Estudio computacional de alquilaciones estereoselectivas de enolatos de litio

La estereoselectividad es un factor crucial en la síntesis de compuestos biológicamente activos, y los auxiliares quirales desempeñan un papel fundamental en el control de esta propiedad. Se ha demostrado experimentalmente que el uso de 1,3-ditianos como auxiliares quirales permite lograr reacciones...

Full description

Autores:
Hayek Orduz, Yasser
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/68369
Acceso en línea:
http://hdl.handle.net/1992/68369
Palabra clave:
DFT
QM
Ditiano
Estereoselectividad
Energía libre
Química
Rights
License
Attribution-NoDerivatives 4.0 Internacional
id UNIANDES2_9e3fc820c3a6a6b47b726f19fe04805b
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/68369
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
title Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
spellingShingle Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
DFT
QM
Ditiano
Estereoselectividad
Energía libre
Química
title_short Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
title_full Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
title_fullStr Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
title_full_unstemmed Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
title_sort Estudio computacional de alquilaciones estereoselectivas de enolatos de litio
dc.creator.fl_str_mv Hayek Orduz, Yasser
dc.contributor.advisor.none.fl_str_mv Miscione, Gian Pietro
dc.contributor.author.none.fl_str_mv Hayek Orduz, Yasser
dc.contributor.jury.none.fl_str_mv Zapata Rivera, Jhon Enrique
dc.contributor.researchgroup.es_CO.fl_str_mv Computational Bio- Organic Chemistry Bogotá
dc.subject.keyword.none.fl_str_mv DFT
QM
Ditiano
Estereoselectividad
Energía libre
topic DFT
QM
Ditiano
Estereoselectividad
Energía libre
Química
dc.subject.themes.es_CO.fl_str_mv Química
description La estereoselectividad es un factor crucial en la síntesis de compuestos biológicamente activos, y los auxiliares quirales desempeñan un papel fundamental en el control de esta propiedad. Se ha demostrado experimentalmente que el uso de 1,3-ditianos como auxiliares quirales permite lograr reacciones estereoselectivas, sin embargo, aún no se comprende completamente su funcionamiento. Con el fin de investigar cómo operan los 1,3-ditianos, se llevaron a cabo cálculos computacionales para estudiar las reacciones de enolización y alquilación utilizando tres auxiliares ditianos denominados Ditiano 1, Ditiano 2 y Ditiano 3. Como resultado, se obtuvieron las superficies de energía potencial correspondientes a los pasos de reacción de los auxiliares. Este estudio contribuye al desarrollo de métodos sintéticos para la obtención de moléculas que requieren el uso de auxiliares quirales en su ruta sintética.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-12
dc.date.accessioned.none.fl_str_mv 2023-07-12T15:10:03Z
dc.date.available.none.fl_str_mv 2026-04-03
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/68369
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/68369
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv Oschmann, M.; Holm, L. J.; Pourghasemi-Lati, M.; Verho, O. Synthesis of Elaborate Benzofuran-2-carboxamide Derivatives through a Combination of 8-Aminoquinoline Directed C-H Arylation and Transamidation Chemistry. Molecules 2020, 25 (2), 361. https://doi.org/10.3390/molecules25020361.
Khanam, H.; Shamsuzzaman. Bioactive Benzofuran Derivatives: A Review. European Journal of Medicinal Chemistry. Elsevier Masson SAS June 2015, pp 483-504. https://doi.org/10.1016/j.ejmech.2014.11.039.
Modukuri, R. K.; Choudhary, D.; Gupta, S.; Rao, K. B.; Adhikary, S.; Sharma, T.; Siddiqi, M. I.; Trivedi, R.; Sashidhara, K. V. Benzofuran-Dihydropyridine Hybrids: A New Class of Potential Bone Anabolic Agents. Bioorganic Med. Chem. 2017, 25 (24), 6450-6466. https://doi.org/10.1016/j.bmc.2017.10.018.
Kumar, S.; Namkung, W.; Verkman, A. S.; Sharma, P. K. Novel 5-Substituted Benzyloxy-2-Arylbenzofuran-3-Carboxylic Acids as Calcium Activated Chloride Channel Inhibitors. Bioorganic Med. Chem. 2012, 20 (14), 4237-4244. https://doi.org/10.1016/j.bmc.2012.05.074.
Gessner, G.; Heller, R.; Hoshi, T.; Heinemann, S. H. The Amiodarone Derivative 2-Methyl-3-(3,5-Diiodo-4-Carboxymethoxybenzyl)Benzofuran (KB130015) Opens Large-Conductance Ca2+-Activated K+ Channels and Relaxes Vascular Smooth Muscle. Eur. J. Pharmacol. 2007, 555 (2-3), 185-193. https://doi.org/10.1016/j.ejphar.2006.10.053.
Taddei, S.; Bruno, R. M. Calcium Channel Blockers. In Encyclopedia of Endocrine Diseases; Elsevier, 2018; pp 689-695. https://doi.org/10.1016/B978-0-12-801238-3.65408-9.
Toal, C. B.; Meredith, P. A.; Elliott, H. L. Long-Acting Dihydropyridine Calcium-Channel Blockers and Sympathetic Nervous System Activity in Hypertension: A Literature Review Comparing Amlodipine and Nifedipine GITS. Blood Press. 2012, 21 (SUPPL. 1), 3-10. https://doi.org/10.3109/08037051.2012.690615.
Qing, X.; Lee, X. Y.; De Raeymaeker, J.; Tame, J. R.; Zhang, K. Y.; De Maeyer, M.; Voet, A. R. Pharmacophore Modeling: Advances, Limitations, And Current Utility in Drug Discovery. J. Receptor. Ligand Channel Res. 2014, 7, 81-92. https://doi.org/10.2147/JRLCR.S46843.
Christmann, M.; Bräse, S. Asymmetric Synthesis: The Essentials; Wiley-VCH, 2008.
Diaz-Muñoz, G.; Miranda, I. L.; Sartori, S. K.; Rezende, D. C.; Alves Nogueira Diaz, M. Use of Chiral Auxiliaries in the Asymmetric Synthesis of Biologically Active Compounds: A Review. Chirality 2019, 31 (10), 776-812. https://doi.org/10.1002/chir.23103.
Wood, W. W. Chapter 4 Trends in the Chemistry of 1,3- Dithioacetals. Organosulfur Chem. 1995, 1 (C), 133-224. https://doi.org/10.1016/S1099-8268(07)80015-1.
Yoshimura, Y.; Kumamoto, H.; Baba, A.; Takeda, S.; Tanaka, H. Study on the Reaction Mechanism of C-6 Lithiation of Pyrimidine Nucleosides by Using Lithium Hexamethyldisilazide as a Base; Oxford University Press, 2003.
Rappoport, Z.; Marek, I. The Chemistry of Organolithium Compounds; John Wiley & Sons, Ltd, 2004. https://doi.org/10.1002/047002111x.
Carey, F.; Sundberg, R. Advanced Organic Chemistry. Part B: Reactions and Synthesis. Fourth Edition. Molecules 2001. https://doi.org/10.3390/61201015.
Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. Acyclic Stereoselection. 7. Stereoselective Synthesis of 2-Alkyl-3-Hydroxy Carbonyl Compounds by Aldol Condensation1. J. Org. Chem. 1980, 45 (6), 1066-1081. https://doi.org/10.1021/jo01294a030.
Ireland, R. E.; Mueller, R. H.; Willard, A. K. The Ester Enolate Claisen Rearrangement. Stereochemical Control through Stereoselective Enolate Formation. J. Am. Chem. Soc. 1976, 98 (10), 2868-2877. https://doi.org/10.1021/ja00426a033.
Knochel, P.; Molander, G. A. Comprehensive Organic Synthesis; 2014.
Gawley, R. E.; Aubé, J. Chapter 3 Enolate, Azaenolate, and Organolithium Alkylations. Tetrahedron Org. Chem. Ser. 1996, 14 (C), 75-119. https://doi.org/10.1016/S1460-1567(96)80025-0.
Bernardi, A.; Capelli, A. M.; Cassinari, A.; Comotti, A.; Gennari, C.; Scolastico, C. A Computational Study of the 1,4-Addition of Lithium Enolates to Conjugated Carbonyl Compounds. J. Org. Chem. 1992, 32 (6), 823-826. https://doi.org/10.1021/jo00052a011.
Pratt, L. M.; Nguyen, S. C.; Thanh, B. T. A Computational Study of Lithium Ketone Enolate Aggregation in the Gas Phase and in THF Solution. J. Org. Chem. 2008, 73 (16), 6086-6091. https://doi.org/10.1021/jo800528y.
Pratt, L. M.; Van Nguyên, N.; Ramachandran, B. Computational Strategies for Evaluating Barrier Heights for Gas-Phase Reactions of Lithium Enolates. J. Org. Chem. 2005, 70 (11), 4279-4283. https://doi.org/10.1021/jo0503409.
McKee, M. L. A Theoretical Study of Proton Transfer in Lithium Carbonyl and Lithium Enolate Complexes. J. Am. Chem. Soc. 1987, 109 (2), 559-565. https://doi.org/10.1021/ja00236a039.
Agami, C. Mise En Evidence d'un Controle Orbitalaire Dans La C-Alkylation Des Centones. Tetrahedron Lett. 1977, 18 (32), 2801-2804. https://doi.org/10.1016/S0040-4039(01)83077-X.
Houk, K. N.; Paddon-Row, M. N. Transition Structures for C- and O-Alkylation of Acetaldehyde Enolate. Stereoelectronic Effects and C/O Alkylation Ratios. J. Am. Chem. Soc. 1986, 108 (10), 2659-2662. https://doi.org/10.1021/ja00270a026.
Casimir, H. B. G. The Historical Development of Quantum Theory. Contemp. Phys. 1983. https://doi.org/10.1080/00107518308219068.
James.; Foresman, J. B.; Frisch, A. Exploring Chemistry With Electronic Structure Methods. Exploring Chemistry with Electronic Structure Methods. 2013. https://doi.org/10.1002/adma.200400767.
House, J. Fundamentals of Quantum Chemistry. Choice Rev. Online 2005. https://doi.org/10.5860/choice.42-4658.
Atkins, P.; Friedman, R. Molecular Quantum Mechanics Fourth Edition. Oxford Univ. Press New York 2005.
Levine, I. N. Quantum Chemistry.
Cengel, Y. A.; Palm, W. J. Differential Equations for Engineers and Scientists; McGraw Hill, 2013.
Seider, W. D.; Lewin, D. R.; Seader, J. D.; Widagdo, S. (Chemical engineer); Gani, R. (Rafiqul); Ng, K. M. Product and Process Design Principles: Synthesis, Analysis, and Evaluation.
Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; 2010. https://doi.org/10.1137/1.9780898719383.
Edgar, T. F.; Himmelblau, D. M.; Lasdon, L. S. Optimization of Chemical Processes; McGraw-Hill, 2001.
Caballero, J. A.; Grossmann, I. E. Una Revisión Del Estado Del Arte En Optimización. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial. Elsevier Doyma January 2007, pp 5-23. https://doi.org/10.1016/s1697-7912(07)70188-7.
Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, Incorporated, 2016.
Hehre, W.; Radom, L.; Schleyer, P.; Pople, J. Ab Initio Molecular Theory; Wiley, Ed.; John Wiley & Son, Inc., 1986.
Dolg, M.; Cao, X. Relativistic Pseudopotentials: Their Development and Scope of Applications. Chemical Reviews. American Chemical Society January 2012, pp 403-480. https://doi.org/10.1021/cr2001383.
Martin, J. M. L.; Sundermann, A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114 (8), 3408-3420. https://doi.org/10.1063/1.1337864.
Lewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics: Third Edition 2016; Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-30916-3.
Luken, W. Properties of the Fermi Hole in Molecules. Croat. Chem. Acta 1984.
Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864. https://doi.org/10.1103/PhysRev.136.B864.
Zhao, Y.; Truhlar, D. G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4 (11), 1849-1868. https://doi.org/10.1021/ct800246v.
Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B - Condens. Matter Mater. Phys. 1999, 59 (11), 7413-7421. https://doi.org/10.1103/PhysRevB.59.7413.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133. https://doi.org/10.1103/PhysRev.140.A1133.
Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45 (23), 13244-13249. https://doi.org/10.1103/PhysRevB.45.13244.
Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19 (48), 32184-32215. https://doi.org/10.1039/c7cp04913g.
Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry: Fourth Edition; Wiley-VCH: Weinheim, Germany, 2010. https://doi.org/10.1002/9783527632220.
Monard, G.; Rivail, J. L. Solvent Effects in Quantum Chemistry. In Handbook of Computational Chemistry; Springer International Publishing, 2017; pp 727-739. https://doi.org/10.1007/978-3-319-27282-5_15.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396. https://doi.org/10.1021/jp810292n.
Peng, Q.; Duarte, F.; Paton, R. S. Computing Organic Stereoselectivity-from Concepts to Quantitative Calculations and Predictions. Chemical Society Reviews. 2016. https://doi.org/10.1039/c6cs00573j.
Jonathan Clayden, Nick Greeves, S. G. W. Organic Chemistry; 2012. https://doi.org/10.1007/s00897010513a.
Smith, A. B.; Xian, M. Anion Relay Chemistry: An Effective Tactic for Diversity Oriented Synthesis. J. Am. Chem. Soc. 2006, 128 (1), 66-67. https://doi.org/10.1021/ja057059w.
Tanaka, F.; Fuji, K. Stereochemistry of the Enolate from Methyl Phenylacetate. Tetrahedron Lett. 1992, 33 (51), 7885-7888. https://doi.org/10.1016/S0040-4039(00)74769-1.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Attribution-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
http://purl.org/coar/access_right/c_f1cf
dc.format.extent.es_CO.fl_str_mv 81 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Química
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Química
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/eac6b16e-56e5-4b1e-b645-1c6b0045e1c5/download
https://repositorio.uniandes.edu.co/bitstreams/f17971c6-333a-4bdc-93de-9da0e68bb99e/download
https://repositorio.uniandes.edu.co/bitstreams/7af92587-9b9d-4041-a18a-0721256707f7/download
https://repositorio.uniandes.edu.co/bitstreams/3ed236c6-50c3-4a53-82fa-52b333a3cf47/download
https://repositorio.uniandes.edu.co/bitstreams/ddd57ff2-1509-4025-9344-12baf9743b14/download
https://repositorio.uniandes.edu.co/bitstreams/fe083f72-d0f7-4b9c-894d-d117262a542e/download
https://repositorio.uniandes.edu.co/bitstreams/7871a2b0-9c3a-4766-ad0c-e8492cb5bc71/download
https://repositorio.uniandes.edu.co/bitstreams/f45eac03-5ba8-4006-9d86-d8f59043904c/download
bitstream.checksum.fl_str_mv f7d494f61e544413a13e6ba1da2089cd
3de8fd8861d2bd6d9cd71909e7c49a58
dde66eca597771a44455b3c6cfc19711
e5590419cf1a052a9520694eef220c7b
a59d61ca1c738010580be1c9307b7c09
5aa5c691a1ffe97abd12c2966efcb8d6
8e17aee8260dcd649d879323a88e4d34
08b106dfeb12472e88207a069e15ba30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1828159149594116096
spelling Attribution-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/http://purl.org/coar/access_right/c_f1cf http://purl.org/coar/access_right/c_f1cfMiscione, Gian Pietrovirtual::1108-1Hayek Orduz, Yasser54366ad6-bcd1-4bc0-8653-17dcaa614687600Zapata Rivera, Jhon EnriqueComputational Bio- Organic Chemistry Bogotá2023-07-12T15:10:03Z2026-04-032020-06-12http://hdl.handle.net/1992/68369instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/La estereoselectividad es un factor crucial en la síntesis de compuestos biológicamente activos, y los auxiliares quirales desempeñan un papel fundamental en el control de esta propiedad. Se ha demostrado experimentalmente que el uso de 1,3-ditianos como auxiliares quirales permite lograr reacciones estereoselectivas, sin embargo, aún no se comprende completamente su funcionamiento. Con el fin de investigar cómo operan los 1,3-ditianos, se llevaron a cabo cálculos computacionales para estudiar las reacciones de enolización y alquilación utilizando tres auxiliares ditianos denominados Ditiano 1, Ditiano 2 y Ditiano 3. Como resultado, se obtuvieron las superficies de energía potencial correspondientes a los pasos de reacción de los auxiliares. Este estudio contribuye al desarrollo de métodos sintéticos para la obtención de moléculas que requieren el uso de auxiliares quirales en su ruta sintética.Stereoselectivity is a crucial factor in the synthesis of biologically active compounds, and chiral auxiliaries play a fundamental role in controlling this property. It has been experimentally demonstrated that the use of 1,3-dithianes as chiral auxiliaries allows for achieving stereoselective reactions. However, their functioning is still not fully understood. In order to investigate how 1,3-dithianes operate, computational calculations were performed to study the enolization and alkylation reactions using three dithiane auxiliaries named Dithiane 1, Dithiane 2, and Dithiane 3. As a result, potential energy surfaces corresponding to the reaction steps of the auxiliaries were obtained. This study contributes to the development of synthetic methods for obtaining molecules that require the use of chiral auxiliaries in their synthetic route.QuímicoPregradoQuímica computacional81 páginasapplication/pdfspaUniversidad de los AndesQuímicaFacultad de CienciasDepartamento de QuímicaEstudio computacional de alquilaciones estereoselectivas de enolatos de litioTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPDFTQMDitianoEstereoselectividadEnergía libreQuímicaOschmann, M.; Holm, L. J.; Pourghasemi-Lati, M.; Verho, O. Synthesis of Elaborate Benzofuran-2-carboxamide Derivatives through a Combination of 8-Aminoquinoline Directed C-H Arylation and Transamidation Chemistry. Molecules 2020, 25 (2), 361. https://doi.org/10.3390/molecules25020361.Khanam, H.; Shamsuzzaman. Bioactive Benzofuran Derivatives: A Review. European Journal of Medicinal Chemistry. Elsevier Masson SAS June 2015, pp 483-504. https://doi.org/10.1016/j.ejmech.2014.11.039.Modukuri, R. K.; Choudhary, D.; Gupta, S.; Rao, K. B.; Adhikary, S.; Sharma, T.; Siddiqi, M. I.; Trivedi, R.; Sashidhara, K. V. Benzofuran-Dihydropyridine Hybrids: A New Class of Potential Bone Anabolic Agents. Bioorganic Med. Chem. 2017, 25 (24), 6450-6466. https://doi.org/10.1016/j.bmc.2017.10.018.Kumar, S.; Namkung, W.; Verkman, A. S.; Sharma, P. K. Novel 5-Substituted Benzyloxy-2-Arylbenzofuran-3-Carboxylic Acids as Calcium Activated Chloride Channel Inhibitors. Bioorganic Med. Chem. 2012, 20 (14), 4237-4244. https://doi.org/10.1016/j.bmc.2012.05.074.Gessner, G.; Heller, R.; Hoshi, T.; Heinemann, S. H. The Amiodarone Derivative 2-Methyl-3-(3,5-Diiodo-4-Carboxymethoxybenzyl)Benzofuran (KB130015) Opens Large-Conductance Ca2+-Activated K+ Channels and Relaxes Vascular Smooth Muscle. Eur. J. Pharmacol. 2007, 555 (2-3), 185-193. https://doi.org/10.1016/j.ejphar.2006.10.053.Taddei, S.; Bruno, R. M. Calcium Channel Blockers. In Encyclopedia of Endocrine Diseases; Elsevier, 2018; pp 689-695. https://doi.org/10.1016/B978-0-12-801238-3.65408-9.Toal, C. B.; Meredith, P. A.; Elliott, H. L. Long-Acting Dihydropyridine Calcium-Channel Blockers and Sympathetic Nervous System Activity in Hypertension: A Literature Review Comparing Amlodipine and Nifedipine GITS. Blood Press. 2012, 21 (SUPPL. 1), 3-10. https://doi.org/10.3109/08037051.2012.690615.Qing, X.; Lee, X. Y.; De Raeymaeker, J.; Tame, J. R.; Zhang, K. Y.; De Maeyer, M.; Voet, A. R. Pharmacophore Modeling: Advances, Limitations, And Current Utility in Drug Discovery. J. Receptor. Ligand Channel Res. 2014, 7, 81-92. https://doi.org/10.2147/JRLCR.S46843.Christmann, M.; Bräse, S. Asymmetric Synthesis: The Essentials; Wiley-VCH, 2008.Diaz-Muñoz, G.; Miranda, I. L.; Sartori, S. K.; Rezende, D. C.; Alves Nogueira Diaz, M. Use of Chiral Auxiliaries in the Asymmetric Synthesis of Biologically Active Compounds: A Review. Chirality 2019, 31 (10), 776-812. https://doi.org/10.1002/chir.23103.Wood, W. W. Chapter 4 Trends in the Chemistry of 1,3- Dithioacetals. Organosulfur Chem. 1995, 1 (C), 133-224. https://doi.org/10.1016/S1099-8268(07)80015-1.Yoshimura, Y.; Kumamoto, H.; Baba, A.; Takeda, S.; Tanaka, H. Study on the Reaction Mechanism of C-6 Lithiation of Pyrimidine Nucleosides by Using Lithium Hexamethyldisilazide as a Base; Oxford University Press, 2003.Rappoport, Z.; Marek, I. The Chemistry of Organolithium Compounds; John Wiley & Sons, Ltd, 2004. https://doi.org/10.1002/047002111x.Carey, F.; Sundberg, R. Advanced Organic Chemistry. Part B: Reactions and Synthesis. Fourth Edition. Molecules 2001. https://doi.org/10.3390/61201015.Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. Acyclic Stereoselection. 7. Stereoselective Synthesis of 2-Alkyl-3-Hydroxy Carbonyl Compounds by Aldol Condensation1. J. Org. Chem. 1980, 45 (6), 1066-1081. https://doi.org/10.1021/jo01294a030.Ireland, R. E.; Mueller, R. H.; Willard, A. K. The Ester Enolate Claisen Rearrangement. Stereochemical Control through Stereoselective Enolate Formation. J. Am. Chem. Soc. 1976, 98 (10), 2868-2877. https://doi.org/10.1021/ja00426a033.Knochel, P.; Molander, G. A. Comprehensive Organic Synthesis; 2014.Gawley, R. E.; Aubé, J. Chapter 3 Enolate, Azaenolate, and Organolithium Alkylations. Tetrahedron Org. Chem. Ser. 1996, 14 (C), 75-119. https://doi.org/10.1016/S1460-1567(96)80025-0.Bernardi, A.; Capelli, A. M.; Cassinari, A.; Comotti, A.; Gennari, C.; Scolastico, C. A Computational Study of the 1,4-Addition of Lithium Enolates to Conjugated Carbonyl Compounds. J. Org. Chem. 1992, 32 (6), 823-826. https://doi.org/10.1021/jo00052a011.Pratt, L. M.; Nguyen, S. C.; Thanh, B. T. A Computational Study of Lithium Ketone Enolate Aggregation in the Gas Phase and in THF Solution. J. Org. Chem. 2008, 73 (16), 6086-6091. https://doi.org/10.1021/jo800528y.Pratt, L. M.; Van Nguyên, N.; Ramachandran, B. Computational Strategies for Evaluating Barrier Heights for Gas-Phase Reactions of Lithium Enolates. J. Org. Chem. 2005, 70 (11), 4279-4283. https://doi.org/10.1021/jo0503409.McKee, M. L. A Theoretical Study of Proton Transfer in Lithium Carbonyl and Lithium Enolate Complexes. J. Am. Chem. Soc. 1987, 109 (2), 559-565. https://doi.org/10.1021/ja00236a039.Agami, C. Mise En Evidence d'un Controle Orbitalaire Dans La C-Alkylation Des Centones. Tetrahedron Lett. 1977, 18 (32), 2801-2804. https://doi.org/10.1016/S0040-4039(01)83077-X.Houk, K. N.; Paddon-Row, M. N. Transition Structures for C- and O-Alkylation of Acetaldehyde Enolate. Stereoelectronic Effects and C/O Alkylation Ratios. J. Am. Chem. Soc. 1986, 108 (10), 2659-2662. https://doi.org/10.1021/ja00270a026.Casimir, H. B. G. The Historical Development of Quantum Theory. Contemp. Phys. 1983. https://doi.org/10.1080/00107518308219068.James.; Foresman, J. B.; Frisch, A. Exploring Chemistry With Electronic Structure Methods. Exploring Chemistry with Electronic Structure Methods. 2013. https://doi.org/10.1002/adma.200400767.House, J. Fundamentals of Quantum Chemistry. Choice Rev. Online 2005. https://doi.org/10.5860/choice.42-4658.Atkins, P.; Friedman, R. Molecular Quantum Mechanics Fourth Edition. Oxford Univ. Press New York 2005.Levine, I. N. Quantum Chemistry.Cengel, Y. A.; Palm, W. J. Differential Equations for Engineers and Scientists; McGraw Hill, 2013.Seider, W. D.; Lewin, D. R.; Seader, J. D.; Widagdo, S. (Chemical engineer); Gani, R. (Rafiqul); Ng, K. M. Product and Process Design Principles: Synthesis, Analysis, and Evaluation.Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes; 2010. https://doi.org/10.1137/1.9780898719383.Edgar, T. F.; Himmelblau, D. M.; Lasdon, L. S. Optimization of Chemical Processes; McGraw-Hill, 2001.Caballero, J. A.; Grossmann, I. E. Una Revisión Del Estado Del Arte En Optimización. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial. Elsevier Doyma January 2007, pp 5-23. https://doi.org/10.1016/s1697-7912(07)70188-7.Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, Incorporated, 2016.Hehre, W.; Radom, L.; Schleyer, P.; Pople, J. Ab Initio Molecular Theory; Wiley, Ed.; John Wiley & Son, Inc., 1986.Dolg, M.; Cao, X. Relativistic Pseudopotentials: Their Development and Scope of Applications. Chemical Reviews. American Chemical Society January 2012, pp 403-480. https://doi.org/10.1021/cr2001383.Martin, J. M. L.; Sundermann, A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe. J. Chem. Phys. 2001, 114 (8), 3408-3420. https://doi.org/10.1063/1.1337864.Lewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics: Third Edition 2016; Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-30916-3.Luken, W. Properties of the Fermi Hole in Molecules. Croat. Chem. Acta 1984.Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136 (3B), B864. https://doi.org/10.1103/PhysRev.136.B864.Zhao, Y.; Truhlar, D. G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2008, 4 (11), 1849-1868. https://doi.org/10.1021/ct800246v.Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Phys. Rev. B - Condens. Matter Mater. Phys. 1999, 59 (11), 7413-7421. https://doi.org/10.1103/PhysRevB.59.7413.Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140 (4A), A1133. https://doi.org/10.1103/PhysRev.140.A1133.Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Phys. Rev. B 1992, 45 (23), 13244-13249. https://doi.org/10.1103/PhysRevB.45.13244.Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2017, 19 (48), 32184-32215. https://doi.org/10.1039/c7cp04913g.Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry: Fourth Edition; Wiley-VCH: Weinheim, Germany, 2010. https://doi.org/10.1002/9783527632220.Monard, G.; Rivail, J. L. Solvent Effects in Quantum Chemistry. In Handbook of Computational Chemistry; Springer International Publishing, 2017; pp 727-739. https://doi.org/10.1007/978-3-319-27282-5_15.Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396. https://doi.org/10.1021/jp810292n.Peng, Q.; Duarte, F.; Paton, R. S. Computing Organic Stereoselectivity-from Concepts to Quantitative Calculations and Predictions. Chemical Society Reviews. 2016. https://doi.org/10.1039/c6cs00573j.Jonathan Clayden, Nick Greeves, S. G. W. Organic Chemistry; 2012. https://doi.org/10.1007/s00897010513a.Smith, A. B.; Xian, M. Anion Relay Chemistry: An Effective Tactic for Diversity Oriented Synthesis. J. Am. Chem. Soc. 2006, 128 (1), 66-67. https://doi.org/10.1021/ja057059w.Tanaka, F.; Fuji, K. Stereochemistry of the Enolate from Methyl Phenylacetate. Tetrahedron Lett. 1992, 33 (51), 7885-7888. https://doi.org/10.1016/S0040-4039(00)74769-1.201412398Publicationhttps://scholar.google.es/citations?user=-j4-Do4AAAAJvirtual::1108-10000-0003-2262-9179virtual::1108-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001610008virtual::1108-161fd9fc5-9109-431d-97ae-4b0552a4df5cvirtual::1108-161fd9fc5-9109-431d-97ae-4b0552a4df5cvirtual::1108-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.uniandes.edu.co/bitstreams/eac6b16e-56e5-4b1e-b645-1c6b0045e1c5/downloadf7d494f61e544413a13e6ba1da2089cdMD56THUMBNAILTrabajo de grado Yasser Hayek-Biblioteca.pdf.jpgTrabajo de grado Yasser Hayek-Biblioteca.pdf.jpgIM Thumbnailimage/jpeg6803https://repositorio.uniandes.edu.co/bitstreams/f17971c6-333a-4bdc-93de-9da0e68bb99e/download3de8fd8861d2bd6d9cd71909e7c49a58MD58Formato autorizacion tesis.pdf.jpgFormato autorizacion tesis.pdf.jpgIM Thumbnailimage/jpeg15882https://repositorio.uniandes.edu.co/bitstreams/7af92587-9b9d-4041-a18a-0721256707f7/downloaddde66eca597771a44455b3c6cfc19711MD510ORIGINALTrabajo de grado Yasser Hayek-Biblioteca.pdfTrabajo de grado Yasser Hayek-Biblioteca.pdfTrabajo de gradoapplication/pdf2783192https://repositorio.uniandes.edu.co/bitstreams/3ed236c6-50c3-4a53-82fa-52b333a3cf47/downloade5590419cf1a052a9520694eef220c7bMD53Formato autorizacion tesis.pdfFormato autorizacion tesis.pdfHIDEapplication/pdf301708https://repositorio.uniandes.edu.co/bitstreams/ddd57ff2-1509-4025-9344-12baf9743b14/downloada59d61ca1c738010580be1c9307b7c09MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/fe083f72-d0f7-4b9c-894d-d117262a542e/download5aa5c691a1ffe97abd12c2966efcb8d6MD55TEXTTrabajo de grado Yasser Hayek-Biblioteca.pdf.txtTrabajo de grado Yasser Hayek-Biblioteca.pdf.txtExtracted texttext/plain206691https://repositorio.uniandes.edu.co/bitstreams/7871a2b0-9c3a-4766-ad0c-e8492cb5bc71/download8e17aee8260dcd649d879323a88e4d34MD57Formato autorizacion tesis.pdf.txtFormato autorizacion tesis.pdf.txtExtracted texttext/plain1161https://repositorio.uniandes.edu.co/bitstreams/f45eac03-5ba8-4006-9d86-d8f59043904c/download08b106dfeb12472e88207a069e15ba30MD591992/68369oai:repositorio.uniandes.edu.co:1992/683692025-03-04 08:22:40.267http://creativecommons.org/licenses/by-nd/4.0/embargohttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==