Embeddings, connectivity and minimum spanning trees in dimensionality reduction
In this work we follow the idea of using connectivity properties of graphs in order to build a graph that represents the underlying manifold without a trial and error procedure. A theoretic explanation of the right choice for graph building is presented in terms of topological, graph and physical co...
- Autores:
-
Quintero Peña, Carlos Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2011
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/11392
- Acceso en línea:
- http://hdl.handle.net/1992/11392
- Palabra clave:
- Variedades (Matemáticas) - Investigaciones
Análisis de componentes principales
Arboles de expansión (Teoría de grafos)
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
Summary: | In this work we follow the idea of using connectivity properties of graphs in order to build a graph that represents the underlying manifold without a trial and error procedure. A theoretic explanation of the right choice for graph building is presented in terms of topological, graph and physical concepts and experiments using artificial data are shown in order to compare the proposed methodology with other approaches. Also a new algorithm based on a linear local assumption in the manifold and minimum spanning trees is proposed in order to create a more robust neighborhood graph. |
---|