Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators
Soil contamination by lead can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. The aim of this work is to use biochar and activated biochar loaded with phosphorus to evaluate their potential remediation of lead in an en...
- Autores:
-
Acosta Luque, María Paula
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/57971
- Acceso en línea:
- http://hdl.handle.net/1992/57971
- Palabra clave:
- Remediation
Biochar
Husk rice
Phosphorous
Lead
Carbón activado
Biorremediación
Plomo
Bioindicadores
Ingeniería
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UNIANDES2_99a69d6aa00323c8b96233788c7d7c9e |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/57971 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.none.fl_str_mv |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
title |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
spellingShingle |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators Remediation Biochar Husk rice Phosphorous Lead Carbón activado Biorremediación Plomo Bioindicadores Ingeniería |
title_short |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
title_full |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
title_fullStr |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
title_full_unstemmed |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
title_sort |
Remediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicators |
dc.creator.fl_str_mv |
Acosta Luque, María Paula |
dc.contributor.advisor.none.fl_str_mv |
López Correa, Julián Esteban Saldarriaga Elorza, Juan Fernando |
dc.contributor.author.none.fl_str_mv |
Acosta Luque, María Paula |
dc.subject.keyword.none.fl_str_mv |
Remediation Biochar Husk rice Phosphorous Lead |
topic |
Remediation Biochar Husk rice Phosphorous Lead Carbón activado Biorremediación Plomo Bioindicadores Ingeniería |
dc.subject.armarc.none.fl_str_mv |
Carbón activado Biorremediación Plomo Bioindicadores |
dc.subject.themes.es_CO.fl_str_mv |
Ingeniería |
description |
Soil contamination by lead can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. The aim of this work is to use biochar and activated biochar loaded with phosphorus to evaluate their potential remediation of lead in an entisol-type soil. For this, biochar was obtained at different temperatures (450, 500, 550 and 600 ºC), then a part was activated and placed in different proportions in the soil (0.5, 1.0 and 2.0%). The bioavailability of P and Pb in the soil has been determined over time, and at 45 days the effect of P-engineered biochar in the soil has been evaluated using different bioindicators. Activated P-engineered biochar produced at 500 ºC has been found to present the best conditions for soil Pb remediation. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-14T21:02:53Z |
dc.date.available.none.fl_str_mv |
2022-06-14T21:02:53Z |
dc.date.issued.none.fl_str_mv |
2022-06-10 |
dc.type.es_CO.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.es_CO.fl_str_mv |
Text |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/57971 |
dc.identifier.instname.es_CO.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.es_CO.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.es_CO.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/57971 |
identifier_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.references.es_CO.fl_str_mv |
Adamo, P., Zampella, M., 2008. Chemical speciation to assess potentially toxic metals' (PTMs') bioavailability and geochemical forms in polluted soils. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories 175-212. https://doi.org/10.1016/B978-0-444-53159-9.00009-7 Ahmad, Munir, Usman, A.R.A., Al-Faraj, A.S., Ahmad, Mahtab, Sallam, A., Al-Wabel, M.I., 2018. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 194, 327-339. https://doi.org/10.1016/j.chemosphere.2017.11.156 Albert, H.A., Li, X., Jeyakumar, P., Wei, L., Huang, L., Huang, Q., Kamran, M., Shaheen, S.M., Hou, D., Rinklebe, J., Liu, Z., Wang, H., 2021. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Science of The Total Environment 755, 142582. https://doi.org/10.1016/j.scitotenv.2020.142582 Boularbah, A., Schwartz, C., Bitton, G., Morel, J.L., 2006. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63, 802-810. https://doi.org/10.1016/j.chemosphere.2005.07.079 Chavez, E., He, Z.L., Stoffella, P.J., Mylavarapu, R., Li, Y., Baligar, V.C., 2016. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. Environmental Science and Pollution Research 23, 17571-17580. https://doi.org/10.1007/s11356-016-6931-7 Chen, H., Tang, L., Hu, Y., Geng, Y., Meng, L., Li, W., Wang, Z., Li, Z., Huo, Z., 2022. Investigating the pathways of enhanced Pb immobilization by chlorine-loaded biochar. Journal of Cleaner Production 344, 131097. https://doi.org/10.1016/J.JCLEPRO.2022.131097 El-Bassi, L., Azzaz, A.A., Jellali, S., Akrout, H., Marks, E.A.N., Ghimbeu, C.M., Jeguirim, M., 2021. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Science of The Total Environment 755, 142531. https://doi.org/10.1016/J.SCITOTENV.2020.142531 Hall, R.L., Boisen Staal, L., Macintosh, K.A., McGrath, J.W., Bailey, J., Black, L., Gro Nielsen, U., Reitzel, K., Williams, P.N., 2020. Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma 362, 114096. https://doi.org/10.1016/J.GEODERMA.2019.114096 Herrera, K., Morales, L.F., Tarazona, N.A., Aguado, R., Saldarriaga, J.F., 2022. Use of Biochar from Rice Husk Pyrolysis: Part A: Recovery as an Adsorbent in the Removal of Emerging Compounds. ACS Omega 7, 7625-7637. https://doi.org/10.1021/ACSOMEGA.1C06147/ASSET/IMAGES/MEDIUM/AO1C06147_M005.GIF Iwai, C.B., Noller, B., 2010. Ecotoxicological assessment of diffuse pollution using biomonitoring tool for sustainable land use in Thailand. Journal of Environmental Sciences 22, 858-863. https://doi.org/10.1016/S1001-0742(09)60189-3 Jarosz, R., Szerement, J., Gondek, K., Mierzwa-Hersztek, M., 2022. The use of zeolites as an addition to fertilisers - A review. CATENA 213, 106125. https://doi.org/10.1016/J.CATENA.2022.106125 Kandeler, E., 2015. Physiological and Biochemical Methods for Studying Soil Biota and Their Functions, in: Soil Microbiology, Ecology and Biochemistry. Elsevier, pp. 187-222. https://doi.org/10.1016/B978-0-12-415955-6.00007-4 Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., Ma, L.Q., 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072 Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471 López, J.E., Builes, S., Heredia Salgado, M.A., Tarelho, L.A.C., Arroyave, C., Aristizábal, A., Chavez, E., 2020a. Adsorption of Cadmium Using Biochars Produced from Agro-Residues. The Journal of Physical Chemistry C 124, 14592-14602. https://doi.org/10.1021/acs.jpcc.0c02216 López, J.E., Gallego, J.L., Vargas-Ruiz, A., Peña-Mosquera, A.L., Zapata-Zapata, A.D., López-Sánchez, I.J., Botero-Botero, L.R., 2020b. Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-020-00315-w Luo, H., Law, W.W., Wu, Y., Zhu, W., Yang, E.H., 2018. Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals. Microporous and Mesoporous Materials 272, 8-15. https://doi.org/10.1016/J.MICROMESO.2018.06.015 Manesh, R.R., Grassi, G., Bergami, E., Marques-Santos, L.F., Faleri, C., Liberatori, G., Corsi, I., 2018a. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicology and Environmental Safety 148, 359-366. https://doi.org/10.1016/j.ecoenv.2017.10.051 Manesh, R.R., Grassi, G., Bergami, E., Marques-Santos, L.F., Faleri, C., Liberatori, G., Corsi, I., 2018b. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicology and Environmental Safety 148, 359-366. https://doi.org/10.1016/J.ECOENV.2017.10.051 Mujtaba Munir, M.A., Yousaf, B., Ali, M.U., Dan, C., Abbas, Q., Arif, M., Yang, X., 2021. In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil. Journal of Cleaner Production 302, 127005. https://doi.org/10.1016/J.JCLEPRO.2021.127005 Muñoz Romero, J.H., Sepúlveda Cadavid, C.A., Cortés, N., López Correa, J.E., Correa Estrada, J.D., 2019. Inactivation of Fusarium oxysporum Conidia in Soil with Gaseous Ozone-Preliminary Studies. Ozone: Science and Engineering. https://doi.org/10.1080/01919512.2019.1608810 Oliveira Resende, A.P., Santos, V.S.V., Campos, C.F., Morais, C.R. de, de Campos Júnior, E.O., Oliveira, A.M.M. de, Pereira, B.B., 2018. Ecotoxicological risk assessment of contaminated soil from a complex of ceramic industries using earthworm Eisenia fetida. https://doi-org.ezproxy.uniandes.edu.co/10.1080/15287394.2018.1528572 81, 1058-1065. https://doi.org/10.1080/15287394.2018.1528572 Pascual, J.A., Garcia, C., Hernandez, T., Moreno, J.L., Ros, M., 2000. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry 32, 1877-1883. https://doi.org/10.1016/S0038-0717(00)00161-9 Plaimart, J., Acharya, K., Mrozik, W., Davenport, R.J., Vinitnantharat, S., Werner, D., 2021. Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application. Environmental Pollution 268, 115684. https://doi.org/10.1016/J.ENVPOL.2020.115684 Prodana, M., Bastos, A.C., Amaro, A., Cardoso, D., Morgado, R., Machado, A.L., Verheijen, F.G.A., Keizer, J.J., Loureiro, S., 2019. Biomonitoring tools for biochar and biochar-compost amended soil under viticulture: Looking at exposure and effects. Applied Soil Ecology 137, 120-128. https://doi.org/10.1016/J.APSOIL.2019.01.007 Qu, J., Wang, Y., Tian, X., Jiang, Z., Deng, F., Tao, Y., Jiang, Q., Wang, L., Zhang, Y., 2021. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials 401, 123292. https://doi.org/10.1016/j.jhazmat.2020.123292 Rashmi, I., Biswas, A.K., Kartika, K.S., Kala, S., 2020. Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India. Journal of the Saudi Society of Agricultural Sciences 19, 241-248. https://doi.org/10.1016/J.JSSAS.2018.11.002 Rodríguez, F., Montoya-Ruiz, C., Estiati, I., Saldarriaga, J.F., 2020. Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process. ACS Omega 5, 24389-24402. https://doi.org/10.1021/ACSOMEGA.0C02768/ASSET/IMAGES/LARGE/AO0C02768_0010.JPEG Sepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., 2021a. Evaluation of a Biochar-Based Slow-Release P Fertilizer to Improve Spinacia oleracea P Use, Yield, and Nutritional Quality. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-021-00583-0 Sepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., 2021b. Evaluation of a Biochar-Based Slow-Release P Fertilizer to Improve Spinacia oleracea P Use, Yield, and Nutritional Quality. Journal of Soil Science and Plant Nutrition 2021 21:4 21, 2980-2992. https://doi.org/10.1007/S42729-021-00583-0 Shi, Z., Tang, Z., Wang, C., 2017. A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environmental Science and Pollution Research 24, 13284-13294. https://doi.org/10.1007/s11356-017-8784-0 Song, B., Almatrafi, E., Tan, X., Luo, S., Xiong, W., Zhou, C., Qin, M., Liu, Y., Cheng, M., Zeng, G., Gong, J., 2022. Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality. Renewable and Sustainable Energy Reviews 164, 112529. https://doi.org/10.1016/J.RSER.2022.112529 Tan, Y., Wan, X., Zhou, T., Wang, L., Yin, X., Ma, A., Wang, N., 2022. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution. Journal of Hazardous Materials 424, 127349. https://doi.org/10.1016/J.JHAZMAT.2021.127349 Wang, X., Li, Y., Wang, H., Wang, Y., Biswas, A., Wai Chau, H., Liang, J., Zhang, F., Bai, Y., Wu, S., Chen, J., Liu, H., Yang, G., Pulatov, A., 2022. Targeted biochar application alters physical, chemical, hydrological and thermal properties of salt-affected soils under cotton-sugarbeet intercropping. CATENA 216, 106414. https://doi.org/10.1016/J.CATENA.2022.106414 Whitby, L.M., Hutchinson, T.C., 1974. Heavy-metal Pollution in the Sudbury Mining and Smelting Region of Canada, II. Soil Toxicity Tests. Environmental Conservation 1, 191-200. https://doi.org/10.1017/S0376892900004562 Yang, Y.F., Cheng, Y.H., Liao, C.M., 2016. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment. Journal of Hazardous Materials 317, 210-220. https://doi.org/10.1016/J.JHAZMAT.2016.05.070 Zeng, L.S., Liao, M., Chen, C.L., Huang, C.Y., 2007. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil¿lead¿rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety 67, 67-74. https://doi.org/10.1016/j.ecoenv.2006.05.001 Zhang, F., Zhang, G., Liao, X., 2021. Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. Ecotoxicology and Environmental Safety 213, 112075. https://doi.org/10.1016/J.ECOENV.2021.112075 Zhang, P., Xue, B., Jiao, L., Meng, X., Zhang, L., Li, B., Sun, H., 2022. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Science of The Total Environment 813, 152648. https://doi.org/10.1016/J.SCITOTENV.2021.152648 Zhang, S., Chen, S., Fenton, O., Li, Y., Chen, Q., 2021. Enhanced topsoil P leaching in a short term flooded calcareous soil with combined straw and ammonium nitrogen incorporation. Geoderma 402, 115322. https://doi.org/10.1016/J.GEODERMA.2021.115322 Zheng, H., Feng, N., Yang, T., Shi, M., Wang, X., Zhang, Q., Zhao, J., Li, F., Sun, K., Xing, B., 2021. Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil. Science of The Total Environment 796, 148962. https://doi.org/10.1016/J.SCITOTENV.2021.148962 |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.publisher.es_CO.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.es_CO.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Ingeniería Civil y Ambiental |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/96d4e706-ffaf-459d-be0f-5fbfbc4b8ca9/download https://repositorio.uniandes.edu.co/bitstreams/be2372e4-203f-42d9-9e03-f2af242a455a/download https://repositorio.uniandes.edu.co/bitstreams/5f0b7174-5bdd-4fb8-9540-bb2e39fb5b5f/download https://repositorio.uniandes.edu.co/bitstreams/d423b971-1fcb-4fd0-b7d2-4242824847f1/download https://repositorio.uniandes.edu.co/bitstreams/17675071-e518-4d70-ba32-7be3c1d1470a/download https://repositorio.uniandes.edu.co/bitstreams/fbe249ee-62ca-41d0-bc7c-0854ade6d0d8/download https://repositorio.uniandes.edu.co/bitstreams/ef0098e2-d05d-43c2-8e46-b18f379ff6e1/download |
bitstream.checksum.fl_str_mv |
5aa5c691a1ffe97abd12c2966efcb8d6 7c8f766f94d10026780282ab7cf79255 4491fe1afb58beaaef41a73cf7ff2e27 7f56a1cbf56335305f0ce5e6596fd7d3 c0fd2beaf8ae8bdd470672310088b412 3ef8c9b878b56525b7e7dedc4221b732 030ff033431a2fb39caf737607841a09 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133928658534400 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Correa, Julián Esteban008b6949-33a2-4ec0-a9cd-090eb488c690600Saldarriaga Elorza, Juan Fernandovirtual::8260-1Acosta Luque, María Paula252e4364-4bca-4802-8c2d-64dd85950a906002022-06-14T21:02:53Z2022-06-14T21:02:53Z2022-06-10http://hdl.handle.net/1992/57971instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Soil contamination by lead can result from different anthropogenic sources such as lead-based paints, gasoline, pesticides, coal burning, mining, among others. The aim of this work is to use biochar and activated biochar loaded with phosphorus to evaluate their potential remediation of lead in an entisol-type soil. For this, biochar was obtained at different temperatures (450, 500, 550 and 600 ºC), then a part was activated and placed in different proportions in the soil (0.5, 1.0 and 2.0%). The bioavailability of P and Pb in the soil has been determined over time, and at 45 days the effect of P-engineered biochar in the soil has been evaluated using different bioindicators. Activated P-engineered biochar produced at 500 ºC has been found to present the best conditions for soil Pb remediation.Ingeniero AmbientalPregradoapplication/pdfengUniversidad de los AndesIngeniería AmbientalFacultad de IngenieríaDepartamento de Ingeniería Civil y AmbientalRemediation of Pb-contaminated soil using P-engineered biochar and biomonitoring employing bioindicatorsTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRemediationBiocharHusk ricePhosphorousLeadCarbón activadoBiorremediaciónPlomoBioindicadoresIngenieríaAdamo, P., Zampella, M., 2008. Chemical speciation to assess potentially toxic metals' (PTMs') bioavailability and geochemical forms in polluted soils. Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories 175-212. https://doi.org/10.1016/B978-0-444-53159-9.00009-7Ahmad, Munir, Usman, A.R.A., Al-Faraj, A.S., Ahmad, Mahtab, Sallam, A., Al-Wabel, M.I., 2018. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 194, 327-339. https://doi.org/10.1016/j.chemosphere.2017.11.156Albert, H.A., Li, X., Jeyakumar, P., Wei, L., Huang, L., Huang, Q., Kamran, M., Shaheen, S.M., Hou, D., Rinklebe, J., Liu, Z., Wang, H., 2021. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Science of The Total Environment 755, 142582. https://doi.org/10.1016/j.scitotenv.2020.142582Boularbah, A., Schwartz, C., Bitton, G., Morel, J.L., 2006. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63, 802-810. https://doi.org/10.1016/j.chemosphere.2005.07.079Chavez, E., He, Z.L., Stoffella, P.J., Mylavarapu, R., Li, Y., Baligar, V.C., 2016. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. Environmental Science and Pollution Research 23, 17571-17580. https://doi.org/10.1007/s11356-016-6931-7Chen, H., Tang, L., Hu, Y., Geng, Y., Meng, L., Li, W., Wang, Z., Li, Z., Huo, Z., 2022. Investigating the pathways of enhanced Pb immobilization by chlorine-loaded biochar. Journal of Cleaner Production 344, 131097. https://doi.org/10.1016/J.JCLEPRO.2022.131097El-Bassi, L., Azzaz, A.A., Jellali, S., Akrout, H., Marks, E.A.N., Ghimbeu, C.M., Jeguirim, M., 2021. Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Science of The Total Environment 755, 142531. https://doi.org/10.1016/J.SCITOTENV.2020.142531Hall, R.L., Boisen Staal, L., Macintosh, K.A., McGrath, J.W., Bailey, J., Black, L., Gro Nielsen, U., Reitzel, K., Williams, P.N., 2020. Phosphorus speciation and fertiliser performance characteristics: A comparison of waste recovered struvites from global sources. Geoderma 362, 114096. https://doi.org/10.1016/J.GEODERMA.2019.114096Herrera, K., Morales, L.F., Tarazona, N.A., Aguado, R., Saldarriaga, J.F., 2022. Use of Biochar from Rice Husk Pyrolysis: Part A: Recovery as an Adsorbent in the Removal of Emerging Compounds. ACS Omega 7, 7625-7637. https://doi.org/10.1021/ACSOMEGA.1C06147/ASSET/IMAGES/MEDIUM/AO1C06147_M005.GIFIwai, C.B., Noller, B., 2010. Ecotoxicological assessment of diffuse pollution using biomonitoring tool for sustainable land use in Thailand. Journal of Environmental Sciences 22, 858-863. https://doi.org/10.1016/S1001-0742(09)60189-3Jarosz, R., Szerement, J., Gondek, K., Mierzwa-Hersztek, M., 2022. The use of zeolites as an addition to fertilisers - A review. CATENA 213, 106125. https://doi.org/10.1016/J.CATENA.2022.106125Kandeler, E., 2015. Physiological and Biochemical Methods for Studying Soil Biota and Their Functions, in: Soil Microbiology, Ecology and Biochemistry. Elsevier, pp. 187-222. https://doi.org/10.1016/B978-0-12-415955-6.00007-4Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y., Ma, L.Q., 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072Li, H., Li, Y., Xu, Y., Lu, X., 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244, 125471. https://doi.org/10.1016/j.chemosphere.2019.125471López, J.E., Builes, S., Heredia Salgado, M.A., Tarelho, L.A.C., Arroyave, C., Aristizábal, A., Chavez, E., 2020a. Adsorption of Cadmium Using Biochars Produced from Agro-Residues. The Journal of Physical Chemistry C 124, 14592-14602. https://doi.org/10.1021/acs.jpcc.0c02216López, J.E., Gallego, J.L., Vargas-Ruiz, A., Peña-Mosquera, A.L., Zapata-Zapata, A.D., López-Sánchez, I.J., Botero-Botero, L.R., 2020b. Aspergillus tubingensis and Talaromyces islandicus Solubilize Rock Phosphate Under Saline and Fungicide Stress and Improve Zea mays Growth and Phosphorus Nutrition. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-020-00315-wLuo, H., Law, W.W., Wu, Y., Zhu, W., Yang, E.H., 2018. Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals. Microporous and Mesoporous Materials 272, 8-15. https://doi.org/10.1016/J.MICROMESO.2018.06.015Manesh, R.R., Grassi, G., Bergami, E., Marques-Santos, L.F., Faleri, C., Liberatori, G., Corsi, I., 2018a. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicology and Environmental Safety 148, 359-366. https://doi.org/10.1016/j.ecoenv.2017.10.051Manesh, R.R., Grassi, G., Bergami, E., Marques-Santos, L.F., Faleri, C., Liberatori, G., Corsi, I., 2018b. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus). Ecotoxicology and Environmental Safety 148, 359-366. https://doi.org/10.1016/J.ECOENV.2017.10.051Mujtaba Munir, M.A., Yousaf, B., Ali, M.U., Dan, C., Abbas, Q., Arif, M., Yang, X., 2021. In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil. Journal of Cleaner Production 302, 127005. https://doi.org/10.1016/J.JCLEPRO.2021.127005Muñoz Romero, J.H., Sepúlveda Cadavid, C.A., Cortés, N., López Correa, J.E., Correa Estrada, J.D., 2019. Inactivation of Fusarium oxysporum Conidia in Soil with Gaseous Ozone-Preliminary Studies. Ozone: Science and Engineering. https://doi.org/10.1080/01919512.2019.1608810Oliveira Resende, A.P., Santos, V.S.V., Campos, C.F., Morais, C.R. de, de Campos Júnior, E.O., Oliveira, A.M.M. de, Pereira, B.B., 2018. Ecotoxicological risk assessment of contaminated soil from a complex of ceramic industries using earthworm Eisenia fetida. https://doi-org.ezproxy.uniandes.edu.co/10.1080/15287394.2018.1528572 81, 1058-1065. https://doi.org/10.1080/15287394.2018.1528572Pascual, J.A., Garcia, C., Hernandez, T., Moreno, J.L., Ros, M., 2000. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology and Biochemistry 32, 1877-1883. https://doi.org/10.1016/S0038-0717(00)00161-9Plaimart, J., Acharya, K., Mrozik, W., Davenport, R.J., Vinitnantharat, S., Werner, D., 2021. Coconut husk biochar amendment enhances nutrient retention by suppressing nitrification in agricultural soil following anaerobic digestate application. Environmental Pollution 268, 115684. https://doi.org/10.1016/J.ENVPOL.2020.115684Prodana, M., Bastos, A.C., Amaro, A., Cardoso, D., Morgado, R., Machado, A.L., Verheijen, F.G.A., Keizer, J.J., Loureiro, S., 2019. Biomonitoring tools for biochar and biochar-compost amended soil under viticulture: Looking at exposure and effects. Applied Soil Ecology 137, 120-128. https://doi.org/10.1016/J.APSOIL.2019.01.007Qu, J., Wang, Y., Tian, X., Jiang, Z., Deng, F., Tao, Y., Jiang, Q., Wang, L., Zhang, Y., 2021. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials 401, 123292. https://doi.org/10.1016/j.jhazmat.2020.123292Rashmi, I., Biswas, A.K., Kartika, K.S., Kala, S., 2020. Phosphorus leaching through column study to evaluate P movement and vertical distribution in black, red and alluvial soils of India. Journal of the Saudi Society of Agricultural Sciences 19, 241-248. https://doi.org/10.1016/J.JSSAS.2018.11.002Rodríguez, F., Montoya-Ruiz, C., Estiati, I., Saldarriaga, J.F., 2020. Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process. ACS Omega 5, 24389-24402. https://doi.org/10.1021/ACSOMEGA.0C02768/ASSET/IMAGES/LARGE/AO0C02768_0010.JPEGSepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., 2021a. Evaluation of a Biochar-Based Slow-Release P Fertilizer to Improve Spinacia oleracea P Use, Yield, and Nutritional Quality. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-021-00583-0Sepúlveda-Cadavid, C., Romero, J.H., Torres, M., Becerra-Agudelo, E., López, J.E., 2021b. Evaluation of a Biochar-Based Slow-Release P Fertilizer to Improve Spinacia oleracea P Use, Yield, and Nutritional Quality. Journal of Soil Science and Plant Nutrition 2021 21:4 21, 2980-2992. https://doi.org/10.1007/S42729-021-00583-0Shi, Z., Tang, Z., Wang, C., 2017. A brief review and evaluation of earthworm biomarkers in soil pollution assessment. Environmental Science and Pollution Research 24, 13284-13294. https://doi.org/10.1007/s11356-017-8784-0Song, B., Almatrafi, E., Tan, X., Luo, S., Xiong, W., Zhou, C., Qin, M., Liu, Y., Cheng, M., Zeng, G., Gong, J., 2022. Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality. Renewable and Sustainable Energy Reviews 164, 112529. https://doi.org/10.1016/J.RSER.2022.112529Tan, Y., Wan, X., Zhou, T., Wang, L., Yin, X., Ma, A., Wang, N., 2022. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution. Journal of Hazardous Materials 424, 127349. https://doi.org/10.1016/J.JHAZMAT.2021.127349Wang, X., Li, Y., Wang, H., Wang, Y., Biswas, A., Wai Chau, H., Liang, J., Zhang, F., Bai, Y., Wu, S., Chen, J., Liu, H., Yang, G., Pulatov, A., 2022. Targeted biochar application alters physical, chemical, hydrological and thermal properties of salt-affected soils under cotton-sugarbeet intercropping. CATENA 216, 106414. https://doi.org/10.1016/J.CATENA.2022.106414Whitby, L.M., Hutchinson, T.C., 1974. Heavy-metal Pollution in the Sudbury Mining and Smelting Region of Canada, II. Soil Toxicity Tests. Environmental Conservation 1, 191-200. https://doi.org/10.1017/S0376892900004562Yang, Y.F., Cheng, Y.H., Liao, C.M., 2016. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment. Journal of Hazardous Materials 317, 210-220. https://doi.org/10.1016/J.JHAZMAT.2016.05.070Zeng, L.S., Liao, M., Chen, C.L., Huang, C.Y., 2007. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil¿lead¿rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety 67, 67-74. https://doi.org/10.1016/j.ecoenv.2006.05.001Zhang, F., Zhang, G., Liao, X., 2021. Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. Ecotoxicology and Environmental Safety 213, 112075. https://doi.org/10.1016/J.ECOENV.2021.112075Zhang, P., Xue, B., Jiao, L., Meng, X., Zhang, L., Li, B., Sun, H., 2022. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Science of The Total Environment 813, 152648. https://doi.org/10.1016/J.SCITOTENV.2021.152648Zhang, S., Chen, S., Fenton, O., Li, Y., Chen, Q., 2021. Enhanced topsoil P leaching in a short term flooded calcareous soil with combined straw and ammonium nitrogen incorporation. Geoderma 402, 115322. https://doi.org/10.1016/J.GEODERMA.2021.115322Zheng, H., Feng, N., Yang, T., Shi, M., Wang, X., Zhang, Q., Zhao, J., Li, F., Sun, K., Xing, B., 2021. Individual and combined applications of biochar and pyroligneous acid mitigate dissemination of antibiotic resistance genes in agricultural soil. Science of The Total Environment 796, 148962. https://doi.org/10.1016/J.SCITOTENV.2021.148962201822159Publication0000-0002-2902-2305virtual::8260-176d3641b-9a37-4533-b50d-baf763b86e3avirtual::8260-176d3641b-9a37-4533-b50d-baf763b86e3avirtual::8260-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/96d4e706-ffaf-459d-be0f-5fbfbc4b8ca9/download5aa5c691a1ffe97abd12c2966efcb8d6MD51TEXTManuscript_Acosta_V3.pdf.txtManuscript_Acosta_V3.pdf.txtExtracted texttext/plain33558https://repositorio.uniandes.edu.co/bitstreams/be2372e4-203f-42d9-9e03-f2af242a455a/download7c8f766f94d10026780282ab7cf79255MD54Copia de Formato tesis.pdf.txtCopia de Formato tesis.pdf.txtExtracted texttext/plain1163https://repositorio.uniandes.edu.co/bitstreams/5f0b7174-5bdd-4fb8-9540-bb2e39fb5b5f/download4491fe1afb58beaaef41a73cf7ff2e27MD56THUMBNAILManuscript_Acosta_V3.pdf.jpgManuscript_Acosta_V3.pdf.jpgIM Thumbnailimage/jpeg20287https://repositorio.uniandes.edu.co/bitstreams/d423b971-1fcb-4fd0-b7d2-4242824847f1/download7f56a1cbf56335305f0ce5e6596fd7d3MD55Copia de Formato tesis.pdf.jpgCopia de Formato tesis.pdf.jpgIM Thumbnailimage/jpeg14021https://repositorio.uniandes.edu.co/bitstreams/17675071-e518-4d70-ba32-7be3c1d1470a/downloadc0fd2beaf8ae8bdd470672310088b412MD57ORIGINALManuscript_Acosta_V3.pdfManuscript_Acosta_V3.pdfTrabajo de gradoapplication/pdf650313https://repositorio.uniandes.edu.co/bitstreams/fbe249ee-62ca-41d0-bc7c-0854ade6d0d8/download3ef8c9b878b56525b7e7dedc4221b732MD52Copia de Formato tesis.pdfCopia de Formato tesis.pdfHIDEapplication/pdf370635https://repositorio.uniandes.edu.co/bitstreams/ef0098e2-d05d-43c2-8e46-b18f379ff6e1/download030ff033431a2fb39caf737607841a09MD531992/57971oai:repositorio.uniandes.edu.co:1992/579712024-03-13 13:38:07.462https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg== |