Automatic GUI testing for android using reinforcement learning

The developers focus on testing applications, which can be a time-consuming task. To address this issue, we developed AgentDroid, a tool that utilizes reinforcement learning techniques to automate test execution. So far, the results have been impressive, outperforming state-of-the-art RL-based autom...

Full description

Autores:
Valbuena Bautista, Daniel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/64317
Acceso en línea:
http://hdl.handle.net/1992/64317
Palabra clave:
Reinforcement learning
Testing
Android
Ingeniería
Rights
openAccess
License
Atribución 4.0 Internacional
id UNIANDES2_9e24b4ee805ebf02544d68496b0691a9
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/64317
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Automatic GUI testing for android using reinforcement learning
title Automatic GUI testing for android using reinforcement learning
spellingShingle Automatic GUI testing for android using reinforcement learning
Reinforcement learning
Testing
Android
Ingeniería
title_short Automatic GUI testing for android using reinforcement learning
title_full Automatic GUI testing for android using reinforcement learning
title_fullStr Automatic GUI testing for android using reinforcement learning
title_full_unstemmed Automatic GUI testing for android using reinforcement learning
title_sort Automatic GUI testing for android using reinforcement learning
dc.creator.fl_str_mv Valbuena Bautista, Daniel
dc.contributor.advisor.none.fl_str_mv Mojica Hanke, Anamaría Irmgard
Escobar Velásquez, Camilo Andrés
Linares Vásquez, Mario
dc.contributor.author.none.fl_str_mv Valbuena Bautista, Daniel
dc.contributor.researchgroup.es_CO.fl_str_mv The Software Design Lab
dc.subject.keyword.none.fl_str_mv Reinforcement learning
Testing
Android
topic Reinforcement learning
Testing
Android
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description The developers focus on testing applications, which can be a time-consuming task. To address this issue, we developed AgentDroid, a tool that utilizes reinforcement learning techniques to automate test execution. So far, the results have been impressive, outperforming state-of-the-art RL-based automated testing tools for Android, such as ARES. In fact, AgentDroid achieved a 20% improvement in cumulative coverage compared to ARES. However, its effectiveness has only been evaluated on a single application, making it challenging to find compatible apps for testing. To address this, we tested 61 open-source apps and successfully executed 11 to verify that the tool's performance was consistent. During this experimentation, we also identified and corrected bugs in the tool, improved error detection, and generated code coverage reports at the package, class, and method levels.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-30T18:22:28Z
dc.date.available.none.fl_str_mv 2023-01-30T18:22:28Z
dc.date.issued.none.fl_str_mv 2023-01-28
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/64317
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/64317
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.references.es_CO.fl_str_mv David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. "Reinforcement Learning for Android GUI Testing". In: Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation. New York, NY, USA: Association for Computing Machinery, 2018, 2-8 (cit. on pp. 5, 7-9, 11).
Gigon Bae, Gregg Rothermel, and Doo-Hwan Bae. "Comparing model-based and dynamic event-extraction based GUI testing techniques: An empirical study". In: Journal of Systems and Software 97 (2014), pp. 15-46 (cit. on p. 5).
Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. "Deep Reinforcement Learning Based Android Application GUI Testing". In: Brazilian Symposium on Software Engineering. New York, NY, USA: Association for Computing Machinery, 2021, 186-194 (cit. on pp. 5, 8, 9).
Edgar Camilo Díaz Suárez, Camila Pantoja Gómez, and Camilo Esteban Rozo Benitez. Automatic multi-platform Interaction testing for android using reinforcement learning. Tech. rep. Universidad de los Andes, 2022 (cit. on p. 18).
Juha Eskonen, Julen Kahles, and Joel Reijonen. "Automating GUI Testing with Image-Based Deep Reinforcement Learning". In: 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). 2020, pp. 160-167 (cit. on pp. 8, 9, 11).
Jakob N Foerster. "Deep multi-agent reinforcement learning". PhD thesis. University of Oxford, 2018 (cit. on p. 8).
Tianxiao Gu, Chun Cao, Tianchi Liu, et al. "AimDroid: Activity-Insulated Multilevel Automated Testing for Android Applications". In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). 2017, pp. 103- 114 (cit. on pp. 5, 7-9).
Ciaran Gultnieks. F-Droid - free and Open source android app repository. 2010 (cit. on p. 2).
Yavuz Köroglu and Alper Sen. "Reinforcement Learning-Driven Test Generation for Android GUI Applications using Formal Specifications". In: CoRR abs/1911.05403 (2019). arXiv: 1911.05403 (cit. on pp. 7, 9).
Mario Linares-Vásquez, Cárlos Bernal-Cardenas, Kevin Moran, and Denys Poshyvanyk. "How do Developers Test Android Applications?" In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). Sept. 2017, pp. 613-622 (cit. on p. 1).
Ryan Lowe, Yi Wu, Aviv Tamar, et al. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. 2017 (cit. on p. 8).
Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, and John Hallam. A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots. 2019. arXiv: 1909.03772 [cs.LG] (cit. on p. 26).
Ke Mao, Mark Harman, and Yue Jia. "Sapienz: Multi-Objective Automated Testing for Android Applications". In: Proceedings of the 25th International Symposium on Software Testing and Analysis. ISSTA 2016. Saarbrücken, Germany: Association for Computing Machinery, 2016, 94-105 (cit. on p. 5).
Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. "Reinforcement Learning Based Curiosity-Driven Testing of Android Applications". In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA 2020. Virtual Event, USA: Association for Computing Machinery, 2020, 153-164 (cit. on pp. 7-9).
Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. "Deep Reinforcement Learning for Black-Box Testing of Android Apps". In: CoRR abs/2101.02636 (2021). arXiv: 2101.02636 (cit. on pp. 1, 8, 9).
Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018 (cit. on pp. 5-7).
The Software Design Lab. InstruAPK. https://github.com/TheSoftwareDesignLab/ InstruAPK. 2020 (cit. on p. 15).
The Software Design Lab. MutAPK. https://thesoftwaredesignlab.github.io/MutAPK (cit. on p. 15).
Daniel Toyama, Philippe Hamel, Anita Gergely, et al. "AndroidEnv: A Reinforcement Learning Platform for Android". In: CoRR abs/2105.13231 (2021). arXiv: 2105.13231 (cit. on pp. 8, 11).
Thi Anh Tuyet Vuong and Shingo Takada. "A Reinforcement Learning Based Approach to Automated Testing of Android Applications". In: Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation. New York, NY, USA: Association for Computing Machinery, 2018, 31-37 (cit. on pp. 7-9).
Tuyet Vuong and Shingo Takada. "Semantic analysis for deep Q-network in android GUI testing". English. In: Proceedings - SEKE 2019. Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE. 31st International Conference on Software Engineering and Knowledge Engineering, SEKE 2019 ; Conference date: 10-07-2019 Through 12-07-2019. Knowledge Systems Institute Graduate School, Jan. 2019, pp. 123-128 (cit. on pp. 8, 9).
Husam N. Yasin, Siti Hafizah Ab Hamid, and Raja Jamilah Raja Yusof. "DroidbotX: Test Case Generation Tool for Android Applications Using Q-Learning". In: Symmetry 13.2 (2021) (cit. on pp. 7-9).
Yavuz Koroglu, Alper Sen, Ozlem Muslu, et al. "QBE: QLearning-Based Exploration of Android Applications". In: 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). 2018, pp. 105-115 (cit. on pp. 7-9).
Zhihao Shen, Kang Yang, Zhao Xi, Jianhua Zou, and Wan Du. "DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction". In: IEEE Transactions on Mobile Computing (2021), pp. 1-1 (cit. on p. 8).
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 43 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/8568b58e-cd65-46d9-a3af-ffeaa163d208/download
https://repositorio.uniandes.edu.co/bitstreams/bee624d7-841f-4c98-88db-1c7c14b4576f/download
https://repositorio.uniandes.edu.co/bitstreams/6ab2e8a9-f074-48be-9a1e-ef7a32c1a6b7/download
https://repositorio.uniandes.edu.co/bitstreams/01c5dcab-0c18-47aa-8cf1-697acef19fe7/download
https://repositorio.uniandes.edu.co/bitstreams/38700153-2581-41a5-99bf-29749794ec3e/download
https://repositorio.uniandes.edu.co/bitstreams/e30f4160-04ea-412f-bddb-bedfc9e8f2ac/download
https://repositorio.uniandes.edu.co/bitstreams/95f1ee29-63a1-43c9-8d0e-c94531979af9/download
https://repositorio.uniandes.edu.co/bitstreams/d98164b6-86ac-4bd0-b61c-e80267f54164/download
bitstream.checksum.fl_str_mv 0175ea4a2d4caec4bbcc37e300941108
4bcab60f9f40c7e71d2c4fa9b1c400d6
386a28a35bc8db8fb171afda2de9ae1a
3653227cf7c149e16555d6101ab82861
8e70aa67d5618fd0722ae214cc8577fc
960a5221a791e04645cd7ae7add91314
e860c8da23f56e4a54c6e1241b9297ab
5aa5c691a1ffe97abd12c2966efcb8d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133968300998656
spelling Atribución 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Hanke, Anamaría Irmgard8b69098e-58c5-4e7b-a9a8-f133293320ac600Escobar Velásquez, Camilo Andrés6c2a87eb-6631-4882-85f6-a9b038936472600Linares Vásquez, Mariovirtual::10719-1Valbuena Bautista, Daniele46bad11-207d-4954-b7cf-8617e290cbff600The Software Design Lab2023-01-30T18:22:28Z2023-01-30T18:22:28Z2023-01-28http://hdl.handle.net/1992/64317instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The developers focus on testing applications, which can be a time-consuming task. To address this issue, we developed AgentDroid, a tool that utilizes reinforcement learning techniques to automate test execution. So far, the results have been impressive, outperforming state-of-the-art RL-based automated testing tools for Android, such as ARES. In fact, AgentDroid achieved a 20% improvement in cumulative coverage compared to ARES. However, its effectiveness has only been evaluated on a single application, making it challenging to find compatible apps for testing. To address this, we tested 61 open-source apps and successfully executed 11 to verify that the tool's performance was consistent. During this experimentation, we also identified and corrected bugs in the tool, improved error detection, and generated code coverage reports at the package, class, and method levels.Ingeniero de Sistemas y ComputaciónPregrado43 páginasapplication/pdfengUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónAutomatic GUI testing for android using reinforcement learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPReinforcement learningTestingAndroidIngenieríaDavid Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. "Reinforcement Learning for Android GUI Testing". In: Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation. New York, NY, USA: Association for Computing Machinery, 2018, 2-8 (cit. on pp. 5, 7-9, 11).Gigon Bae, Gregg Rothermel, and Doo-Hwan Bae. "Comparing model-based and dynamic event-extraction based GUI testing techniques: An empirical study". In: Journal of Systems and Software 97 (2014), pp. 15-46 (cit. on p. 5).Eliane Collins, Arilo Neto, Auri Vincenzi, and José Maldonado. "Deep Reinforcement Learning Based Android Application GUI Testing". In: Brazilian Symposium on Software Engineering. New York, NY, USA: Association for Computing Machinery, 2021, 186-194 (cit. on pp. 5, 8, 9).Edgar Camilo Díaz Suárez, Camila Pantoja Gómez, and Camilo Esteban Rozo Benitez. Automatic multi-platform Interaction testing for android using reinforcement learning. Tech. rep. Universidad de los Andes, 2022 (cit. on p. 18).Juha Eskonen, Julen Kahles, and Joel Reijonen. "Automating GUI Testing with Image-Based Deep Reinforcement Learning". In: 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). 2020, pp. 160-167 (cit. on pp. 8, 9, 11).Jakob N Foerster. "Deep multi-agent reinforcement learning". PhD thesis. University of Oxford, 2018 (cit. on p. 8).Tianxiao Gu, Chun Cao, Tianchi Liu, et al. "AimDroid: Activity-Insulated Multilevel Automated Testing for Android Applications". In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). 2017, pp. 103- 114 (cit. on pp. 5, 7-9).Ciaran Gultnieks. F-Droid - free and Open source android app repository. 2010 (cit. on p. 2).Yavuz Köroglu and Alper Sen. "Reinforcement Learning-Driven Test Generation for Android GUI Applications using Formal Specifications". In: CoRR abs/1911.05403 (2019). arXiv: 1911.05403 (cit. on pp. 7, 9).Mario Linares-Vásquez, Cárlos Bernal-Cardenas, Kevin Moran, and Denys Poshyvanyk. "How do Developers Test Android Applications?" In: 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). Sept. 2017, pp. 613-622 (cit. on p. 1).Ryan Lowe, Yi Wu, Aviv Tamar, et al. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. 2017 (cit. on p. 8).Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, and John Hallam. A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots. 2019. arXiv: 1909.03772 [cs.LG] (cit. on p. 26).Ke Mao, Mark Harman, and Yue Jia. "Sapienz: Multi-Objective Automated Testing for Android Applications". In: Proceedings of the 25th International Symposium on Software Testing and Analysis. ISSTA 2016. Saarbrücken, Germany: Association for Computing Machinery, 2016, 94-105 (cit. on p. 5).Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. "Reinforcement Learning Based Curiosity-Driven Testing of Android Applications". In: Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA 2020. Virtual Event, USA: Association for Computing Machinery, 2020, 153-164 (cit. on pp. 7-9).Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. "Deep Reinforcement Learning for Black-Box Testing of Android Apps". In: CoRR abs/2101.02636 (2021). arXiv: 2101.02636 (cit. on pp. 1, 8, 9).Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second. The MIT Press, 2018 (cit. on pp. 5-7).The Software Design Lab. InstruAPK. https://github.com/TheSoftwareDesignLab/ InstruAPK. 2020 (cit. on p. 15).The Software Design Lab. MutAPK. https://thesoftwaredesignlab.github.io/MutAPK (cit. on p. 15).Daniel Toyama, Philippe Hamel, Anita Gergely, et al. "AndroidEnv: A Reinforcement Learning Platform for Android". In: CoRR abs/2105.13231 (2021). arXiv: 2105.13231 (cit. on pp. 8, 11).Thi Anh Tuyet Vuong and Shingo Takada. "A Reinforcement Learning Based Approach to Automated Testing of Android Applications". In: Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation. New York, NY, USA: Association for Computing Machinery, 2018, 31-37 (cit. on pp. 7-9).Tuyet Vuong and Shingo Takada. "Semantic analysis for deep Q-network in android GUI testing". English. In: Proceedings - SEKE 2019. Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE. 31st International Conference on Software Engineering and Knowledge Engineering, SEKE 2019 ; Conference date: 10-07-2019 Through 12-07-2019. Knowledge Systems Institute Graduate School, Jan. 2019, pp. 123-128 (cit. on pp. 8, 9).Husam N. Yasin, Siti Hafizah Ab Hamid, and Raja Jamilah Raja Yusof. "DroidbotX: Test Case Generation Tool for Android Applications Using Q-Learning". In: Symmetry 13.2 (2021) (cit. on pp. 7-9).Yavuz Koroglu, Alper Sen, Ozlem Muslu, et al. "QBE: QLearning-Based Exploration of Android Applications". In: 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). 2018, pp. 105-115 (cit. on pp. 7-9).Zhihao Shen, Kang Yang, Zhao Xi, Jianhua Zou, and Wan Du. "DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction". In: IEEE Transactions on Mobile Computing (2021), pp. 1-1 (cit. on p. 8).201820192Publicationhttps://scholar.google.es/citations?user=55fmMcoAAAAJvirtual::10719-10000-0003-0161-2888virtual::10719-10cbe51ff-e35a-4c3a-ad77-609b3cdfc9b2virtual::10719-10cbe51ff-e35a-4c3a-ad77-609b3cdfc9b2virtual::10719-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/8568b58e-cd65-46d9-a3af-ffeaa163d208/download0175ea4a2d4caec4bbcc37e300941108MD52ORIGINALUndergraduateThesis_AgentDroid.pdfUndergraduateThesis_AgentDroid.pdfTrabajo de gradoapplication/pdf1450229https://repositorio.uniandes.edu.co/bitstreams/bee624d7-841f-4c98-88db-1c7c14b4576f/download4bcab60f9f40c7e71d2c4fa9b1c400d6MD53Autorizacion_Firmada.pdfAutorizacion_Firmada.pdfHIDEapplication/pdf205284https://repositorio.uniandes.edu.co/bitstreams/6ab2e8a9-f074-48be-9a1e-ef7a32c1a6b7/download386a28a35bc8db8fb171afda2de9ae1aMD54TEXTUndergraduateThesis_AgentDroid.pdf.txtUndergraduateThesis_AgentDroid.pdf.txtExtracted texttext/plain56712https://repositorio.uniandes.edu.co/bitstreams/01c5dcab-0c18-47aa-8cf1-697acef19fe7/download3653227cf7c149e16555d6101ab82861MD55Autorizacion_Firmada.pdf.txtAutorizacion_Firmada.pdf.txtExtracted texttext/plain1164https://repositorio.uniandes.edu.co/bitstreams/38700153-2581-41a5-99bf-29749794ec3e/download8e70aa67d5618fd0722ae214cc8577fcMD57THUMBNAILUndergraduateThesis_AgentDroid.pdf.jpgUndergraduateThesis_AgentDroid.pdf.jpgIM Thumbnailimage/jpeg2980https://repositorio.uniandes.edu.co/bitstreams/e30f4160-04ea-412f-bddb-bedfc9e8f2ac/download960a5221a791e04645cd7ae7add91314MD56Autorizacion_Firmada.pdf.jpgAutorizacion_Firmada.pdf.jpgIM Thumbnailimage/jpeg17311https://repositorio.uniandes.edu.co/bitstreams/95f1ee29-63a1-43c9-8d0e-c94531979af9/downloade860c8da23f56e4a54c6e1241b9297abMD58LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/d98164b6-86ac-4bd0-b61c-e80267f54164/download5aa5c691a1ffe97abd12c2966efcb8d6MD511992/64317oai:repositorio.uniandes.edu.co:1992/643172024-03-13 14:15:29.464http://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==