornik, K., Smola, A., & Zeileis, A. (2004). kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 1-20. https://doi.org/10.18637/JSS.V011.I09 Karger, D. N, Nobis, M. P., Normand, S., Graham, C. H., & Zimmermann, N. E. (2021). CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past Discussions, 1-27. https://chelsa-climate.org/last-glacial-maximum-climate/ Karger, Dirk Nikolaus, Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4. https://doi.org/10.1038/SDATA.2017.122 Kopuchian, C., Campagna, L., Lijtmaer, D. A., Cabanne, G. S., García, N. C., Lavinia, P. D., Tubaro, P. L., Lovette, I., & Giacomo, A. S. Di. (2020). A test of the riverine barrier hypothesis in the largest subtropical river basin in the Neotropics. Molecular Ecology, 29(12), 2137-2149. https://doi.org/10.1111/MEC.15384 Kuhn, M. (2022). Caret: Classification and Regression Training. CRAN. https://github.com/topepo/caret/ Kumar Verma, A. (2016). Biodiversity: Its Different Levels and Values. International Journal on Environmental Sciences, 7(2), 143-145. https://www.researchgate.net/publication/342638063 Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276-3278. https://doi.org/10.1093/BIOINFORMATICS/BTU531 Lecocq, T., Vereecken, N. J., Michez, D., Dellicour, S., Lhomme, P., Valterová, I., Rasplus, J. Y., & Rasmont, P. (2013). Patterns of Genetic and Reproductive Traits Differentiation in Mainland vs. Corsican Populations of Bumblebees. PLOS ONE, 8(6), e65642. https://doi.org/10.1371/JOURNAL.PONE.0065642 Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15), 2171-2186. https://www.hydrosheds.org/page/hydrorivers Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. 2(3). http://www.stat.berkeley.edu/ Liedtke, H. C., Gower, D. J., Wilkinson, M., & Gomez-Mestre, I. (2018). Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nature Ecology & Evolution 2018 2:11, 2(11), 1792-1799. https://doi.org/10.1038/s41559-018-0674-4 Lus Nunes-De.Alameida, C., Batista Haddad, C., & Toledo, L. F. (2021). A revised classification of the amphibian reproductive modes. SALAMANDRA, 57(3), 413-427. https://www.salamandra-journal.com/index.php/home/contents/2021-vol-57/2054-nunes-de-almeida-c-h-l-c-f-b-haddad-l-f-toledo-1/file Lyra, M. L., Haddad, C. F. B., & de Azeredo-Espin, A. M. L. (2017). Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers. Molecular Ecology Resources, 17(5), 966-980. https://doi.org/10.1111/1755-0998.12648 Maddison, W. P., & Maddison, D. (2021). Mesquite: a modular system for evolutionary analysis (3.70). http://www.mesquiteproject.org Martín-Regalado, C. N., Briones-Salas, M., Manríquez-Morán, N., Sánchez-Rojas, G., Cornejo-Latorre, C., Lavariega, M. C., & Moreno, C. E. (2020). Assembly mechanisms and environmental predictors of the phylogenetic diversity of cricetid rodents in southern Mexico. Evolutionary Ecology 2020 34:2, 34(2), 175-191. https://doi.org/10.1007/S10682-020-10034-4 McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. https://doi.org/10.1007/978-1-4899-3242-6 Menin, M., Waldez, F., Lima, & A. P., & Menin, M. (2011). Effects of environmental and spatial factors on the distribution of anuran species with aquatic reproduction in central Amazonia. HERPETOLOGICAL JOURNAL, 21, 255-261. http://ppbio.inpa.gov.br/Eng/inventarios/ducke/anuros Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010. https://doi.org/10.1109/GCE.2010.5676129 Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., Bohannan, B. J. M., & Green, J. L. (2011). Spatial patterns of phylogenetic diversity. Ecology Letters, 14(2), 141. https://doi.org/10.1111/J.1461-0248.2010.01563.X Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. https://doi.org/10.1016/J.ISPRSJPRS.2010.11.001 Musher, L. J., Ferreira, M., Auerbach, A. L., McKay, J., & Cracraft, J. (2019). Why is Amazonia a source of biodiversity Climate-mediated dispersal and synchronous speciation across the Andes in an avian group (Tityrinae). Proceedings of the Royal Society B, 286(1900). https://doi.org/10.1098/RSPB.2018.2343 Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 2000 403:6772, 403(6772), 853-858. https://doi.org/10.1038/35002501 Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling Ecography, 37(2), 191-203. https://doi.org/10.1111/J.1600-0587.2013.00205.X Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2017). Wide but not impermeable: Testing the riverine barrier hypothesis for an Amazonian plant species. Molecular Ecology, 26(14), 3636-3648. https://doi.org/10.1111/MEC.14142 Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2019). Tangled banks: A landscape genomic evaluation of Wallace's Riverine barrier hypothesis for three Amazon plant species. Molecular Ecology, 28(5), 980-997. https://doi.org/10.1111/MEC.14948 Ott, R. F. (2020). How Lithology Impacts Global Topography, Vegetation, and Animal Biodiversity: A Global-Scale Analysis of Mountainous Regions. Geophysical Research Letters, 47(20), e2020GL088649. https://doi.org/10.1029/2020GL088649 Patton, J. L., Silva, M. N. F. da, & Malcolm, J. R. (1994). Gene genealogy and differentiation among arboreal spiny rats (rodentia: echimyidae) of the amazon basin: a test of the riverine barrier hypothesis. Evolution, 48(4), 1314-1323. https://doi.org/10.1111/J.1558-5646.1994.TB05315.X Paz, A., Spanos, Z., Brown, J. L., Lyra, M., Haddad, C., Rodrigues, M., & Carnaval, A. (2018). Phylogeography of Atlantic Forest glassfrogs (Vitreorana): when geography, climate dynamics and rivers matter. Heredity 2018 122:5, 122(5), 545-557. https://doi.org/10.1038/s41437-018-0155-1 Paz, Andrea, Brown, J. L., Cordeiro, C. L. O., Aguirre-Santoro, J., Assis, C., Amaro, R. C., Raposo do Amaral, F., Bochorny, T., Bacci, L. F., Caddah, M. K., d'Horta, F., Kaehler, M., Lyra, M., Grohmann, C. H., Reginato, M., Silva-Brandão, K. L., Freitas, A. V. L., Goldenberg, R., Lohmann, L. G., Carnaval, A. C. (2021). Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. Journal of Biogeography, 48(6), 1377-1391. https://doi.org/10.1111/JBI.14083 Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G., Williams, Z. C., Brunke, M. A., & Gochis, D. (2016). Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers. ORNL DAAC, Oak Ridge, Tennessee, USA. Peters, M. K., Hemp, A., Appelhans, T., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Haas, M., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Mwangomo, E., Ngereza, C., Otte, I., Röder, J., Rutten, G., Steffan-Dewenter, I. (2016). Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications 2016 7:1, 7(1), 1-11. https://doi.org/10.1038/ncomms13736 Pillay, R., Venter, M., Aragon-Osejo, J., González-del-Pliego, P., Hansen, A. J., Watson, J. E. M., & Venter, O. (2021). Tropical forests are home to over half of the world's vertebrate species. Frontiers in Ecology and the Environment. https://doi.org/10.1002/FEE.2420 Poelchau, M. F., & Hamrick, J. L. (2013). Palaeodistribution modelling does not support disjunct Pleistocene refugia in several Central American plant taxa. Journal of Biogeography, 40(4), 662-675. https://doi.org/10.1111/J.1365-2699.2011.02648.X Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217-240. https://doi.org/10.5194/SOIL-7-217-2021 Proyecto MapBiomas Amazonía- Colección 3.0 de la Serie Anual de Mapas de Cobertura y Uso del Suelo de la Amazonía, adquirido en 01/2022 a través del enlace: https://plataforma.panamazonia.mapbiomas.org/ QGIS Geographic Information System. (2021). QGIS Geographic Information System (3.24). Open Source Geospatial Foundation Project. http://qgis.osgeo.org/ Qian, H. (2009). Global tests of regional effect on species richness of vascular plants and terrestrial vertebrates. Ecography, 32(3), 553-560. https://doi.org/10.1111/J.1600-0587.2008.05755.X Réjaud, A., Rodrigues, M. T., Crawford, A. J., Castroviejo-Fisher, S., Jaramillo, A. F., Chaparro, J. C., Glaw, F., Gagliardi-Urrutia, G., Moravec, J., De la Riva, I. J., Perez, P., Lima, A. P., Werneck, F. P., Hrbek, T., Ron, S. R., Ernst, R., Kok, P. J. R., Driskell, A., Chave, J., & Fouquet, A. (2020). Historical biogeography identifies a possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography, 47(11), 2472-2482. https://doi.org/10.1111/JBI.13937 Rivera Martínez, R. (2020). Diversidad filogenética: una forma de medir la historia evolutiva de la biodiversidad. Desde El Herbario CICY, 12, 270¿275. http://www.cicy.mx/sitios/desde_herbario/ Rocha, D. G. da, & Kaefer, I. L. (2019). What has become of the refugia hypothesis to explain biological diversity in Amazonia Ecology and Evolution, 9(7), 4302-4309. https://doi.org/10.1002/ECE3.5051 Saatchi, S. S. (2013). LBA-ECO LC-15 SRTM30 Digital Elevation Model Data, Amazon Basin: 2000. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1181 Stuart, S. N., Hoffmann, M., Chanson, J. ., Cox, N. ., Berridge, R. ., Ramani, P., & Young, B. . (2008). Threatened Amphibians of the World (Frist edit). IUCN, Conservation International and Lynx Edicions. https://www.amphibians.org/wp-content/uploads/2018/12/1-TAW-intro.pdf Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120 Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution, 18(2), 70-74. https://doi.org/10.1016/S0169-5347(02)00041-1 Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., & van Etten, J. (2012). Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS ONE, 7(10). https://doi.org/10.1371/JOURNAL.PONE.0047676 Trabucco, A., & Zomer, R. (2010). Global Soil Water Balance Geospatial Database. CGIAR Consortium for Spatial Information. Tuanmu, M. N., & Jetz, W. (2015). A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24(11), 1329-1339. https://doi.org/10.1111/GEB.12365 Vane-Wright, R. I., Humphries, C. J., & Williams, P. H. (1991). What to protect Systematics and the agony of choice. Biological Conservation, 55(3), 235-254. https://doi.org/10.1016/0006-3207(91)90030-D Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data. The Statistician, 33(3), 324. https://doi.org/10.2307/2988246 Vasconcelos, T. D. S., Santos, T. G. Dos, Haddad, C. F. B., & Rossa-Feres, D. D. C. (2010). Climatic variables and altitude as predictors of anuran species richness and number of reproductive modes in Brazil. Journal of Tropical Ecology, 26(4), 423-432. https://doi.org/10.1017/S0266467410000167 Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. https://doi.org/10.1007/978-0-387-21706-2 Vences, M., Nagy, Z. T., Sonet, G., & Verheyen, E. (2012). DNA barcoding amphibians and reptiles. Methods in Molecular Biology (Clifton, N.J.), 858, 79-107. https://doi.org/10.1007/978-1-61779-591-6_5 Vitt, L. J., & Caldwell, J. P. (2014). An introductory biology of amphibians and reptiles. Herpetology: An Introductory Biology of Amphibians and Reptiles, 4, 1-720. https://doi.org/10.1016/B978-0-12-374346-6.X0001-6 Wallace, A. R. (1852). On the Monkeys of the Amazon. Http://Dx.Doi.Org/10.1080/037454809494374, 14(84), 451-454. https://doi.org/10.1080/037454809494374 Zeisset, I., & Beebee, T. (2008). Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity, 101(2), 109-119. https://doi.org/10.1038/HDY.2008.30 |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
45 páginas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Biología |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ciencias Biológicas |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/b629801b-abb5-41f5-b436-019f769a932d/download https://repositorio.uniandes.edu.co/bitstreams/dd8911e5-82e5-4f88-ada1-18641b1b761e/download https://repositorio.uniandes.edu.co/bitstreams/d78fdef1-11e6-4f9e-a14a-63b0adefe229/download https://repositorio.uniandes.edu.co/bitstreams/b45d181b-1013-408f-ae83-137dcaba3617/download https://repositorio.uniandes.edu.co/bitstreams/de7a4c9d-c811-4d1f-97de-a16842808730/download https://repositorio.uniandes.edu.co/bitstreams/8ed26862-2a78-44dc-ba38-0c21804f4855/download https://repositorio.uniandes.edu.co/bitstreams/ad21ecca-5d8d-4ec6-ac4f-a011ad94009d/download https://repositorio.uniandes.edu.co/bitstreams/c779408e-da1c-4e3a-bc79-245c843423a7/download |
bitstream.checksum.fl_str_mv |
7f4d74a941b57625c7ccc48af20984c3 0ede7dbaa53654199d958055bb1ce0c5 60df29bf6c486e2dab595ff6be676e34 9d51173e494267fdaedb3e8c98c32188 24013099e9e6abb1575dc6ce0855efd5 5aa5c691a1ffe97abd12c2966efcb8d6 ab4ba3b44a364571aca12f132c17ffb5 aa5f077ec0064659cf29e0399da7f69a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1818112021023948800 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Paz Velez, AndreaCrawford, Andrew Jacksonvirtual::21039-1Doqueresana Ortega, Yuber Stevenecba8a8d-f13a-4dc5-8c8d-dacf1687e930600BIOMICS2022-06-06T15:54:07Z2022-06-06T15:54:07Z2022-06-07http://hdl.handle.net/1992/57703instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La amazonia es una zona megadiversa de gran importancia en la biología evolutiva, esta alberga más de 500 especies de anfibios. Para estimar los patrones de biodiversidad se pueden utilizar índices de biodiversidad, los cuales pueden estar relacionados con las diferencias ambientales. En este análisis se estimó como la influencia de la heterogeneidad del ambiente afecta la diversidad de dos familias de anuros, Centrolenidae y Aromobatidae, usando 33 diferentes variables ambientales como predictores: topografía, ríos, propiedades de suelos, el clima actual y pasado. Se realizó un modelo de ensamblaje de aprendizaje automatizado que incluye 4 algoritmos supervisados, que miden la importancia de las variables como predictores de los índices de riqueza de especies y diversidad filogenética. Las variables ambientales predijeron el 23% de la riqueza de especies para centrolenidos y un 16% de la diversidad filogenética en los aromobatidos. Cuando se unieron ambas familias por índice de biodiversidad el poder predictivo del modelo fue del 15% del conjunto de datos para ambos índices. La isotermalidad fue la variable con mayor importancia dentro de los modelos, la evapotranspiración y la cobertura vegetal también tuvieron un rol importante. Se pretende incluir más grupos taxonómicos como familias para mejorar el poder predictivo del modelo.The Amazon is a megadiverse area of great importance in evolutionary biology, home to more than 500 species of amphibians. Biodiversity indices, which can be related to environmental differences, can be used to estimate biodiversity patterns. In this analysis we estimated how the influence of environmental heterogeneity affects the diversity of two families of anurans, Centrolenidae and Aromobatidae, using 33 different environmental variables as predictors: topography, rivers, soil properties, current and past climate. An automated learning ensemble model including 4 supervised algorithms was performed, measuring the importance of variables as predictors of species richness and phylogenetic diversity indices. Environmental variables predicted 23% of species richness for centrolenids and 16% of phylogenetic diversity in aromobatids. When both families were pooled by biodiversity index the predictive power of the model was 15% of the data set for both indices. The isothermality was the variable with the highest importance within the models. Evapotranspiration and vegetation cover also played an important role. It is intended to include more taxonomic groups as families to improve the predictive power of the model.BiólogoPregrado45 páginasapplication/pdfspaUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias BiológicasPredictores de diversidad en anfibios de la Amazonía: una aproximación por aprendizaje automático.Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAprendizaje automatizadoAmazoníaBiodiversidadFilogeografíaAnfibiosDiversidad biológicaGenética de anfibiosBiologíaAleixo, A. (2004). Historical diversification of a terra-firme forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of amazonian diversification. Evolution, 58(6), 1303-1317. https://doi.org/10.1111/J.0014-3820.2004.TB01709.XAmatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, A., Malczyk, J., & Jetz, W. (2018). Data Descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5. https://doi.org/10.1038/SDATA.2018.40AmphibiaWeb. (2021). AmphibiaWeb. University of California. https://amphibiaweb.org/index.htmlAntonelli, A., Quijada-Mascareñas, A., Crawford, A. J., Bates, J. M., Velazco, P. M., & Wüster, W. (2010). Molecular Studies and Phylogeography of Amazonian Tetrapods and their Relation to Geological and Climatic Models. In Amazonia, Landscape and Species Evolution: A Look into the Past. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781444306408.CH24Antonelli, A., & Sanmartín, I. (2011). Why are there so many plant species in the Neotropics TAXON, 60(2), 403-414. https://doi.org/10.1002/TAX.602010Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039. https://doi.org/10.1073/PNAS.1713819115Barratt, C. D., Bwong, B. A., Onstein, R. E., Rosauer, D. F., Menegon, M., Doggart, N., Nagel, P., Kissling, W. D., & Loader, S. P. (2017). Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa. Diversity and Distributions, 23(8), 875-887. https://doi.org/10.1111/DDI.12582Bayat, M., Burkhart, H., Namiranian, M., Hamidi, S. K., Heidari, S., & Hassani, M. (2021). Assessing Biotic and Abiotic Effects on Biodiversity Index Using Machine Learning. Forests 2021, Vol. 12, Page 461, 12(4), 461. https://doi.org/10.3390/F12040461Bhattacharya, M. (2013). Machine Learning for Bioclimatic Modelling. International Journal of Advanced Computer Science and Applications, 4(2). https://doi.org/10.14569/IJACSA.2013.040201Blaustein, A. R., Wake, D. B., & Sousa, W. P. (1994). Amphibian Declines: Judging Stability, Persistence, and Susceptibility of Populations to Local and Global Extinctions. Conservation Biology, 8(1), 60-71. https://doi.org/10.1046/J.1523-1739.1994.08010060.XBoubli, J. P., Ribas, C., Lynch Alfaro, J. W., Alfaro, M. E., da Silva, M. N. F., Pinho, G. M., & Farias, I. P. (2015). Spatial and temporal patterns of diversification on the Amazon: A test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Molecular Phylogenetics and Evolution, 82(PB), 400-412. https://doi.org/10.1016/J.YMPEV.2014.09.005Breiman, L. (2001). Random Forests. Machine Learning 2001 45:1, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324Brown, Hill, Carnaval, & Haywood. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nature - Scientific Data, 5:180254. http://www.paleoclim.org/Castroviejo-Fisher, S., Guayasamin, J. M., Gonzalez-Voyer, A., & Vilà, C. (2014). Neotropical diversification seen through glassfrogs. Journal of Biogeography, 41(1), 66-80. https://doi.org/10.1111/JBI.12208Colinvaux, P. A., Irion, G., Räsänen, M. E., Bush, M. B., & Nunes de Mello, J. A. S. (2001). A paradigm to be discarded: Geological and paleoecological data falsify the HAFFER & PRANCE refuge hypothesis of Amazonian speciation. Amazoniana: Limnologia et Oecologia Regionalis Systematis Fluminis Amazonas, 16(3/4), 609-646.Covarrubias, S., González, C., & Gutiérrez-Rodríguez, C. (2021). Effects of natural and anthropogenic features on functional connectivity of anurans: a review of landscape genetics studies in temperate, subtropical and tropical species. Journal of Zoology, 313(3), 159-171. https://doi.org/10.1111/JZO.12851Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 2012 9:8, 9(8), 772-772. https://doi.org/10.1038/nmeth.2109Davies Jonathan, T., & Buckley, L. B. (2011). Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2414-2425. https://doi.org/10.1098/RSTB.2011.0058De Melo, W. A., Lima-Ribeiro, M. S., Terribile, L. C., & Collevatti, R. G. (2016). Coalescent Simulation and Paleodistribution Modeling for Tabebuia rosealba Do Not Support South American Dry Forest Refugia Hypothesis. PloS One, 11(7). https://doi.org/10.1371/JOURNAL.PONE.0159314Dirzo, R., & Raven, P. H. (2003). Global State of Biodiversity and Loss. Https://Doi.Org/10.1146/Annurev.Energy.28.050302.105532, 28, 137¿167. https://doi.org/10.1146/ANNUREV.ENERGY.28.050302.105532Faith, D. P. (1992a). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1-10. https://doi.org/10.1016/0006-3207(92)91201-3Faith, D. P. (1992b). Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics, 8(4), 361-373. https://doi.org/10.1111/J.1096-0031.1992.TB00078.XFernandes, A., Cohn-Haft, M., Hrbek, T., & Farias, I. (2015). Rivers acting as barriers for bird dispersal in the Amazon. Revista Brasileira de Ornitologia - Brazilian Journal of Ornithology, 22(4), 363-373. http://www.revbrasilornitol.com.br/BJO/article/view/1034Ferreira, A. S., Lima, A. P., Jehle, R., Ferrão, M., & Stow, A. (2020). The Influence of Environmental Variation on the Genetic Structure of a Poison Frog Distributed Across Continuous Amazonian Rainforest. Journal of Heredity, 111(5), 457-470. https://doi.org/10.1093/JHERED/ESAA034Fontes, D., Cordeiro, R. C., Martins, G. S., Behling, H., Turcq, B., Sifeddine, A., Seoane, J. C. S., Moreira, L. S., & Rodrigues, R. A. (2017). Paleoenvironmental dynamics in South Amazonia, Brazil, during the last 35,000 years inferred from pollen and geochemical records of Lago do Saci. Quaternary Science Reviews, 173, 161-180. https://doi.org/10.1016/J.QUASCIREV.2017.08.021Fraga, R. de, & Carvalho, V. T. de. (2021). Testing the Wallace's riverine barrier hypothesis based on frog and Squamata reptile assemblages from a tributary of the lower Amazon River. Https://Doi.Org/10.1080/01650521.2020.1870838. https://doi.org/10.1080/01650521.2020.1870838Fritz, S. A., & Rahbek, C. (2012). Global patterns of amphibian phylogenetic diversity. Journal of Biogeography, 39(8), 1373-1382. https://doi.org/10.1111/J.1365-2699.2012.02757.XGarzón-Orduña, I. J., Benetti-Longhini, J. E., & Brower, A. V. Z. (2014). Timing the diversification of the Amazonian biota: butterfly divergences are consistent with Pleistocene refugia. Journal of Biogeography, 41(9), 1631-1638. https://doi.org/10.1111/JBI.12330Gascon, C., Malcolm, J. R., Patton, J. L., Silva, M. N. F. da, Bogart, J. P., Lougheed, S. C., Peres, C. A., Neckel, S., & Boag, P. T. (2000). Riverine barriers and the geographic distribution of Amazonian species. Proceedings of the National Academy of Sciences, 97(25), 13672-13677. https://doi.org/10.1073/PNAS.230136397Gaston, K. J., & Spicer, J. I. (2004). Biodiversity: an introduction.Godinho, M. B. D. C., & Da Silva, F. R. (2018). The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports 2018 8:1, 8(1), 1-11. https://doi.org/10.1038/s41598-018-21879-9Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391. https://doi.org/10.1046/J.1461-0248.2001.00230.XGrant, T., Frost, D., Caldwell, J., Gagliardo, R., Haddad, C., Kok, P., Means, B., Noonan, B., Schargel, W., & Wheeler, W. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (amphibia: athesphatanura: dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1-262. https://bioone.org/journals/bulletin-of-the-american-museum-of-natural-history/volume-2006/issue-299/0003-0090(2006)299%5B1%3APSODFA%5D2.0.CO%3B2/PHYLOGENETIC-SYSTEMATICS-OF-DART-POISON-FROGS-AND-THEIR-RELATIVES-AMPHIBIA/10.1206/0003-0090(2006)299[1:PSODFGreen, J. L., Hastings, A., Arzberger, P., Ayala, F. J., Cottingham, K. L., Cuddington, K., Davis, F., Dunne, J. A., Fortin, M.-J., Gerber, L., & Neubert, M. (2005). Complexity in Ecology and Conservation: Mathematical, Statistical, and Computational Challenges. BioScience, 55(6), 501-510. https://doi.org/10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2Guayasamin, Juan M., Castroviejo-Fisher, S., Ayarzagüena, J., Trueb, L., & Vilà, C. (2008). Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 48(2), 574-595. https://doi.org/10.1016/J.YMPEV.2008.04.012Guayasamin, Juan Manuel., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., & Vilá Carles. (2009). Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2100, 1-97. http://www.mapress.com/zootaxa/2009/f/zt02100p097.pdfHaffer, J. (1969). Speciation in amazonian forest birds. Science, 165(3889), 131-137. https://doi.org/10.1126/SCIENCE.165.3889.131Halliday, T. R. (2008). Why amphibians are important. International Zoo Yearbook, 42(1), 7-14. https://doi.org/10.1111/J.1748-1090.2007.00037.XHawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J. F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., Porter, E. E., & Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12), 3105-3117. https://doi.org/10.1890/03-8006Haykin, S. (1999). Neural networks: a comprehensive foundation. In Neural Networks - A Comprehensive Foundation (2nd ed.). Prentice Hall.Hebert, P. D. N., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences, 270(1512), 313-321. https://doi.org/10.1098/RSPB.2002.2218Higgins, D. G., & Sharp, P. M. (1988). CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73(1), 237-244. https://doi.org/10.1016/0378-1119(88)90330-7Hijmans, R., Etten, J. Van, Summer, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., & Busseto, L. (2022). raster: Geographic Data Analysis and Modeling (3.5-15). https://cran.r-project.org/web/packages/raster/index.htmlHuelsenbeck, J. P., & Rannala, B. (2004). Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models. Systematic Biology, 53(6), 904-913. https://doi.org/10.1080/10635150490522629ITIS. (2019). ITIS - Report: Aromobatidae. www.itis.govIyer, A. A., & Briggman, K. L. (2021). Amphibian behavioral diversity offers insights into evolutionary neurobiology. Current Opinion in Neurobiology, 71, 19-28. https://doi.org/10.1016/J.CONB.2021.07.015Kalamandeen, M., Gloor, E., Mitchard, E., Quincey, D., Ziv, G., Spracklen, D., Spracklen, B., Adami, M., Aragaõ, L. E. O. C., & Galbraith, D. (2018). Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-19358-2Karatzoglou, A., Hornik, K., Smola, A., & Zeileis, A. (2004). kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 1-20. https://doi.org/10.18637/JSS.V011.I09Karger, D. N, Nobis, M. P., Normand, S., Graham, C. H., & Zimmermann, N. E. (2021). CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate of the Past Discussions, 1-27. https://chelsa-climate.org/last-glacial-maximum-climate/Karger, Dirk Nikolaus, Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4. https://doi.org/10.1038/SDATA.2017.122Kopuchian, C., Campagna, L., Lijtmaer, D. A., Cabanne, G. S., García, N. C., Lavinia, P. D., Tubaro, P. L., Lovette, I., & Giacomo, A. S. Di. (2020). A test of the riverine barrier hypothesis in the largest subtropical river basin in the Neotropics. Molecular Ecology, 29(12), 2137-2149. https://doi.org/10.1111/MEC.15384Kuhn, M. (2022). Caret: Classification and Regression Training. CRAN. https://github.com/topepo/caret/Kumar Verma, A. (2016). Biodiversity: Its Different Levels and Values. International Journal on Environmental Sciences, 7(2), 143-145. https://www.researchgate.net/publication/342638063Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276-3278. https://doi.org/10.1093/BIOINFORMATICS/BTU531Lecocq, T., Vereecken, N. J., Michez, D., Dellicour, S., Lhomme, P., Valterová, I., Rasplus, J. Y., & Rasmont, P. (2013). Patterns of Genetic and Reproductive Traits Differentiation in Mainland vs. Corsican Populations of Bumblebees. PLOS ONE, 8(6), e65642. https://doi.org/10.1371/JOURNAL.PONE.0065642Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. Hydrological Processes, 27(15), 2171-2186. https://www.hydrosheds.org/page/hydroriversLiaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. 2(3). http://www.stat.berkeley.edu/Liedtke, H. C., Gower, D. J., Wilkinson, M., & Gomez-Mestre, I. (2018). Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nature Ecology & Evolution 2018 2:11, 2(11), 1792-1799. https://doi.org/10.1038/s41559-018-0674-4Lus Nunes-De.Alameida, C., Batista Haddad, C., & Toledo, L. F. (2021). A revised classification of the amphibian reproductive modes. SALAMANDRA, 57(3), 413-427. https://www.salamandra-journal.com/index.php/home/contents/2021-vol-57/2054-nunes-de-almeida-c-h-l-c-f-b-haddad-l-f-toledo-1/fileLyra, M. L., Haddad, C. F. B., & de Azeredo-Espin, A. M. L. (2017). Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers. Molecular Ecology Resources, 17(5), 966-980. https://doi.org/10.1111/1755-0998.12648Maddison, W. P., & Maddison, D. (2021). Mesquite: a modular system for evolutionary analysis (3.70). http://www.mesquiteproject.orgMartín-Regalado, C. N., Briones-Salas, M., Manríquez-Morán, N., Sánchez-Rojas, G., Cornejo-Latorre, C., Lavariega, M. C., & Moreno, C. E. (2020). Assembly mechanisms and environmental predictors of the phylogenetic diversity of cricetid rodents in southern Mexico. Evolutionary Ecology 2020 34:2, 34(2), 175-191. https://doi.org/10.1007/S10682-020-10034-4McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. https://doi.org/10.1007/978-1-4899-3242-6Menin, M., Waldez, F., Lima, & A. P., & Menin, M. (2011). Effects of environmental and spatial factors on the distribution of anuran species with aquatic reproduction in central Amazonia. HERPETOLOGICAL JOURNAL, 21, 255-261. http://ppbio.inpa.gov.br/Eng/inventarios/ducke/anurosMiller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010. https://doi.org/10.1109/GCE.2010.5676129Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., Bohannan, B. J. M., & Green, J. L. (2011). Spatial patterns of phylogenetic diversity. Ecology Letters, 14(2), 141. https://doi.org/10.1111/J.1461-0248.2010.01563.XMountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. https://doi.org/10.1016/J.ISPRSJPRS.2010.11.001Musher, L. J., Ferreira, M., Auerbach, A. L., McKay, J., & Cracraft, J. (2019). Why is Amazonia a source of biodiversity Climate-mediated dispersal and synchronous speciation across the Andes in an avian group (Tityrinae). Proceedings of the Royal Society B, 286(1900). https://doi.org/10.1098/RSPB.2018.2343Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 2000 403:6772, 403(6772), 853-858. https://doi.org/10.1038/35002501Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling Ecography, 37(2), 191-203. https://doi.org/10.1111/J.1600-0587.2013.00205.XNazareno, A. G., Dick, C. W., & Lohmann, L. G. (2017). Wide but not impermeable: Testing the riverine barrier hypothesis for an Amazonian plant species. Molecular Ecology, 26(14), 3636-3648. https://doi.org/10.1111/MEC.14142Nazareno, A. G., Dick, C. W., & Lohmann, L. G. (2019). Tangled banks: A landscape genomic evaluation of Wallace's Riverine barrier hypothesis for three Amazon plant species. Molecular Ecology, 28(5), 980-997. https://doi.org/10.1111/MEC.14948Ott, R. F. (2020). How Lithology Impacts Global Topography, Vegetation, and Animal Biodiversity: A Global-Scale Analysis of Mountainous Regions. Geophysical Research Letters, 47(20), e2020GL088649. https://doi.org/10.1029/2020GL088649Patton, J. L., Silva, M. N. F. da, & Malcolm, J. R. (1994). Gene genealogy and differentiation among arboreal spiny rats (rodentia: echimyidae) of the amazon basin: a test of the riverine barrier hypothesis. Evolution, 48(4), 1314-1323. https://doi.org/10.1111/J.1558-5646.1994.TB05315.XPaz, A., Spanos, Z., Brown, J. L., Lyra, M., Haddad, C., Rodrigues, M., & Carnaval, A. (2018). Phylogeography of Atlantic Forest glassfrogs (Vitreorana): when geography, climate dynamics and rivers matter. Heredity 2018 122:5, 122(5), 545-557. https://doi.org/10.1038/s41437-018-0155-1Paz, Andrea, Brown, J. L., Cordeiro, C. L. O., Aguirre-Santoro, J., Assis, C., Amaro, R. C., Raposo do Amaral, F., Bochorny, T., Bacci, L. F., Caddah, M. K., d'Horta, F., Kaehler, M., Lyra, M., Grohmann, C. H., Reginato, M., Silva-Brandão, K. L., Freitas, A. V. L., Goldenberg, R., Lohmann, L. G., Carnaval, A. C. (2021). Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. Journal of Biogeography, 48(6), 1377-1391. https://doi.org/10.1111/JBI.14083Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G., Williams, Z. C., Brunke, M. A., & Gochis, D. (2016). Global 1-km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers. ORNL DAAC, Oak Ridge, Tennessee, USA.Peters, M. K., Hemp, A., Appelhans, T., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Haas, M., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Mwangomo, E., Ngereza, C., Otte, I., Röder, J., Rutten, G., Steffan-Dewenter, I. (2016). Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications 2016 7:1, 7(1), 1-11. https://doi.org/10.1038/ncomms13736Pillay, R., Venter, M., Aragon-Osejo, J., González-del-Pliego, P., Hansen, A. J., Watson, J. E. M., & Venter, O. (2021). Tropical forests are home to over half of the world's vertebrate species. Frontiers in Ecology and the Environment. https://doi.org/10.1002/FEE.2420Poelchau, M. F., & Hamrick, J. L. (2013). Palaeodistribution modelling does not support disjunct Pleistocene refugia in several Central American plant taxa. Journal of Biogeography, 40(4), 662-675. https://doi.org/10.1111/J.1365-2699.2011.02648.XPoggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217-240. https://doi.org/10.5194/SOIL-7-217-2021Proyecto MapBiomas Amazonía- Colección 3.0 de la Serie Anual de Mapas de Cobertura y Uso del Suelo de la Amazonía, adquirido en 01/2022 a través del enlace: https://plataforma.panamazonia.mapbiomas.org/QGIS Geographic Information System. (2021). QGIS Geographic Information System (3.24). Open Source Geospatial Foundation Project. http://qgis.osgeo.org/Qian, H. (2009). Global tests of regional effect on species richness of vascular plants and terrestrial vertebrates. Ecography, 32(3), 553-560. https://doi.org/10.1111/J.1600-0587.2008.05755.XRéjaud, A., Rodrigues, M. T., Crawford, A. J., Castroviejo-Fisher, S., Jaramillo, A. F., Chaparro, J. C., Glaw, F., Gagliardi-Urrutia, G., Moravec, J., De la Riva, I. J., Perez, P., Lima, A. P., Werneck, F. P., Hrbek, T., Ron, S. R., Ernst, R., Kok, P. J. R., Driskell, A., Chave, J., & Fouquet, A. (2020). Historical biogeography identifies a possible role of Miocene wetlands in the diversification of the Amazonian rocket frogs (Aromobatidae: Allobates). Journal of Biogeography, 47(11), 2472-2482. https://doi.org/10.1111/JBI.13937Rivera Martínez, R. (2020). Diversidad filogenética: una forma de medir la historia evolutiva de la biodiversidad. Desde El Herbario CICY, 12, 270¿275. http://www.cicy.mx/sitios/desde_herbario/Rocha, D. G. da, & Kaefer, I. L. (2019). What has become of the refugia hypothesis to explain biological diversity in Amazonia Ecology and Evolution, 9(7), 4302-4309. https://doi.org/10.1002/ECE3.5051Saatchi, S. S. (2013). LBA-ECO LC-15 SRTM30 Digital Elevation Model Data, Amazon Basin: 2000. ORNL Distributed Active Archive Center. https://doi.org/10.3334/ORNLDAAC/1181Stuart, S. N., Hoffmann, M., Chanson, J. ., Cox, N. ., Berridge, R. ., Ramani, P., & Young, B. . (2008). Threatened Amphibians of the World (Frist edit). IUCN, Conservation International and Lynx Edicions. https://www.amphibians.org/wp-content/uploads/2018/12/1-TAW-intro.pdfTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution, 18(2), 70-74. https://doi.org/10.1016/S0169-5347(02)00041-1Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., & van Etten, J. (2012). Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS ONE, 7(10). https://doi.org/10.1371/JOURNAL.PONE.0047676Trabucco, A., & Zomer, R. (2010). Global Soil Water Balance Geospatial Database. CGIAR Consortium for Spatial Information.Tuanmu, M. N., & Jetz, W. (2015). A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24(11), 1329-1339. https://doi.org/10.1111/GEB.12365Vane-Wright, R. I., Humphries, C. J., & Williams, P. H. (1991). What to protect Systematics and the agony of choice. Biological Conservation, 55(3), 235-254. https://doi.org/10.1016/0006-3207(91)90030-DVapnik, V. (1979). Estimation of Dependences Based on Empirical Data. The Statistician, 33(3), 324. https://doi.org/10.2307/2988246Vasconcelos, T. D. S., Santos, T. G. Dos, Haddad, C. F. B., & Rossa-Feres, D. D. C. (2010). Climatic variables and altitude as predictors of anuran species richness and number of reproductive modes in Brazil. Journal of Tropical Ecology, 26(4), 423-432. https://doi.org/10.1017/S0266467410000167Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. https://doi.org/10.1007/978-0-387-21706-2Vences, M., Nagy, Z. T., Sonet, G., & Verheyen, E. (2012). DNA barcoding amphibians and reptiles. Methods in Molecular Biology (Clifton, N.J.), 858, 79-107. https://doi.org/10.1007/978-1-61779-591-6_5Vitt, L. J., & Caldwell, J. P. (2014). An introductory biology of amphibians and reptiles. Herpetology: An Introductory Biology of Amphibians and Reptiles, 4, 1-720. https://doi.org/10.1016/B978-0-12-374346-6.X0001-6Wallace, A. R. (1852). On the Monkeys of the Amazon. Http://Dx.Doi.Org/10.1080/037454809494374, 14(84), 451-454. https://doi.org/10.1080/037454809494374Zeisset, I., & Beebee, T. (2008). Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity, 101(2), 109-119. https://doi.org/10.1038/HDY.2008.30201614077Publicationhttps://scholar.google.es/citations?user=XLYvOpMAAAAJvirtual::21039-10000-0003-3153-6898virtual::21039-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000666580virtual::21039-17ea32036-d07d-4e52-b145-f34ff6638608virtual::21039-17ea32036-d07d-4e52-b145-f34ff6638608virtual::21039-1TEXTPredictores de diversidad en anfibios de la Amazonía, una aproximación por aprendizaje automático.pdf.txtPredictores de diversidad en anfibios de la Amazonía, una aproximación por aprendizaje automático.pdf.txtExtracted texttext/plain75057https://repositorio.uniandes.edu.co/bitstreams/b629801b-abb5-41f5-b436-019f769a932d/download7f4d74a941b57625c7ccc48af20984c3MD55Formato_Entrega_tesis_Yuber_signed.pdf.txtFormato_Entrega_tesis_Yuber_signed.pdf.txtExtracted texttext/plain1419https://repositorio.uniandes.edu.co/bitstreams/dd8911e5-82e5-4f88-ada1-18641b1b761e/download0ede7dbaa53654199d958055bb1ce0c5MD57ORIGINALPredictores de diversidad en anfibios de la Amazonía, una aproximación por aprendizaje automático.pdfPredictores de diversidad en anfibios de la Amazonía, una aproximación por aprendizaje automático.pdfProyecto de gradoapplication/pdf549629https://repositorio.uniandes.edu.co/bitstreams/d78fdef1-11e6-4f9e-a14a-63b0adefe229/download60df29bf6c486e2dab595ff6be676e34MD53Formato_Entrega_tesis_Yuber_signed.pdfFormato_Entrega_tesis_Yuber_signed.pdfHIDEapplication/pdf171205https://repositorio.uniandes.edu.co/bitstreams/b45d181b-1013-408f-ae83-137dcaba3617/download9d51173e494267fdaedb3e8c98c32188MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/de7a4c9d-c811-4d1f-97de-a16842808730/download24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/8ed26862-2a78-44dc-ba38-0c21804f4855/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILPredictores de diversidad en anfibios de la Amazonía, una aproximación por aprendizaje automático.pdf.jpgPredictores de diversidad en anfibios de la Amazonía, una aproximación por aprendizaje automático.pdf.jpgIM Thumbnailimage/jpeg5117https://repositorio.uniandes.edu.co/bitstreams/ad21ecca-5d8d-4ec6-ac4f-a011ad94009d/downloadab4ba3b44a364571aca12f132c17ffb5MD56Formato_Entrega_tesis_Yuber_signed.pdf.jpgFormato_Entrega_tesis_Yuber_signed.pdf.jpgIM Thumbnailimage/jpeg16406https://repositorio.uniandes.edu.co/bitstreams/c779408e-da1c-4e3a-bc79-245c843423a7/downloadaa5f077ec0064659cf29e0399da7f69aMD581992/57703oai:repositorio.uniandes.edu.co:1992/577032024-12-04 16:59:50.588http://creativecommons.org/licenses/by-nc/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |